SMS scnews item created by Georg Gottwald at Wed 28 May 2014 1214
Type: Seminar
Distribution: World
Expiry: 11 Jun 2014
Calendar1: 2 Jun 2014 1600-1700
CalLoc1: Carslaw 375
CalTitle1: SDG meeting: Andy Hammerlindl -- Lecture on "Stable Ergodicity"
Auth: gottwald@pgottwald2.pc (assumed)
SDG meeting: Andy Hammerlindl -- Lecture on "Stable Ergodicity on Surfaces"
Lecture 1 - Stable ergodicity on surfaces
The map A(x,y) = (2x+y, x+y) on the torus is ergodic. That in itself is not overly
difficult to prove. Whats more interesting is that the system is stably ergodic: every
area-preserving C^2 diffeomorphism close to A is also ergodic. However, it is an open
question if every C^1 diffeomorphism near A is ergodic.
Ill give an outline of the proof of stable ergodicity for these types of systems and
show why the C^1 case is so different from the C^2 case.
Ill also talk about how, in some sense, every stably ergodic system on a surface has to
be a linear example like the map A defined above.
Actions:
Calendar
(ICS file) download, for import into your favourite calendar application
UNCLUTTER
for printing
AUTHENTICATE to mark the scnews item as read