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The setting for domains

e We study the spectral gap of Schrodinger operators
hL =-A +v
on domains A} = (—%,—Fé)d in RY with external and

non-negative potentials v € L>(RY).

e We assume either Dirichlet or Neumann boundary conditions.

In this way we end up with a self-adjoint operator with purely
discrete spectrum.
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on domains A} = (—é,—k%) in RY with external and

non-negative potentials v € L>(RY).

e We assume either Dirichlet or Neumann boundary conditions.
In this way we end up with a self-adjoint operator with purely
discrete spectrum.

e The spectral gap is given by
Mv(L) := A1(L) — Xo(L) .

e Basic question: How does ', (L) behave in the limit L — 0co?
How does v influence the asymptotics?
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A reference operator: the free Laplacian

e For the free Laplacian one has v =0 and

with a constant y(d) > 0 depending on the dimension d (and
on the boundary conditions).

e A classical question: Does the spectral gap increase/decrease
if one adds a potential v to the free Laplacian?

e It turns out that the answer is highly non-trivial and for a

generic potential v it is not clear what happens (see papers by
Ashbaugh, Benguria, Lavine, and others)



Results in one dimension

e Assuming v decays at least quadratically at infinity one
obtains an upper bound, i.e.,

a
rv(L) < 2
for some a > 0 and L large enough.

e The proof is simple and relies on the fact that the second
eigenvalue converges to zero like ~ L=2 for such potentials.



Results in one dimension: something surprising

e Assuming that v is non-zero and decays faster than |x|~2 at
infinity, one obtains a surprising result: Namley, one has

lim L°T,(L)=0.
L—o0
e For example, for potentials v € C5°(R), the spectral gap
converges to zero strictly faster than for the free Laplacian
although the potential is supported on a smaller and smaller
fraction of the interval.



Results in one dimension: basic mechanism

e However small the potential, since the first two eigenvalues
converge to zero, the potential divides the interval into two
“congruent” parts. This leads to an effective decoupling of
left- and right-hand side.

e In this way the ground state becomes effectively degenerate in
the infinite-volume limit and hence the spectral gap is
converging to zero faster than for the free Laplacian.



Results in one dimension: what about a lower bound?

e Question: How fast does the spectral gap converge to zero for
fast decaying potentials?

e Conjecture: For compactly supported potentials one expects
ry(L) ~ L3,
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Results in one dimension: a general lower bound

e Consider the Schrodinger operator with Neumann boundary
conditions on the interval of length L

e A result of Kirsch & Simon (Comparison theorems for the gap
of Schrddinger operators, JFA, 1987) implies

r(L) > <msoo(x)>2wz

max o (x) L2

e Idea: Derive a Harnack inequality for ¢o! (Berhanu &
Mohammed, A Harnack Inequality for Ordinary Differential
Equations, The Amer. Math. Monthly, 2005)
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Results in one dimension: a general lower bound

Theorem (Harnack inequality)
For all L > 0 one has

_4LHV”L1

min @o(x) > e - max po(x)

e The key point is to derive a bound on

() ()

¢o(x)

using the eigenvalue equation
e Then consider f(t) := Ingo(t(x — y) + y) with t € [0,1] and
X,y € AL



Results in one dimension: a general lower bound

Theorem (General lower bound)
For all L > 0 and v € L*°(R) one has
2
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Results in one dimension: a general lower bound

Theorem (General lower bound)
For all L > 0 and v € L*°(R) one has
2

r(L) > ot T

e The factor of 8 is not optimal

e The lower bound is very small but holds for general potentials
and all L



Results in one dimension: a lower bound for weak
compactly supported potentials

e Consider again the Schrodinger operator with Neumann
boundary conditions on the interval of length L

e Assume v(x) = v(—x) is a bounded potential with support
[—b,+b], b > 0. In addition, we shall assume that
infv(x) >~y > 0and b?|v| 1) < 1/2.



Results in one dimension: a lower bound for weak
compactly supported potentials

e Consider again the Schrodinger operator with Neumann
boundary conditions on the interval of length L

e Assume v(x) = v(—x) is a bounded potential with support
[—b,+b], b > 0. In addition, we shall assume that
infv(x) >~y > 0and b?|v| 1) < 1/2.

e For such potentials one can prove that
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for some constants a, 5 > 0 and all L > 0 large enough.



Results in two dimensions

e We first consider potentials v € L°(R?) that decay faster

than quadratically (we assume Dirichlet boundary conditions
from now on)

e The upper bound is again easy and reads aL =2 for some
a > 0.

e But does, like in one dimension, decay the gap faster than for
the free Dirichlet Laplacian? Think of compactly supported
potentials.



Results in two dimensions

e |t turns out that the effect from one dimension disappears!
More explicitly, for such potentials one has
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for some constants «, 5 > 0.

e Intuitively, a compactly potential in two dimensions does not
lead to an effective decomposition of the domain and
therefore not to an effective degeneracy of the ground state in
the limiting regime.



A remark on the proof

e A scaling leads to the Dirichlet Laplacian on the domain

2 . . .
(—=3.+3)" with a potential concentrating around zero.

e Then, a result of Ozawa applies (Singular variation of domains
and eigenvalues of the Laplacian, Duke Math. J., 1981): the
eigenvalues of the Laplacian on a (nice enough) domain with
a hole converge to those of the free Laplacian without hole.



Results in higher dimensions

e The same is true for potentials v € (L% N L1)(RY) for d > 3.



A proof

d .
The free ground state is given by ¢o = (%) 2 dezl cos (LZJ)

e Since v is non-negative, one has

(d+L23)7T2 < n(L).

On the other hand, the variational principle gives

dm?
Mo(L) < (w0, higpo) < Izt llollZ, - [Vl (ray -

o2, ~ L= yields the statement.



Results in two dimensions

e Is it possible to construct a potential v € L°(R?) for which
one has
lim LT, (L) =07
L—o0



Results in two dimensions

e Yes! This can be proved for a potential supported on a strip,
ie, v(x,y) > >0for —6 < x < +4d and v = 0 elsewhere.

e Intuitively, such a potential again leads to an effective
decomposition of the domain into two congruent parts and
hence to an effective degeneracy of the ground state in the
infinite-volume limit.
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Thank you for your attention!
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