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Heat flow of harmonic maps
Harmonic maps

(M,g),(N,h) : Riemannian manifolds.
The Dirichlet energy E(f) of amap f: (M, g) — (N, h) is defined by

E(f):/M e(f):%/M |df|?dvol,,

where e(f) = 3|df|*dvol, = %gijhagf{"ffdvolg is the energy density
and dvol,, is the volume form on (MM, g).
A (weakly) harmonic map f € W12(M, N) is a critical point of the

Dirichlet energy E(f).
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Heat flow of harmonic maps
Harmonic maps

(M,g),(N,h) : Riemannian manifolds.
The Dirichlet energy E(f) of amap f: (M, g) — (N, h) is defined by

E(f):/M e(f):%/M |df|?dvol,,

where e(f) = 3|df|*dvol, = %gijhagf{"ffdvolg is the energy density
and dvol,, is the volume form on (MM, g).

A (weakly) harmonic map f € W12(M, N) is a critical point of the
Dirichlet energy E(f).

Embed (N, h) — RE isometrically, then f : harmonic =

T(F) (@) = Ay f(z) + Ag(f(2))(df, df ) = O,

where 7(f) = tr, Vdf € I'(f*TX) is the tension field of f and A, is the
second fundamental form of the embedding.
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Heat flow of harmonic maps
Properties of harmonic maps

Theorem 1 (Known results of harmonic maps)
Let f € WY2(M, N) be a map with dim M = m.
@ The Dirichlet energy E(f) is conformally invariant if m = 2.

@ /fm =2 and f is harmonic, then using local isothermal coordinate
z = x + 1y, the Hopf differential ® = (| f4|* — | fy|* + 2i{fs, fy))d2>
is holomorphic.

Any harmonic map f € WY2(M, N) with m = 2 is smooth.
(Helein, '91)

There is a harmonic map f : B> — S? which is discontinuous
everywhere. (Riviere, '95)

The Hausdorff dimension of singular set of harmonic map is at most
m — 2. (Schoen, '84)

The Hausdorff dimension of singular set of minimizing harmonic map
is at most m — 3. (Schoen-Uhlenbeck, '82)

© 0 6 o

5/31



Heat flow of harmonic maps

Heat flow of harmonic maps

Heat flow of harmonic map is the gradient flow of Dirichlet energy:

fo=7(f) = Agf + A(F)(df, df) (1)

with initial condition f(0) = fo.

Theorem 2 (Eells-Sampson, '64)

For any fo € C*°(M, N), there is Ty > 0 such that the heat flow
equation (1) admits a unique, smooth solution f € C*°(M x [0,Tp), N).

With additional curvature assumption on the target, we get more.

Theorem 3 (Eells-Sampson, '64)

If moreover sectional curvature of N is non-positive, then the solution
exists on M x [0, c0).

6/31



Heat flow of harmonic maps

Without non-positive curvature assumption, we get global weak solution.

Theorem 4 (Struwe, '85)

If dim M = 2, then for any fo € WY2(M,N), 3f : M x [0,00) — N,
smooth except finitely many (z;,t;). Moreover, at singular point (z,T),

lim lim E(f(), Dr(x)) #0.

Those singular points are also called bubble points.
The loss of energy is captured by bubbles : ¢; : S> — N such that

lim E(/(1) = E(/(T)) + Y E(@).

Theorem 5 (Struwe, '85)
If E(fo) < €0, then the solution is smooth globally.
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Heat flow of harmonic maps
Picture of bubbles
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Heat flow of harmonic maps
Picture of bubbles
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Heat flow of harmonic maps
Finite time singularity

Finite time singularities Do exist!!

Theorem 6 (Chang-Ding-Ye, '92)

There exists fo : D*> — S? such that the solution of heat flow equation
(1) with initial map fo blows up at the origin in finite time.

More generally,

Theorem 7 (Davila-del Pino-Wei, '20)

There exists a solution f : Q2 x (0,T) — S? of heat flow equation (1)
that blows up at q1,...,qr inT.

Those bubbling points should be apart from each other.

Theorem 8 (Qing-Tian, '97)

In heat flow solution, bubbles are decoupled each other.
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Heat flow of harmonic maps
Non-uniqueness

Theorem 9 (Freire, '95)

If furthermore E(f(s)) < E(f(t)) for almost every s < t, then the weak
solution is unique.

Remark : Energy decreasing in Struwe's sense is - E(f(t)) < 0 for
almost every t. So, Struwe’s solution allows bubbling off but it also
allows “reverse bubbling”.
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Heat flow of harmonic maps
Non-uniqueness

Theorem 9 (Freire, '95)

If furthermore E(f(s)) < E(f(t)) for almost every s < t, then the weak
solution is unique.

Remark : Energy decreasing in Struwe's sense is - E(f(t)) < 0 for
almost every t. So, Struwe’s solution allows bubbling off but it also
allows “reverse bubbling”.

Theorem 10 (Topping, '02)

There exists a harmonic map fy : D — S? and a weak solution

f e WL2(D x [0,00),5?) of the heat flow equation (1) such that
f(t) = fo for all t € [0,1] but f(t) # fo fort > 1.

Moreover,

lim B(/(1) = E(fo) + 4.
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Teichmiiller flow of harmonic maps
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Teichmiiller flow of harmonic maps

Decomposition of space of metrics, 2-dimension

Fix go € M, : a metric on M with constant curvature.
{g : smooth metric on M} = Sym? (T*M).
Its tangent space (at go) is

Sym*(T*M) = C(go) ® {Lxgo} ® H(g0)

where

Clg0) ={¢-g0: ¢ € C*(M)}
{Lxgo} ={Lxgo: X eT(TM)}
and H(go) consists of the real parts of holomorphic quadratic

differentials.

That means, change of metric can be split into change in conformal
direction, Lie-derivative direction, and so called horizontal direction.
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Teichmiiller flow of harmonic maps

Teichmiiller flow of harmonic maps

In dim M = 2, conformal change of metric does not change the energy.

Lemma 11 (Rupflin-Topping, '16)

Yg(t) € M. smooth, there is diffeomorphism f; : M — M such that
9rgo(t) = H(go(t))

where go(t) = fFg(t).
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Teichmiiller flow of harmonic maps
Teichmiiller flow of harmonic maps

In dim M = 2, conformal change of metric does not change the energy.

Lemma 11 (Rupflin-Topping, '16)

Yg(t) € M. smooth, there is diffeomorphism f; : M — M such that

Ogo(t) = H(go(t))

where go(t) = fFg(t).

A\

Definition 1 (Rupflin-Topping, '16)

Teichmiiller flow is a pair equations

fi = Agf + A, df) (2)
gt = %Pgé(.ﬁ g)

®(f,g) : Hopf differential, P, : Sym*(T*M) — H(g) : L* orthogonal
projection.
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Teichmiiller flow of harmonic maps

Another type of singularity

This equation is obtained by L? gradient flow of

E(f,9) = %/M |df |2 dvoly.

So the flow decreases the energy in the fastest direction.
Teichmiiller flow changes domain and may develop another type of
singularity : Domain degeneration
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Teichmiiller flow of harmonic maps
Properties of Teichmiiller flow

Theorem 12

@ A weak solution of (2) exists on [0,T) for T € (0, 0]. Moreover, if
T < oo, then lengths of closed geodesic ¢(g(t)) — 0. (Rupflin, '14)

Q@ Ifl(g(t)) — 0 ast — oo, (M,g(t)) splits into finitely many lower
genus surfaces and f(t) subconverges to branched minimal
immersions. (Rupflin-Topping-Zhu, '13)

@ In the above, the energy is not lost. (Huxol-Rupflin-Topping, '16)

@ If (N, h) has non-positive curvature, then there is a global smooth
solution. (Rupflin-Topping, '18)

Q@ If4(g(t)) — 0 ast — T, Parts 2 and 3 hold. (Rupflin-Topping, '19)

Unlike harmonic map heat flow, there can be necks connecting bubbles
and body maps. (Rupflin-Topping, '19)
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Conformal
Brief idea

Idea : Consider variation of metrics that does not change domain
geometry. = conformal direction!

Let g(z,t) = e*“(®t) gy(z), time-dependent metric on M.

Then over the region where |df|?> becomes large, make u(z,t) large.

22/31



Conformal
Brief idea

Idea : Consider variation of metrics that does not change domain
geometry. = conformal direction!

Let g(z,t) = e*“(®t) gy(z), time-dependent metric on M.

Then over the region where |df|?> becomes large, make u(z,t) large.

Flow

Heat

(M) (My)

Conformal  Heat  Flow

[

| large 141

= | (/:w
7 large

3 enlrje

W/)n) domain (M’ -Mj )

23/31



Conformal
Conformal heat flow of harmonic maps

Let fo: M — N be a map and g(xz,t) be a time-dependent metric on
M. For a,b > 0 constants, consider a pair of equations

gt = (2b‘df‘§(t) — 2a)g
with initial conditions f(0) = fo and ¢(0) = go.
If we let g(z,t) = e>“(*:1) gy, the equation for f and u becomes
fe = e P (A(f) + A()(df. df))
— —2u 2 (4)
ug = be *|df|* —a

with f(0) = fo and u(0) = 0.
The volume is defined by

V(t):/ dvol gy :/ e dvolg,. (5)
M M
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Conformal
Volume

Let dim M = 2.

For smooth solution of CHF, energy is decreasing. Volume satisfies

t
v = (vioy+ a0 [ e psyas) < e v0) + L,
0 a

This lemma comes from direct solution of w:

t
2 = g7 2at <1 + 26/ eQanfQ(s)ds) )
0

If fo is harmonic, then f(t) = fo and the energy density becomes
constant ¢ ast — oo.
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Conformal
Properties of conformal heat flow

Theorem 13

e For any fo € W32(M, N), there exist Tp > 0 and a pair of smooth
solutions f : M x [0,Ty] — N and u: M x [0,Tp] — R of (4).

e A global weak solution (f,u) exists on M x [0, 00) which is smooth
on M x (0,00) except at most finitely many points (x;, ;).

e At singularity (x,T), there is (xg,tx) € M x [0,T) with
(xk,tr) — (x,T) such that |df|?(xk, ty) — oc.

Many questions are unanswered, like:

© Does CHF avoid finite time singularity?

© Is CHF unique?
© Is there infinite time singularity?
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Harmonic-Ricci flow

Let fo: M — N be a map and g(xz,t) be a time-dependent metric on
M. Consider a pair of equations

fo =14(f) ©)

{gt = —2Ric+ 2a(t)df ® df
with initial conditions f(0) = fo and g(0) = go and « is a positive
coupling time-dependent function.
An example of harmonic-Ricci flow arises in warped product manifold.
Let M = M; x S with warped product metric ga; = g, + €?#df?, then

Ricci flow on M, 65;” = —2Ric)r becomes
% = —2Rici +2dp ® dp 7
. @
Yt =AY

so a special case of harmonic-Ricci flow.
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Properties of harmonic-Ricci flow

Theorem 14 (Muller, '12)

@ The solution of (6) exists for a short time and is unique.

o If a(t) is positive and non-increasing and e~% solves adjoint heat
equation (—% — A+ R — aldf|?) e=® = 0 then the functional

F(f9,0) = /M(Rg + Vol — aldf|2)e?dV

is non-decreasing. In fact, (f,g) can be interpreted as gradient flow
of F for particularly chosen ¢.

o Ifa(t) > ap >0 and |df|*(zk, tx) — oo as ty, — T, then
R(xy,tg) — oo as well.

0 If0<ap <at) <a; <ooandT < oo is maximal singular time.
Then

lim sup (max |Rm(x,t)|2> = o0.
t /T xeM
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Special case of 2 dimensional domain

Theorem 15 (Buzano-Rupflin, '17)

o Let (f,g) be solution of (6) and maximal singular time T' < co.
Then both map and curvature must blow up:

hmsupmaX|K| and hmsupmax |df(x t)|g
t T zeEM t T zeM

e If coupling function « € [ay, 1] satisfies
ap > 2max{K,}

where K. denotes sectional curvature of N in direction T, then the
solution (f,g) of (6) is smooth for all time.

Even though Ricci flow and harmonic map flow may develop singularities,
its coupling system behaves more regularly!
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