Introduction Nonsmooth convex speeds The main result References

Curvature contraction of convex hypersurfaces

James McCoy

Joint work with Ben Andrews, Andrew Holder, Glen Wheeler, Valentina-Mira Wheeler and Graham Williams

1 October 2014

Talk outline

- Introduction
 - The picture
 - Basic properties of the speed
 - When does M_t shrink to a 'round point' in finite time?
 - The support function
- Nonsmooth convex speeds
 - The class of speeds
 - Approximating speeds
- The main result
 - The main theorem
 - The estimates
 - Existence and convergence to a point
 - Rescaling and asymptotic sphericity
- 4 References

We begin with curvature contraction flows of the form

$$\frac{\partial X}{\partial t}(p,t) = -F(W(p,t))\nu(p,t)$$
 (1)

with a smooth, compact, strictly convex initial hypersurface $X(\mathbb{S}^n,0)=X_0(\mathbb{S}^n)=M_0$ without boundary.

Definition

The *principal curvatures* κ_i , i = 1, ..., n, are the eigenvalues of the Weingarten map W of M_t .

Write
$$\kappa = \{\kappa_1, \dots, \kappa_n\}$$
.

Basic properties of the speed:

• $F(W) = f(\kappa)$, f symmetric on the positive cone

$$\Gamma_{+} = \{ \kappa : \kappa_{i} > 0 \text{ for all } i = 1, \ldots, n \}.$$

- f > 0 (contraction flow), f(1, ..., 1) = 1 (normalised)
- f strictly increasing in each argument, everywhere on Γ₊
- f is homogeneous of degree $\alpha > 0$

Definition (Homogeneous functions)

A function $f(\kappa) = f(\kappa_1, \dots, \kappa_n)$ is **homogeneous of degree** α if for every κ and for all k > 0,

$$f(k\kappa) = k^{\alpha}f(\kappa)$$
.

Theorem (Euler's homogeneous function theorem)

If f is differentiable and homogeneous of degree α then

$$\sum_{i=1}^{n} \dot{f}^{i} \kappa_{i} := \sum_{i=1}^{n} \frac{\partial f}{\partial \kappa_{i}} \kappa_{i} = \alpha f.$$

Idea of proof: Take $\frac{\partial}{\partial k}$ of definition then set k = 1.

Note:
$$f(k\kappa) = k^{\alpha}f(\kappa) \Leftrightarrow F(kW) = k^{\alpha}F(W)$$
.

For any smooth strictly convex initial hypersurface M_0 and speed f smooth and homogeneous of degree 1:

- (Huisken, '84) Under mean curvature flow, F = H
- (Chow, '85) Under flow by $F = K^{1/n}$
- (Andrews, '94) Under flows by f either
 - convex, or
 - concave and
 - n = 2
 - $f \rightarrow 0$ as $\kappa \rightarrow \partial \Gamma_+$, or
 - $\sup_{M_0} \frac{H}{F} < \liminf_{\kappa \in \partial \Gamma_+} \frac{\sum_i \kappa_i}{f(\kappa)}$.
- (Andrews, '07) Under flows by *f* concave and *inverse concave*, that is, the function *f** is concave, where

$$f_*(x_1,\ldots,x_n)=\frac{1}{f\left(\frac{1}{x_1},\ldots\frac{1}{x_n}\right)}.$$

• (Andrews, '10) Under flows by f when n = 2 (surfaces).

And more recently

- (Andrews, M., Zheng, '13) Under flows with f inverse concave and either
 - $f_* \rightarrow 0$ on $\partial \Gamma_+$, or
 - matrix of inverse Weingarten map (r_{ij}) of M_0 satisfies

$$\sup_{\nu \in \mathcal{T}_{z}\mathbb{S}^{n}, \|\nu\| = 1} \left(\frac{r\left(\nu,\nu\right)|_{z}}{F_{*}\left(r\left(z\right)\right)} \right) < \liminf_{\partial \Gamma_{+}} \inf_{\nu \in \mathcal{T}_{z}\mathbb{S}^{n}, \|\nu\| = 1} \frac{r\left(\nu,\nu\right)}{f_{*}\left(r\right)}.$$

- (M., Mofarreh, V-M Wheeler, '14) M_0 axially symmetric More results for smooth speeds f homogeneous of positive degree with M_0 suitably pointwise 'curvature pinched':
 - (Chow, '85) Flows by K^{β} , $\beta \geq \frac{1}{n}$
 - (Schulze, '06) $F = H^k, k \ge 1$
 - (Alessandroni-Sinestrari, '10), $F = R^k$, $k \ge \frac{1}{2}$
 - (Andrews, M., '12) f homogeneous of degree $\alpha \ge 1$ (rather tight pinching).

If n = 2, more results are possible, without curvature pinching, or convexity of f, by exploiting symmetries of Codazzi equations:

- (Andrews, '99) F = K (Firey's conjecture)
- (Schnürer, '05) various speeds of integer homogeneity between 1 and 6
- (Schnürer-Schulze, '06) $F = H^k$, k = 1, 2, 3, 4, 5
- (Andrews, '10) f homogeneous of degree $\alpha \ge 1$ (α -dependent pinching if $\alpha > 1$)
- (Andrews-Chen, '12) $F = K^{\frac{\alpha}{2}}$, $\alpha \in [1, 2]$

Even more results on convergence of smooth convex hypersurfaces to a point (or not) without roundness. See, eg (Andrews, M., Zheng '13).

Definition

Let $X: \mathbb{S}^n \to \mathbb{R}^{n+1}$ represent a suitably smooth convex hypersurface M in \mathbb{R}^{n+1} . The **support function** of M is given by

$$u(x) = \langle X(x), \nu(x) \rangle.$$

Note: The image of M in \mathbb{R}^{n+1} can be reconstructed via

$$\hat{X}(x) = u(x)x + \overline{\nabla}u(x), \qquad (2)$$

where $\overline{\nabla}$ and $\overline{\sigma}$ are the standard gradient and metric on \mathbb{S}^n .

Solutions of (1) remain convex and correspond to solutions of the scalar parabolic equation

$$\frac{\partial u}{\partial t} = -F\left(\left(\overline{\nabla}_{i}\overline{\nabla}_{j}u + \overline{\sigma}_{ij}u\right)^{-1}\right) = -F_{*}\left(r_{ij}\right)^{-1} =: \Psi\left(r_{ij}\right). \tag{3}$$

Suppose now F(W) satisfies the following

- $F(W) = f(\kappa)$, f symmetric on Γ_+
- f > 0, f(1, ..., 1) = 1
- for all $\kappa \in \Gamma_+$, $f(\kappa + \delta e_i) > f(\kappa)$ for all $\delta > 0$ and each i
- f is homogeneous of degree 1
- f is convex, ie. for all $x, y \in \Gamma_+$ and $\lambda \in [0, 1]$,

$$f(\lambda x + (1 - \lambda y)) \leq \lambda f(x) + (1 - \lambda) f(y)$$
.

Properties:

- f is almost everywhere in Γ_+ twice differentiable (Aleksandrov).
- f is Lipschitz on compact subsets of Γ₊.

Example $(n = 2, f(\kappa) = \alpha \kappa_{\min} + \beta \kappa_{\max}, \beta \ge \alpha > 0, \alpha + \beta = 1)$

• f defined on \mathbb{R}^2 and symmetric, since

$$\kappa_{\text{min}} = (\kappa_1 + \kappa_2 - |\kappa_1 - \kappa_2|)/2$$

$$\kappa_{\text{max}} = \left(\kappa_1 + \kappa_2 + |\kappa_1 - \kappa_2|\right)/2$$

We can rewrite
$$f(\kappa) = \frac{1}{2}H + \left(\frac{\beta - \alpha}{2}\right)|\kappa_1 - \kappa_2|$$
.

- f > 0 on Γ_+ , not differentiable if $\beta > \alpha$ wherever $\kappa_1 = \kappa_2$
- *f* is everywhere increasing (by triangle inequality)
- f degree 1 homogeneous, convex (triangle inequal, $\beta \ge \alpha$)

Example (Maxima of convex functions)

$$F = \max\left(\frac{H}{n}, \eta |A|\right), \frac{1}{n} < \eta < \frac{1}{\sqrt{n}}.$$

For a mollifier $j_{\varepsilon}(x) = \varepsilon^{-n} j(\frac{x}{\varepsilon})$, such as

$$j(x) = \begin{cases} c_n e^{\frac{1}{|x|^2 - 1}} & \text{for } |x| < 1 \\ 0 & \text{for } |x| \ge 1, \end{cases}$$

where c_n is chosen such that $\int_{\mathbb{R}^n} j(x) dx = 1$, set

$$f_{\varepsilon}(\kappa) = \frac{H}{\hat{f}_{\varepsilon}^{1}} \int_{\mathbb{R}^{n}} j_{\varepsilon}(y) f\left(\frac{\kappa}{H} - y\right) dy = \frac{1}{\hat{f}_{\varepsilon}^{1}} \int_{\mathbb{R}^{n}} j_{\varepsilon}(y) f(\kappa - Hy) dy,$$
(4)

where $\hat{f}_{\varepsilon}^{1}$ is a normalisation factor.

Lemma

- For each $\varepsilon > 0$, f_{ε} is smooth; $f_{\varepsilon} \to f$ uniformly on $\tilde{\Gamma} \subset \subset \Gamma_{+}$.
- ② For each $\varepsilon \in (0, \min(\frac{1}{n}, \varepsilon_0))$, f_{ε} satisfies the same properties as f.

Theorem (Andrews, Holder, M., G. Wheeler, V.-M. Wheeler, Williams, '14)

Given M_0 compact, strictly convex $C^{1,\beta}$ hypersurface and a convex function f on Γ_+ satisfying the above properties, a solution $u \in C^{2,\alpha}\left(\mathbb{S}^n \times (0,T)\right)$ to (3) exists for $T < \infty$. The M_t contract to a point as $t \to T$. Under rescaling, \tilde{M}_t approaches \mathbb{S}^n exponentially in $C^{2,\alpha'}$ for $0 < \alpha' < \alpha$.

Remarks:

- Cannot estimate curvature derivatives via Schauder estimates. So to obtain contraction to a point by contradiction, we need short time existence for $C^{1,\beta}$ initial hypersurfaces. Modification of Lieberman, Chapter 14.
- If the speed is more regular, then the solution is correspondingly more regular, by boot-strapping.

We obtain estimates independent of ε for the flows

$$\frac{\partial u^{\varepsilon}}{\partial t} = -F^{\varepsilon} \left(\left(\overline{\nabla}_{i} \overline{\nabla}_{j} u^{\varepsilon} + \overline{\sigma}_{ij} u^{\varepsilon} \right)^{-1} \right) =: F_{*}^{\varepsilon} \left(r_{ij} \right), \tag{5}$$

all with initial hypersurface M_0 . The speeds are given by

$$F^{\varepsilon}(\mathcal{W}) := f^{\varepsilon}(\kappa(\mathcal{W}));$$

we will denote by κ_i^{ε} the curvatures of the M_t^{ε} , etc.

Let ρ_-, ρ_+ denote the inner and outer radius of M_0 .

Lemma (maximal time estimate)

$$\frac{\rho_-^2}{2} \leq T \leq \frac{\rho_+^2}{2}.$$

Proof: The radius $r^{\varepsilon}(t)$ of a sphere evolving under (5) satisfies

$$\frac{d}{dt}r^{\varepsilon}\left(t\right)=-f^{\varepsilon}\left(\frac{1}{r^{\varepsilon}},\ldots,\frac{1}{r^{\varepsilon}}\right)=-f^{\varepsilon}\left(1,\ldots,1\right)\frac{1}{r^{\varepsilon}}=-\frac{1}{r^{\varepsilon}}.$$

With a condition $r^{\varepsilon}(t_0) = r_0$, independent of ε , the ODE has solution

$$r^{\varepsilon}(t)=\sqrt{r_0^2-2(t-t_0)}.$$

The sphere shrinks to a point at time $t = t_0 + \frac{r^2(t_0)}{2}$.

Since M_0 encloses B_{ρ_-} and is enclosed by B_{ρ_+} ,

$$\frac{\rho_-^2}{2} \leq T_\varepsilon \leq \frac{\rho_+^2}{2}$$

for all ε .

Lemma (lower bound on speed and mean curvature)

Under (3), $H^{\varepsilon} \geq H_0 > 0$ and $F^{\varepsilon} \geq \frac{1}{n}H_0$ remain true, independent of ε .

Proof: Solutions of (5) satisfy

$$\frac{\partial}{\partial t}H^{\varepsilon} = \mathcal{L}^{\varepsilon}H^{\varepsilon} + \ddot{F}_{\varepsilon}^{kl,rs}\nabla_{\varepsilon}^{i}h_{kl}^{\varepsilon}\nabla_{i}^{\varepsilon}h_{rs}^{\varepsilon} + \dot{F}_{\varepsilon}^{kl}h_{km}^{\varepsilon}h_{\varepsilon}^{m}{}_{l}H^{\varepsilon},$$

where $\mathcal{L}^{\varepsilon}=\dot{F}^{ij}_{\varepsilon}\nabla^{\varepsilon}_{i}\nabla^{\varepsilon}_{j}$. Since the F_{ε} are convex,

$$\min_{M_t} H^{\varepsilon} \geq \min_{M_0} H =: H_0 > 0$$

independent of ε .

Any convex *F* satisfies $F \ge \frac{1}{n}H$, the result follows.

Using Hamilton's maximum principle for tensors,

Lemma (preservation of convexity, curvature pinching)

Under (3),

$$\bullet h_{\varepsilon j}^{i} - \eta F^{\varepsilon} \delta_{j}^{i} \geq 0, \text{ for any constant } \eta \leq \min_{M_{0}} \frac{n \kappa_{\min}}{n f(\kappa) + H}.$$

Proof: For any constant η ,

$$\begin{split} \frac{\partial}{\partial t} \left(\mathbf{h}_{\varepsilon \ j}^{i} - \eta \mathbf{F}^{\varepsilon} \delta_{j}^{i} \right) &= \mathcal{L}^{\varepsilon} \left(\mathbf{h}_{\varepsilon \ j}^{i} - \eta \mathbf{F}^{\varepsilon} \delta_{j}^{i} \right) + \ddot{\mathbf{F}}_{\varepsilon}^{kl,rs} \nabla_{\varepsilon}^{i} \mathbf{h}_{kl}^{\varepsilon} \nabla_{j}^{\varepsilon} \mathbf{h}_{rs}^{\varepsilon} \\ &+ \dot{\mathbf{F}}_{\varepsilon}^{kl} \mathbf{h}_{km}^{\varepsilon} \mathbf{h}_{\varepsilon}^{m} \mathbf{I} \left(\mathbf{h}_{\varepsilon \ j}^{i} - \eta \mathbf{F}^{\varepsilon} \delta_{j}^{i} \right). \end{split}$$

so if the inequality holds initially, then it is preserved under the flow (5). Choice of η follows from estimate of f_{ε} in terms of f and H.

Remark: Taking $\varepsilon \leq \varepsilon_0 = \frac{\eta}{n}$, the argument of the convolution f_{ε} remains within Γ_+ .

Lemma (upper speed bound, while inradius remains positive)

Fix $t_0 < T$. Then for any r > 0 such that $u \ge r$ at time t_0 , we have on $[0, t_0]$:

$$F^{\varepsilon}(x,t) \leq 2\rho_{+} \max \left\{ \frac{\max_{M_{0}} F}{r}, \frac{2}{r^{2}} \right\}.$$

Idea of proof: A method of Chou ('85); choose origin such that $B_r(O)$ is enclosed by $M_{t_0}^{\varepsilon}$. Then $u^{\varepsilon}(x,t) \geq r$ for all $x \in \mathbb{S}^n$ and $t \in [0,t_0]$. The function $Q^{\varepsilon} = \frac{F^{\varepsilon}}{2u^{\varepsilon}-r}$ satisfies

$$\frac{\partial}{\partial t} Q^{\varepsilon} \leq \mathcal{L}^{\varepsilon} Q^{\varepsilon} + 4 \dot{F}_{\varepsilon}^{kl} \frac{\nabla_{k}^{\varepsilon} u^{\varepsilon}}{2 u^{\varepsilon} - r} \nabla_{l}^{\varepsilon} Q^{\varepsilon} + Q_{\varepsilon}^{2} \left(2 - r^{2} Q^{\varepsilon}\right).$$

Lemma (equation (5) is uniformly parabolic)

$$\underline{C}\delta \leq f(\kappa + \delta e_i) - f(\kappa) \leq \overline{C}\delta.$$

Idea of proof: Upper and lower bounds on F and curvature pinching give that κ remains within a compact $K \subset \Gamma_+$.

We have now shown that the solutions u^{ε} to (5) are bounded in $C^{2,\alpha}$, independent of ε , as long as the inradius is positive. Taking $\varepsilon \to 0$ we obtain a C^2 solution to (3).

Specifically, in view of our estimates independent of ε , using the method of continuity and mollification as in Lieberman Chapter 14, we obtain

Theorem (short-time existence of solution to (1))

For any $u_0 \in C^{1,\alpha}(\mathbb{S}^n)$ there exists a $\delta > 0$ and a unique solution $u \in C^{2,1}(\mathbb{S}^n \times (0,\delta)) \cap C(\mathbb{S}^n \times [0,\delta))$.

Theorem (contraction to a point)

The images M_t shrink to a point as $t \to T < \infty$.

Proof:

- **1** Suppose $\rho_- \not\rightarrow 0$ as $t \rightarrow T$.
- Speed bounds and curvature pinching imply bounds above and below on the principal curvatures.
- These imply convergence to $u(\cdot, T)$, generating a $C^{1,1}$ hypersurface \tilde{M}_T .
- \tilde{M}_T could then be used as initial data in the short-time existence theorem, contradicting the maximality of T.
- **5** Therefore $\rho_- \to 0$ as $t \to T$ and, via curvature pinching, $\rho_+ \to 0$ also.

Moreover, by standard arguments we get $u \in C^{2,\alpha}(\mathbb{S}^n \times (0,T))$.

The natural rescaling of the solution to (1) is

$$\tilde{X}(x,t) = \frac{1}{\sqrt{2(T-t)}} (X(x,t) - p),$$

where M_t contracts to the point $p \in \mathbb{R}^{n+1}$ at time T. The rescaled time parameter is

$$\tau = -\frac{1}{2} \ln \left(1 - \frac{t}{T} \right) \in [0, \infty).$$

The rescaled immersions \tilde{M}_{τ} evolve according to

$$\frac{\partial}{\partial \tau} \tilde{X}(x,\tau) = -F\left(\tilde{\mathcal{W}}(x,\tau)\right) \tilde{\nu}(x,\tau) + \tilde{X}(x,\tau), \tag{6}$$

with initial condition

$$\tilde{X}(x,0)=\frac{1}{\sqrt{2T}}(X_0-\rho).$$

By standard arguments, solutions to (6) have

- uniform positive lower and upper bounds on F;
- curvature pinching (homogeneous degree zero estimate).

Consequently, (6) is uniformly parabolic and $C^{2,\alpha}$ regularity of \tilde{X} then follows by standard arguments for fully nonlinear equations (Krylov, Safanov).

For **asymptotic sphericity**, we need a geometric quantity whose extremum characterises a sphere, and whose monotonicity survives in the limit $\varepsilon \to 0$. Consider the family of flows

$$\frac{\partial}{\partial \tau} \tilde{X}^{\varepsilon} (\mathbf{x}, \tau_{\varepsilon}) = -F^{\varepsilon} \left(\tilde{\mathcal{W}}^{\varepsilon} (\mathbf{x}, \tau_{\varepsilon}) \right) \tilde{\nu}^{\varepsilon} (\mathbf{x}, \tau_{\varepsilon}) + \tilde{X}^{\varepsilon} (\mathbf{x}, \tau_{\varepsilon}), \quad (7)$$

with initial condition

$$\tilde{X}^{\varepsilon}(x,0) = \frac{1}{\sqrt{2T_{\varepsilon}}}(X_0 - p_{\varepsilon}).$$

For $\tilde{G}_0^{\varepsilon}:=\tilde{G}_0\left(\tilde{\mathcal{W}}^{\varepsilon}\right)$ smooth, positive, increasing, concave, degree-one homogeneous and normalised, set

$$\tilde{\mathit{G}}^{\varepsilon} := \tilde{\mathit{G}}^{\varepsilon}_{0} + k \tilde{\mathit{H}}^{\varepsilon} \Longleftrightarrow \tilde{\mathit{g}}^{\varepsilon} := \tilde{\mathit{g}}^{\varepsilon}_{0} + k \sum \tilde{\kappa}^{\varepsilon}_{i}$$

and $\tilde{\mathbf{Q}}_{\alpha}^{\varepsilon}:=\tilde{\mathbf{G}}^{\varepsilon}-\alpha \tilde{\mathbf{F}}^{\varepsilon} \Longleftrightarrow \tilde{\mathbf{q}}_{\alpha}^{\varepsilon}:=\tilde{\mathbf{g}}^{\varepsilon}-\alpha \mathbf{f}^{\varepsilon}$, for numbers \mathbf{k} and α .

Since \tilde{G} is concave and \tilde{F} is convex, the function $\frac{\tilde{G}}{\tilde{F}}$ has only one local maximum on $\Gamma^+ \cap \left\{ \left| \tilde{A}^\varepsilon \right| = 1 \right\}$, at $(1,\ldots,1)$, implying the structural bound $\frac{\tilde{G}}{\tilde{F}} \leq 1$.

Lemma

For any $\overline{\alpha}$ there is an absolute constant $k_0 = k_0(\overline{\alpha})$ such that, under the rescaled flow (7), for any $\alpha \leq \overline{\alpha}$ and $k \geq k_0 > 0$,

$$\frac{\partial}{\partial \tau_{\varepsilon}} \tilde{Q}_{\alpha}^{\varepsilon} \geq \tilde{\mathcal{L}}^{\varepsilon} \tilde{Q}_{\alpha}^{\varepsilon} + \left(\dot{\tilde{F}}_{\varepsilon}^{pq} \tilde{h}_{p}^{\varepsilon} \tilde{h}_{mq}^{\varepsilon} - 1 \right) \tilde{Q}_{\alpha}^{\varepsilon}. \tag{8}$$

We compute

$$\frac{\partial}{\partial \tau_{\varepsilon}} \tilde{Q}_{\alpha}^{\varepsilon} = \tilde{\mathcal{L}}^{\varepsilon} \tilde{Q}_{\alpha} + \left(\dot{\tilde{Q}}_{\alpha}^{\varepsilon} {}^{ij} \ddot{\tilde{F}}_{\varepsilon}^{pq,mn} - \dot{\tilde{F}}_{\varepsilon}^{ij} \ddot{\tilde{Q}}_{\alpha}^{\varepsilon} {}^{pq,mn} \right) \tilde{\nabla}_{i}^{\varepsilon} \tilde{h}_{pq}^{\varepsilon} \tilde{\nabla}_{j}^{\varepsilon} \tilde{h}_{mn}^{\varepsilon} + \left(\dot{\tilde{F}}_{\varepsilon}^{pq} \tilde{h}_{p}^{\varepsilon} {}^{m} \tilde{h}_{pq}^{\varepsilon} - 1 \right) \tilde{Q}_{\alpha}^{\varepsilon}. \quad (9)$$

We wish to choose k>0 such that the whole $\tilde{\nabla}A^{\varepsilon}$ term in (9) is nonnegative. This requires the matrix inequality $\dot{\tilde{Q}}^{\varepsilon}_{\alpha}\geq 0$.

We have in coordinates that diagonalise the Weingarten map

$$\frac{\partial \tilde{q}_{\alpha}^{\varepsilon}}{\partial \tilde{\kappa}_{i}} = \frac{\partial \tilde{g}_{0}^{\varepsilon}}{\partial \tilde{\kappa}_{i}} + k - \alpha \frac{\partial \tilde{f}^{\varepsilon}}{\partial \tilde{\kappa}_{i}} > k_{0} - \overline{\alpha} \overline{C}.$$

Taking $k_0 = \overline{\alpha} \overline{C}$ meets the requirement.

The estimates
Existence and convergence to a poir
Rescaling and asymptotic sphericity

Using the properties of \tilde{G}^{ε} and the lower speed bound, we have

Lemma

There exists an absolute constant $\hat{C} > 0$ such that

$$\left(\hat{C} - \alpha\right)\tilde{F}^{\varepsilon} \leq \tilde{Q}_{\alpha}^{\varepsilon} \leq (1 - \alpha)\tilde{F}^{\varepsilon}.$$
 (10)

Completion of proof of asymptotic sphericity

Consider $\tilde{Q}_{\alpha_m}^{\varepsilon}$ on the time interval [m,m+1] for $m\geq 1$. Fix $\overline{\alpha}=1$ and choose $\alpha=\alpha_0$ such that

$$\min_{M_0} \tilde{Q}^{arepsilon}_{lpha_0} = 0$$
 .

The lower bound in (10) implies $\alpha_0 > 0$, moreover, there is an upper bound on α_0 beyond which

$$\min_{M_t,t\in[m,m+1]}\tilde{Q}_{\alpha_m}^{\varepsilon}<0.$$

The sequence $\{\alpha_m\}_{m\in\mathbb{N}_0}$ is now generated by choosing on each interval [m,m+1] the corresponding $\alpha=\alpha_m$ such that

$$\min_{M_{t_m}} \tilde{Q}^{\varepsilon}_{\alpha_m} = 0$$
 .

For all m we have $\alpha_m \leq 1$ since otherwise, by (10),

$$\max_{M_t,t\in[m,m+1]}\tilde{Q}_{\alpha_m}^{\varepsilon}<0.$$

The evolution equation (8) implies that on [m, m+1] the quantity $\tilde{Q}_{\alpha_m}^{\varepsilon}$ is non-negative.

We show that in fact $\min_{M_l} \tilde{Q}^{\varepsilon}_{\alpha_m}$ increases using the parabolic Harnack inequality.

First rewrite (8) in a local coordinate system around $B_{\rho}(x)$ for any $x \in M$,

$$\frac{\partial}{\partial \tau_{\varepsilon}} \tilde{Q}_{\alpha_{m}}^{\varepsilon} \geq \dot{\tilde{F}}_{\varepsilon}^{ij} \left(\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \tilde{Q}_{\alpha_{m}}^{\varepsilon} - \Gamma_{ij}^{k} \frac{\partial}{\partial x_{k}} \tilde{Q}_{\alpha_{m}}^{\varepsilon} \right) + \left(\dot{\tilde{F}}_{\varepsilon}^{pq} \tilde{h}_{p}^{\varepsilon} \tilde{h}_{mq}^{\varepsilon} - 1 \right) \tilde{Q}_{\alpha_{m}}^{\varepsilon} \,.$$

Using the ellipticity constants, we derive, for λ to be chosen,

$$\begin{split} \frac{\partial}{\partial \tau_{\varepsilon}} \left(e^{\lambda t} \sqrt{\tilde{Q}_{\alpha_{m}}^{\varepsilon}} \right) & \geq \dot{\tilde{F}}_{\varepsilon}^{ij} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \left(e^{\lambda t} \sqrt{\tilde{Q}_{\alpha_{m}}^{\varepsilon}} \right) \\ & + \frac{1}{2} \left(\dot{\tilde{F}}_{\varepsilon}^{pq} \tilde{h}_{p}^{\varepsilon m} \tilde{h}_{mq}^{\varepsilon} - \frac{1}{2} \frac{\overline{C}^{2}}{\underline{C}} |\Gamma|^{2} - 1 + \lambda \right) \left(e^{\lambda t} \sqrt{\tilde{Q}_{\alpha_{m}}^{\varepsilon}} \right) \,. \end{split}$$

Since the rescaled curvatures are bounded, there is a positive $\lambda = \lambda_0$ such that for

$$\begin{split} &\tilde{Z}_{\alpha_{m}}^{\varepsilon} = \left(e^{\lambda_{0}t}\sqrt{\tilde{Q}_{\alpha_{m}}^{\varepsilon}}\right),\\ &\left(\frac{\partial}{\partial\tau_{\varepsilon}} - \dot{\tilde{F}}_{\varepsilon}^{ij}\frac{\partial^{2}}{\partial x_{i}\partial x_{j}}\right)\tilde{Z}_{\alpha_{m}}^{\varepsilon} \geq 0 \end{split}$$

in the local coordinate chart. The weak parabolic Harnack inequality implies, for each $x \in M$,

$$\min_{B_{\rho/2}(x)\times[m+1,m+2]} \tilde{Z}_{\alpha_m}^{\varepsilon} \geq c \int_{m-1}^m \left(\frac{1}{|B_{\rho}(x)|} \int_{B_{\rho}(x)} |\tilde{Z}_{\alpha_m}^{\varepsilon}|^{\sigma} dx \right)^{\frac{1}{\sigma}} d\tau.$$

for absolute positive σ and bounded c, independent of x.

Since $ilde{X}_arepsilon\in C^{2,lpha}$, $ilde{Z}^arepsilon_{lpha_m}\in C^{0,lpha}$ and therefore

$$\min_{B_{\rho/2}(x)\times[m+1,m+2]} \tilde{Z}_{\alpha_m}^{\varepsilon} \geq c \max_{B_{\rho}(x)\times[m-1,m]} \tilde{Z}_{\alpha_m}^{\varepsilon} \,,$$

where c depends on the absolute constants σ and α .

A parabolic chaining argument gives

$$\min_{M\times[m+1,m+2]}\tilde{Z}_{\alpha_m}^{\varepsilon}\geq c\max_{M\times[m-1,m]}\tilde{Z}_{\alpha_m}^{\varepsilon}\,.$$

Absorbing the exponential factor and squaring gives

$$\min_{M\times[m+1,m+2]} \tilde{Q}_{\alpha_m}^{\varepsilon} \ge c \max_{M\times[m-1,m]} \tilde{Q}_{\alpha_m}^{\varepsilon}, \qquad (11)$$

where c > 0 is an absolute constant.

Estimating the maximum in (11) implies the recurrence relation

$$1 - \alpha_{m+1} \le -c(1 - \alpha_m) + (1 - \alpha_m) \le (1 - c)(1 - \alpha_m).$$

Since $\alpha_m < 1$ observe that 1 - c > 0 and so $1 - c \in (0, 1)$.

Iterating the recurrence relation, we have, for

$$C = (1 - \alpha_0) \in (0, 1)$$
 and $\gamma = -\log(1 - c) \in (0, \infty)$,

$$0 < 1 - \alpha_{m+1} \le (1-c)^m (1-\alpha_0) = (1-\alpha_0)e^{m\log(1-c)} \le Ce^{-\gamma m}$$
.

This holds for $t \in [m, m+1]$ and implies, for all $t \ge 0$,

$$0 < 1 - \min_{M_t} rac{ ilde{G}^{arepsilon}}{ ilde{F}^{arepsilon}} \leq C e^{-\gamma t}$$
 .

This implies, in turn, for all ε , uniform exponential convergence of $\frac{\tilde{G}^{\varepsilon}}{\tilde{F}^{\varepsilon}}$ to 1, a value of the ratio that is obtained only on a sphere.

- R. Alessandroni, C. Sinestrari, Evolution of hypersurfaces by powers of the scalar curvature, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 9 (2010), 541–571.
- B. H. Andrews, Contraction of convex hypersurfaces in Euclidean space, Calc. Var. 2 (1994) no. 2, 151–171.
- B. H. Andrews, Gauss curvature flow: the fate of the rolling stones, Invent. Math. 138 (1999) no. 1, 151–161.
- B. H. Andrews, Pinching estimates and motion of hypersurfaces by curvature functions, J. Reine Angew. Math. 608 (2007), 17–33.
- B. H. Andrews, Moving surfaces by non-concave curvature functions, Calc. Var. 39 (2010) no. 3-4, 650–657.

- B. H. Andrews, X. Chen, Surfaces moving by powers of Gauss curvature, Pure Appl. Math. Q. 8 (2012), no. 4, 825–834.
- B. H. Andrews, J. M., Convex hypersurfaces with pinched principal curvatures and flow of convex hypersurfaces by high powers of curvature, Trans. Amer. Math. Soc. 364 (2012), 3427–3447.
- B. H. Andrews, J. M., Y. Zheng, Contracting convex hypersurfaces by curvature, Calc. Var., to appear.
- B. Chow, Deforming convex hypersurfaces by the nth root of the Gaussian curvature, J. Differential Geom. 22 (1985) no. 1, 117–138.
- R. S. Hamilton, Three manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), 255–306.

- N. V. Krylov, Safonov, M. V., A certain property of solutions of parabolic equations with measurable coefficients, Izv. Akad. Nauk 40 (1980), 161–175. English transl., Math USSR Izv. 16 (1981), 151–164.
- G. M. Lieberman, Second order parabolic differential equations, World Scientific, Singapore, 1996.
- J. M., F. Mofarreh, V.-M. Wheeler, Fully nonlineaer curvature flow of axially symmetric hypersurfaces, to appear in NDEA.
- G. Huisken, Flow by mean curvature of convex hypersurfaces into spheres, J. Differential Geom. 20 (1984) no. 1, 237–266.
- S. Kim, K.-A. Lee, Parabolic Harnack inequality of viscosity solutions on Riemannian manifolds, J. Functional. Anal. 267 (2014), 2152–2198.

- O. C. Schnürer, Surfaces contracting by |A|², J. Differential Geom. 71 (2005) no. 3, 347-363.
- F. Schulze, Convexity estimates for flows by powers of the mean curvature, Ann. Scuol Norm. Sup Pisa Cl. Sci. (5), 10 (2006), 261–277.
- K. S. Tso (Chou), Deforming a hypersurface by its Gauss-Kronecker curvature, Comm. Pure. Appl. Math. 38 (1985) no. 6., 867–882.
- J. I. E. Urbas, On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures, Math. Z. 205 (1990), 355–372.
- J. I. E. Urbas, An expansion of convex hypersurfaces, J. Differential Geometry 33 (1991), 91–125.