Some comments on the spectral gap of Schrödinger operators

J. Kerner

Bergische Universität Wuppertal & FernUniversität in Hagen

Asia-Pacific Analysis and PDE

partly joint work with M. Täufer (Hagen)

The setting for domains

We study the spectral gap of Schrödinger operators

$$h_L = -\Delta + v$$

on domains $\Lambda_L = \left(-\frac{L}{2}, +\frac{L}{2}\right)^d$ in \mathbb{R}^d with external and non-negative potentials $v \in L^{\infty}(\mathbb{R}^d)$.

We assume either Dirichlet or Neumann boundary conditions.
 In this way we end up with a self-adjoint operator with purely discrete spectrum.

The setting for domains

We study the spectral gap of Schrödinger operators

$$h_L = -\Delta + v$$

on domains $\Lambda_L = \left(-\frac{L}{2}, +\frac{L}{2}\right)^d$ in \mathbb{R}^d with external and non-negative potentials $v \in L^{\infty}(\mathbb{R}^d)$.

- We assume either Dirichlet or Neumann boundary conditions.
 In this way we end up with a self-adjoint operator with purely discrete spectrum.
- The spectral gap is given by

$$\Gamma_{\nu}(L) := \lambda_1(L) - \lambda_0(L)$$
.

The setting for domains

We study the spectral gap of Schrödinger operators

$$h_L = -\Delta + v$$

on domains $\Lambda_L = \left(-\frac{L}{2}, +\frac{L}{2}\right)^d$ in \mathbb{R}^d with external and non-negative potentials $v \in L^{\infty}(\mathbb{R}^d)$.

- We assume either Dirichlet or Neumann boundary conditions.
 In this way we end up with a self-adjoint operator with purely discrete spectrum.
- The spectral gap is given by

$$\Gamma_{\nu}(L) := \lambda_1(L) - \lambda_0(L)$$
.

• Basic question: How does $\Gamma_{\nu}(L)$ behave in the limit $L \to \infty$? How does ν influence the asymptotics?

• For the free Laplacian one has $v \equiv 0$ and

$$\Gamma_0(L) = \frac{\gamma(d)}{L^2}$$

• For the free Laplacian one has $v \equiv 0$ and

$$\Gamma_0(L) = \frac{\gamma(d)}{L^2}$$

with a constant $\gamma(d) > 0$ depending on the dimension d (and on the boundary conditions).

• For the free Laplacian one has $v \equiv 0$ and

$$\Gamma_0(L) = \frac{\gamma(d)}{L^2}$$

with a constant $\gamma(d) > 0$ depending on the dimension d (and on the boundary conditions).

 A classical question: Does the spectral gap increase/decrease if one adds a potential v to the free Laplacian?

• For the free Laplacian one has $v \equiv 0$ and

$$\Gamma_0(L) = \frac{\gamma(d)}{L^2}$$

with a constant $\gamma(d) > 0$ depending on the dimension d (and on the boundary conditions).

- A classical question: Does the spectral gap increase/decrease if one adds a potential v to the free Laplacian?
- It turns out that the answer is highly non-trivial and for a generic potential ν it is not clear what happens (see papers by Ashbaugh, Benguria, Lavine, and others)

Results in one dimension

 Assuming v decays at least quadratically at infinity one obtains an upper bound, i.e.,

$$\Gamma_{\nu}(L) \leq \frac{\alpha}{L^2}$$

for some $\alpha > 0$ and L large enough.

• The proof is simple and relies on the fact that the second eigenvalue converges to zero like $\sim L^{-2}$ for such potentials.

Results in one dimension: something surprising

• Assuming that v is non-zero and decays faster than $|x|^{-2}$ at infinity, one obtains a surprising result: Namley, one has

$$\lim_{L\to\infty} L^2\Gamma_{\nu}(L) = 0 \ .$$

• For example, for potentials $v \in C_0^{\infty}(\mathbb{R})$, the spectral gap converges to zero strictly faster than for the free Laplacian although the potential is supported on a smaller and smaller fraction of the interval.

Results in one dimension: basic mechanism

- However small the potential, since the first two eigenvalues converge to zero, the potential divides the interval into two "congruent" parts. This leads to an effective decoupling of left- and right-hand side.
- In this way the ground state becomes effectively degenerate in the infinite-volume limit and hence the spectral gap is converging to zero faster than for the free Laplacian.

Results in one dimension: what about a lower bound?

- Question: How fast does the spectral gap converge to zero for fast decaying potentials?
- Conjecture: For compactly supported potentials one expects $\Gamma_{\nu}(L) \sim L^{-3}$.

ullet Consider the Schrödinger operator with Neumann boundary conditions on the interval of length L

- Consider the Schrödinger operator with Neumann boundary conditions on the interval of length L
- A result of Kirsch & Simon (Comparison theorems for the gap of Schrödinger operators, JFA, 1987) implies

$$\Gamma_{\nu}(L) \ge \left(\frac{\min \varphi_0(x)}{\max \varphi_0(x)}\right)^2 \cdot \frac{\pi^2}{L^2}$$

- ullet Consider the Schrödinger operator with Neumann boundary conditions on the interval of length L
- A result of Kirsch & Simon (Comparison theorems for the gap of Schrödinger operators, JFA, 1987) implies

$$\Gamma_{\nu}(L) \ge \left(\frac{\min \varphi_0(x)}{\max \varphi_0(x)}\right)^2 \cdot \frac{\pi^2}{L^2}$$

• Idea: Derive a Harnack inequality for φ_0 ! (Berhanu & Mohammed, A Harnack Inequality for Ordinary Differential Equations, The Amer. Math. Monthly, 2005)

Theorem (Harnack inequality) For all L>0 one has $\min \varphi_0(x) \geq \mathrm{e}^{-4L\|v\|_{L^1}} \cdot \max \varphi_0(x)$

Theorem (Harnack inequality)

For all L > 0 one has

$$\min \varphi_0(x) \ge e^{-4L\|v\|_{L^1}} \cdot \max \varphi_0(x)$$

• The key point is to derive a bound on

$$\left|\frac{(\varphi_0)'(x)}{\varphi_0(x)}\right|$$

using the eigenvalue equation

• Then consider $f(t) := \ln \varphi_0(t(x-y)+y)$ with $t \in [0,1]$ and $x,y \in \Lambda_L$

Theorem (General lower bound)

For all L > 0 and $v \in L^{\infty}(\mathbb{R})$ one has

$$\Gamma_{\nu}(L) \ge e^{-8L\|\nu\|_{L^1}} \cdot \frac{\pi^2}{I^2}$$
.

Theorem (General lower bound)

For all L > 0 and $v \in L^{\infty}(\mathbb{R})$ one has

$$\Gamma_{\nu}(L) \ge e^{-8L\|\nu\|_{L^1}} \cdot \frac{\pi^2}{L^2} .$$

- The factor of 8 is not optimal
- The lower bound is very small but holds for general potentials and all L

Results in one dimension: a lower bound for weak compactly supported potentials

- Consider again the Schrödinger operator with Neumann boundary conditions on the interval of length L
- Assume v(x)=v(-x) is a bounded potential with support [-b,+b], b>0. In addition, we shall assume that inf $v(x)>\gamma>0$ and $b^2\|v\|_{L^\infty(\mathbb{R})}<1/2$.

Results in one dimension: a lower bound for weak compactly supported potentials

- Consider again the Schrödinger operator with Neumann boundary conditions on the interval of length L
- Assume v(x)=v(-x) is a bounded potential with support [-b,+b], b>0. In addition, we shall assume that inf $v(x)>\gamma>0$ and $b^2\|v\|_{L^\infty(\mathbb{R})}<1/2$.
- For such potentials one can prove that

$$\frac{\beta}{I^4} \le \Gamma_{\nu}(L) \le \frac{\alpha}{I^2} \ ,$$

for some constants $\alpha, \beta > 0$ and all L > 0 large enough.

Results in two dimensions

- We first consider potentials $v \in L^{\infty}(\mathbb{R}^2)$ that decay faster than quadratically (we assume Dirichlet boundary conditions from now on)
- The upper bound is again easy and reads αL^{-2} for some $\alpha > 0$.
- But does, like in one dimension, decay the gap faster than for the free Dirichlet Laplacian? Think of compactly supported potentials.

Results in two dimensions

It turns out that the effect from one dimension disappears!
 More explicitly, for such potentials one has

$$\frac{\beta}{L^2} \le \Gamma_{\nu}(L) \le \frac{\alpha}{L^2} ,$$

for some constants $\alpha, \beta > 0$.

 Intuitively, a compactly potential in two dimensions does not lead to an effective decomposition of the domain and therefore not to an effective degeneracy of the ground state in the limiting regime.

A remark on the proof

- A scaling leads to the Dirichlet Laplacian on the domain $\left(-\frac{1}{2},+\frac{1}{2}\right)^2$ with a potential concentrating around zero.
- Then, a result of Ozawa applies (Singular variation of domains and eigenvalues of the Laplacian, Duke Math. J., 1981): the eigenvalues of the Laplacian on a (nice enough) domain with a hole converge to those of the free Laplacian without hole.

Results in higher dimensions

• The same is true for potentials $v \in (L^{\infty} \cap L^{1})(\mathbb{R}^{d})$ for $d \geq 3$.

A proof

- The free ground state is given by $\varphi_0 = \left(\frac{2}{L}\right)^{\frac{d}{2}} \prod_{j=1}^d \cos\left(\frac{\pi x_j}{L}\right)$.
- Since v is non-negative, one has

$$\frac{(d+3)\pi^2}{L^2} \leq \lambda_1(L) \ .$$

• On the other hand, the variational principle gives

$$\lambda_0(L) \leq \langle \varphi_0, h_L \varphi_0 \rangle \leq \frac{d\pi^2}{L^2} + \|\varphi_0\|_{\infty}^2 \cdot \|v\|_{L^1(\mathbb{R}^d)}.$$

• $\|\varphi_0\|_{\infty}^2 \sim L^{-d}$ yields the statement.

Results in two dimensions

• Is it possible to construct a potential $v \in L^{\infty}(\mathbb{R}^2)$ for which one has

$$\lim_{L\to\infty} L^2\Gamma_{\nu}(L) = 0 ?$$

Results in two dimensions

- Yes! This can be proved for a potential supported on a strip, i.e., $v(x,y) \ge \gamma > 0$ for $-\delta < x < +\delta$ and $v \equiv 0$ elsewhere.
- Intuitively, such a potential again leads to an effective decomposition of the domain into two congruent parts and hence to an effective degeneracy of the ground state in the infinite-volume limit.

Thank you for your attention!

- J. Kerner and M. Täufer *On the spectral gap of one-dimensional Schrödinger operators on large intervals*, arXiv:2012.09060.
- J. Kerner and M. Täufer *On the spectral gap of higher-dimensional Schrödinger operators on large domains*, arXiv:2110.15110, prov. accept. Asymptotic Analysis
- J. Kerner A lower bound on the spectral gap of Schrödinger operators with weak potentials of compact support, arXiv:2103.03813 (might be combined with paper below)
- J. Kerner A lower bound on the spectral gap of one-dimensional Schrödinger operator, arXiv:2102.03816, prov. accept. Archiv der Mathematik