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The setting for domains

• We study the spectral gap of Schrödinger operators

hL = −∆ + v

on domains ΛL =
(
−L

2 ,+
L
2

)d
in Rd with external and

non-negative potentials v ∈ L∞(Rd).

• We assume either Dirichlet or Neumann boundary conditions.
In this way we end up with a self-adjoint operator with purely
discrete spectrum.

• The spectral gap is given by

Γv (L) := λ1(L)− λ0(L) .

• Basic question: How does Γv (L) behave in the limit L→∞?
How does v influence the asymptotics?
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A reference operator: the free Laplacian

• For the free Laplacian one has v ≡ 0 and

Γ0(L) =
γ(d)

L2

with a constant γ(d) > 0 depending on the dimension d (and
on the boundary conditions).

• A classical question: Does the spectral gap increase/decrease
if one adds a potential v to the free Laplacian?

• It turns out that the answer is highly non-trivial and for a
generic potential v it is not clear what happens (see papers by
Ashbaugh, Benguria, Lavine, and others)
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Results in one dimension

• Assuming v decays at least quadratically at infinity one
obtains an upper bound, i.e.,

Γv (L) ≤ α

L2

for some α > 0 and L large enough.

• The proof is simple and relies on the fact that the second
eigenvalue converges to zero like ∼ L−2 for such potentials.



Results in one dimension: something surprising

• Assuming that v is non-zero and decays faster than |x |−2 at
infinity, one obtains a surprising result: Namley, one has

lim
L→∞

L2Γv (L) = 0 .

• For example, for potentials v ∈ C∞0 (R), the spectral gap
converges to zero strictly faster than for the free Laplacian
although the potential is supported on a smaller and smaller
fraction of the interval.



Results in one dimension: basic mechanism

• However small the potential, since the first two eigenvalues
converge to zero, the potential divides the interval into two
“congruent” parts. This leads to an effective decoupling of
left- and right-hand side.

• In this way the ground state becomes effectively degenerate in
the infinite-volume limit and hence the spectral gap is
converging to zero faster than for the free Laplacian.



Results in one dimension: what about a lower bound?

• Question: How fast does the spectral gap converge to zero for
fast decaying potentials?

• Conjecture: For compactly supported potentials one expects
Γv (L) ∼ L−3.



Results in one dimension: a general lower bound

• Consider the Schrödinger operator with Neumann boundary
conditions on the interval of length L

• A result of Kirsch & Simon (Comparison theorems for the gap
of Schrödinger operators, JFA, 1987) implies

Γv (L) ≥
(

minϕ0(x)

maxϕ0(x)

)2

· π
2

L2

• Idea: Derive a Harnack inequality for ϕ0! (Berhanu &
Mohammed, A Harnack Inequality for Ordinary Differential
Equations, The Amer. Math. Monthly, 2005)
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Results in one dimension: a general lower bound

Theorem (Harnack inequality)

For all L > 0 one has

minϕ0(x) ≥ e−4L‖v‖L1 ·maxϕ0(x)

• The key point is to derive a bound on∣∣∣∣(ϕ0)′(x)

ϕ0(x)

∣∣∣∣
using the eigenvalue equation

• Then consider f (t) := lnϕ0(t(x − y) + y) with t ∈ [0, 1] and
x , y ∈ ΛL
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Results in one dimension: a general lower bound

Theorem (General lower bound)

For all L > 0 and v ∈ L∞(R) one has

Γv (L) ≥ e−8L‖v‖L1 · π
2

L2
.

• The factor of 8 is not optimal

• The lower bound is very small but holds for general potentials
and all L
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Results in one dimension: a lower bound for weak
compactly supported potentials

• Consider again the Schrödinger operator with Neumann
boundary conditions on the interval of length L

• Assume v(x) = v(−x) is a bounded potential with support
[−b,+b], b > 0. In addition, we shall assume that
inf v(x) > γ > 0 and b2‖v‖L∞(R) < 1/2.

• For such potentials one can prove that

β

L4
≤ Γv (L) ≤ α

L2
,

for some constants α, β > 0 and all L > 0 large enough.
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Results in two dimensions

• We first consider potentials v ∈ L∞(R2) that decay faster
than quadratically (we assume Dirichlet boundary conditions
from now on)

• The upper bound is again easy and reads αL−2 for some
α > 0.

• But does, like in one dimension, decay the gap faster than for
the free Dirichlet Laplacian? Think of compactly supported
potentials.



Results in two dimensions

• It turns out that the effect from one dimension disappears!
More explicitly, for such potentials one has

β

L2
≤ Γv (L) ≤ α

L2
,

for some constants α, β > 0.

• Intuitively, a compactly potential in two dimensions does not
lead to an effective decomposition of the domain and
therefore not to an effective degeneracy of the ground state in
the limiting regime.



A remark on the proof

• A scaling leads to the Dirichlet Laplacian on the domain(
−1

2 ,+
1
2

)2
with a potential concentrating around zero.

• Then, a result of Ozawa applies (Singular variation of domains
and eigenvalues of the Laplacian, Duke Math. J., 1981): the
eigenvalues of the Laplacian on a (nice enough) domain with
a hole converge to those of the free Laplacian without hole.



Results in higher dimensions

• The same is true for potentials v ∈ (L∞ ∩ L1)(Rd) for d ≥ 3.



A proof

• The free ground state is given by ϕ0 =
(
2
L

) d
2
∏d

j=1 cos
(πxj

L

)
.

• Since v is non-negative, one has

(d + 3)π2

L2
≤ λ1(L) .

• On the other hand, the variational principle gives

λ0(L) ≤ 〈ϕ0, hLϕ0〉 ≤
dπ2

L2
+ ‖ϕ0‖2∞ · ‖v‖L1(Rd ) .

• ‖ϕ0‖2∞ ∼ L−d yields the statement.



Results in two dimensions

• Is it possible to construct a potential v ∈ L∞(R2) for which
one has

lim
L→∞

L2Γv (L) = 0 ?



Results in two dimensions

• Yes! This can be proved for a potential supported on a strip,
i.e., v(x , y) ≥ γ > 0 for −δ < x < +δ and v ≡ 0 elsewhere.

• Intuitively, such a potential again leads to an effective
decomposition of the domain into two congruent parts and
hence to an effective degeneracy of the ground state in the
infinite-volume limit.



Thank you for your attention!
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