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ABSTRACT. Recent work of Lazarovich provides necessary and sufficient conditions on a graph L for there to
exist a unique simply-connected (k, L)-complex. The two conditions are symmetry properties of the graph,
namely vertex-star transitivity and edge-star transitivity. In this paper we investigate vertex- and edge-star
transitive graphs by studying the structure of the vertex and edge stabilisers of such graphs. We also provide
new examples of graphs that are both vertex-star transitive and edge-star transitive.

1. INTRODUCTION

In this paper we investigate graph-theoretic conditions on the links of vertices in certain simply-connected
polygonal complexes, such that by recent work of Lazarovich [L], local data specify these complexes uniquely.
A 2-dimensional CW-complex X is called a polygonal complex if both of the following hold:

(1) the attaching maps of X are homeomorphisms; and
(2) the intersection of any two closed cells of X is either empty or exactly one closed cell.

These conditions imply that the 1-skeleton of X, that is, the graph given by the vertices and edges of X, is
simple, that is, has no loops or multiple edges. More details on these and subsequent topological terms will
be provided in Section 2. We will refer to the closed 1-cells of X as edges and the closed 2-cells as faces.
The boundary of any face P of X is a cycle of k edges, for some integer k > 3, and so we may also refer
to P as a k-gon. For each vertex x of X, the link of x is the simple graph with vertex set the edges of X
containing x, edge set the faces of X containing x, and two vertices of the link adjacent if and only if the
corresponding edges in X are contained in a common face. We do not usually think of polygonal complexes
as being embedded in any space. Polygonal complexes are, however, often metrised so that each face is a
regular Euclidean polygon of side length one. In some cases the faces may be metrised as hyperbolic polygons
instead.

Polygonal complexes play an important role in combinatorial and geometric group theory. The Cayley
2-complex of a group presentation is a polygonal complex, and many groups are investigated by considering
their action on an associated polygonal complex of nonpositive or negative curvature (see Section 2 for the
definitions of these curvature conditions). From a slightly different point of view, if X is a simply-connected,
locally finite polygonal complex, then the automorphism group of X is naturally a totally disconnected
locally compact group. As explained in the survey [FHT], we may hope to extend to this setting results from
the theory of Lie groups and their lattices.

Given an integer k£ > 3 and a simple graph L, a (k, L)-complex is a polygonal complex X such that each
face is a k-gon and the link of each vertex is L. For example, if C,, denotes the cycle graph on n vertices,
then the boundary of a tetrahedron is a (3, C3)-complex, and the regular tiling of the Euclidean plane with
squares is a (4, Cy)-complex. The (cartesian) product of two trees of bivalency {m, n} is a (4, K,, »,)-complex,
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where K, ,, is the complete bipartite graph on m 4 n vertices. If L is the Heawood graph, that is, the point-
line incidence graph of the projective plane PG(2,2), then the buildings for both SL3(Q2) and SL3(F2((¢)))
are (3, L)-complexes, which are not isomorphic. There is a close relationship between (k, L)-complexes and
rank 3 incidence geometries, which we discuss in Section 2.

We say that the pair (k, L) satisfies the Gromov Link Condition if k > m and girth(L) > n, where
(m,n) € {(3,6),(4,4),(6,3)}. If this condition holds, then as we recall in Section 2, a simply-connected
(k, L)-complex X is either nonpositively or negatively curved, as its faces are metrised as Euclidean or
hyperbolic polygons respectively. We assume throughout this paper that the graph L is finite and connected,
equivalently X is locally finite and has no local cut-points.

Denote by X (k, L) the collection of all simply-connected (k, L)-complexes (up to isomorphism). As de-
scribed in [FHT], simply-connected (k, L)-complexes are often constructed as universal covers of finite (k, L)-
complexes. Also, discrete groups which act upon simply-connected (k, L)-complexes are often constructed
either as fundamental groups of finite (k, L)-complexes, or as fundamental groups of complexes of finite
groups over polygonal complexes which have all faces k-gons and the link of the local development at each
vertex being the graph L. In each of these cases, in order to identify the universal cover, which will be some
simply-connected (k, L)-complex, it is essential to know whether |X (k, L)| = 1.

The question of when |X(k,L)| = 1 has been addressed by several authors, with the most complete
answer to date given by Lazarovich [L]. Ballmann and Brin [BB] provided an inductive construction of
simply-connected (k, L)-complexes whenever the pair (k, L) satisfies the Gromov Link Condition and certain
obvious obstructions do not occur. (For example, if k is odd and L is bipartite of bivalency {¢, r} with £ # r,
then there is no (k, L)-complex.) Moreover, Ballmann and Brin and independently Haglund [H2] showed
that there are uncountably many non-isomorphic simply-connected (k, K, )-complexes when k > 6 and n > 4
(here, K,, is the complete graph on n vertices). We discuss other results prior to [L], on both uniqueness
and non-uniqueness of (k, L)-complexes, in Section 8.

In [L], the graph-theoretic notions of vertex-star transitivity and edge-star transitivity are introduced
(using the terminology star-transitivity and st(edge)-transitivity, respectively). We recall the definition of
these terms in Definitions 3.1 and 3.2 below, where we also define G-vertex-star transitivity and G-edge-star
transitivity for G a subgroup of Aut(L). The Uniqueness Theorem of [L] states that if £ > 4, the pair
(k, L) satisfies the Gromov Link Condition and L is both vertex-star transitive and edge-star transitive, then
|X(k,L)| < 1. Moreover, Theorem A of [L] states that for k > 4 even and (k, L) satisfying the Gromov Link
Condition, |X(k,L)| =1 if and only if L is both vertex-star transitive and edge-star transitive.

In this paper we investigate vertex-star transitivity and edge-star transitivity for graphs, expanding on the
results and examples given in [L, Section 1.1]. Our main results are the following. (For the group notation
and graph definitions used in these theorems, we refer to Section 3.) We first consider vertex-transitive
graphs, that is, graphs L such that Aut(L) acts transitively on the set of vertices of L.

Theorem 1.1. Let L be a connected graph of valency r > 3, let G < Aut(L) be vertez-transitive and let v
be an arbitrary vertex of L. Then L is G-vertez-star transitive and G-edge-star transitive if and only if one

of the following holds:

(1) L is (G, 3)-transitive, and G, = Sy X Sp_1.

(2) L is cubic and (G, 4)-arc-transitive, and G, = Sy or Sy x Ss.

(3) L is of valency 4 and (G,4)-arc-transitive, and G, = 3%: GL(2, 3) or [3°]: GL(2, 3).

We note that all cases in Theorem 1.1 give rise to examples. Case (1) is realised by the Odd graphs
(see Section 8.1.4), Case (2) with G, = Sy is realised by the Heawood graph and Case (2) with G, =
S4 x Sy is realised by the generalised quadrangle associated with the symplectic group PSp(4,2). The groups
32: GL(2,3) or [3°]: GL(2,3) in part (3) of Theorem 1.1 are the parabolic subgroups of PGL(3,3) and the
exceptional group of Lie type G2(3). Case (3) is then realised by the point-line incidence graph of the
projective plane PG(2,3) and the generalised hexagon associated with G2(3).

We then consider graphs which are not vertex transitive.

Theorem 1.2. Let L be a connected graph with minimal valency at least three, let G < Aut(L), and let
{v,w} be an arbitrary edge of L. Assume that L is G-vertex-star transitive and G-edge-star transitive but
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not vertex-transitive. Then L is a locally (G, 3)-arc-transitive bipartite graph of bi-valency {¢,r} with € # r,
and after possibly exchanging the role of v and w, one of the following holds:

(1) G, acts nontrivially on both Ls(v) and Lo(w), and {€,7} = {3,5};

2) GI =1, Gy = S, x Sp_1, and Gy = Sy X Sy_1;

(3) Gl =1, and (A,_1)""' < GLb < (S,-0) Y,

(ATX(AT,1>Z_1).2.Sg,1 < Gy,
(A_1)L.2.8 < G

< Sp x (Sp_1wrSe_1),and
< S wr Sy
(4) [L(v)| =7 <5.

We provide examples in each of the first three cases. Case (1) is realised by the generalised quadrangle
associated with the unitary group PSU(4, 2) (Example 7.3). Case (2) is realised by the vertex-maximal clique
incidence graph of the Johnson graph (see Section 8.3.1) while Case (3) is realised by the vertex-maximal
clique incidence graph of the Hamming graph (Section 8.3.2). We do not have any example for case (4) that
is not also an example for one of the previous cases.

We also characterise graphs of small minimum valency which are vertex-star transitive and/or edge-star
transitive. In particular, we show the following.

Theorem 1.3. Let L be a connected graph with minimal valency one or two. Then L is vertex-star transitive
and edge-star transitive if and only if one of the following holds:
(1) L is a complete bipartite graph K, for somen > 1;
(2) L is a cycle of length n for some n > 3; or
(3) there exists a locally fully symmetric, arc-transitive graph X of valency at least three such that L can
be obtained by subdividing each edge of ¥ with a new vertex of valency two.

In Section 4, we characterise vertex-star transitive and edge-star transitive graphs of small girth and
minimal valency and prove Theorem 1.3. In Section 5, we prove some preliminary general results about
vertex-star transitive and edge-star transitive graphs. The proofs of Theorems 1.1 and 1.2 are given in
Sections 6 and 7, respectively. Finally, in Section 8, we describe many examples of graphs that are both
vertex-star transitive and edge-star transitive.

We expect that our results and examples will contribute to the program described in [FHT] of investigating
the automorphism groups of nonpositively curved polygonal complexes and their lattices. In particular, if
X is a simply-connected (k, L)-complex with L vertex-star transitive and edge-star transitive, then basic
questions for which our results may prove useful include whether Aut(X) is discrete, and whether Aut(X)
admits a lattice.

Acknowledgements. We thank Nir Lazarovich and Michah Sageev for providing us with the preprint [L].
We also thank Hendrik van Maldeghem for pointing us to the references for local actions of generalised
polygons, and an anonymous referee for careful reading.

2. BACKGROUND ON (k, L)-COMPLEXES

In Section 2.1 we briefly recall several key definitions from algebraic topology and geometric group theory,
and apply these in the setting of (k, L)-complexes. We then discuss in Section 2.2 the relationship between
(k, L)-complexes and rank 3 incidence geometries.

2.1. Definitions from algebraic topology and geometric group theory. We first recall the definition
of a 2-dimensional CW-complex, also known as a 2-dimensional cell complex. (A reference is, for example,
[H].) Denote by D! the closed interval [—1,1] with boundary dD! the points S° = {—1,1}, and by D? the
closed unit disk in the Euclidean plane with boundary dD? the unit circle S'. A space X is a 2-dimensional
CW-complex if it is constructed as follows:

0)

(1) Begin with a possibly infinite set X (0), called the 0-skeleton, whose points are the 0-cells. Equip

X ) with the discrete topology.
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(2) The 1-skeleton XM is the quotient space obtained from the disjoint union X (© L, D! of X©) with
a possibly infinite collection of closed intervals D}, by identifying each boundary point z € 9D},
with a O-cell o, (z) € X(©. That is, each ¢, is a function from S = {~1,1} to X© (necessarily
continuous). We equip X () with the quotient topology. The images of the D! in X M) are called
the (closed) 1-cells.

(3) The 2-skeleton X @) is the quotient space obtained from the disjoint union X () Ug D/% of XM with
a possibly infinite collection of closed disks D%, by identifying each boundary point x € 8D§ with a
point wg(z) € XV, where each ¢g is a continuous function from the circle (“)D% =S to XM, We
equip X with the quotient topology. The images of the D% in X® are called the (closed) 2-cells.

(4) Since X is 2-dimensional, X is equal to its 2-skeleton X (?).

The maps ¢, and ¢g are called the attaching maps. The (closed) cells of X are its (closed) 0-, 1- and 2-cells.
The 1-skeleton of X may be thought of as a graph (not necessarily simple), with vertex set the 0-skeleton
and edges the 1-cells. The additional conditions required in order for a 2-dimensional CW-complex X to be
a polygonal complex are stated in the introduction.

We next recall the definitions of geodesic metric spaces and the curvature conditions CAT(0) and CAT(—1).
For details on this material, see [BH]. Let (X, dx) be a metric space. A continuous function v : [a,b] = X
(for a < b real numbers) is a geodesic if for all a < t < ¢ < b, we have dx(y(t),y(t')) = t' —t. The metric
space (X,dx) is geodesic if for all z,y € X, there is a geodesic v : [a,b] — X such that y(a) = 2 and
~v(b) = y. We may denote this geodesic by [z,y]. Note that there may be more than one geodesic connecting
z and y. For example, in Euclidean space, each geodesic is a straight line segment and there is a unique
geodesic connecting each pair of points, while on the sphere S? with its usual metric, each geodesic is an arc
of a great circle, and antipodal points are connected by infinitely many geodesics.

Let (X,dx) be a geodesic metric space. A geodesic triangle in X is a triple of points x,y, z, together
with a choice of geodesics [z,y], [y, 2] and [z,z]. Given a geodesic triangle A = A(x,y, z), a comparison
triangle in the Euclidean plane is a triple of points Z, ¥, z such that dx(z,y) = d(,7), dx(y,z) = d(g, 2)
and dx(z,x) = d(z,%), where d is the Euclidean metric. For each point p € [z,y], there is a comparison
point denoted P in the straight line segment [Z, 7], with the comparison point p defined by the equation
dx(z,p) = d(Z,p). Similarly, we define comparison points for p in [y, z] and [z, z]. The space X is said to
be CAT(0) if for every geodesic triangle A = A(x,y, z), and every pair of points p, ¢ € [z,y] U [y, 2] U [z, 2],
we have dx(p,q) < d(p,q). Roughly speaking, triangles in a CAT(0) space are “no fatter” than Euclidean
triangles. A CAT(0) space is sometimes said to be nonpositively curved.

We may instead consider comparison triangles in the hyperbolic plane, and define X to be CAT(—1) or
negatively curved if its triangles are “no fatter” than hyperbolic triangles. Every CAT(—1) space is also
a CAT(0) space (Theorem II1.1.12 of [BH]). Key properties of CAT(0) spaces X include that each pair of
points in X is connected by a unique geodesic, that X is contractible hence simply-connected and that if
a group acting by isometries on X has a bounded orbit, then it fixes a point (see, respectively, Proposition
I1.1.4, Corollary II.1.5 and Corollary I1.2.8 of [BH]).

We now consider the case of interest, when X is a (k, L)-complex, as defined in the introduction. Assume
that each face of X is metrised as a regular Euclidean k-gon, or that each face of X is metrised as a regular
hyperbolic k-gon. Then by Theorem 1.7.50 of [BH], X is a complete geodesic metric space when equipped
with the “taut string” metric, in which each geodesic is a concatenation of a finite number of geodesics
contained in faces.

If the faces of a (k,L)-complex X are regular Euclidean k-gons and (k, L) satisfies the Gromov Link
Condition, then X is locally CAT(0) (see 1.5.24 of [BH]). Hence by the Cartan-Hadamard Theorem [BH,
I1.4.1], the universal cover of X is a CAT(0) space. Similarly, if either k£ > m and girth(L) > n, or k > m and
girth(L) > n, for (m,n) € {(3,6), (4,4), (6,3)}, then the faces of X may be metrised as regular hyperbolic
k-gons with vertex angles 27/ girth(L), the complex X is locally CAT(—1) and the universal cover of X is
thus CAT(—1). We will henceforth be considering simply-connected (k, L)-complexes X which satisfy the
Gromov Link Condition, and so are CAT(0).
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2.2. Relationship with incidence geometries. A (k, L)-complex may be viewed combinatorially as a
rank three incidence structure, namely, a geometry consisting of three types of objects, vertices, edges and
faces, such that each edge is incident with exactly two vertices, each face is incident with exactly k edges
and k vertices, and the graph with vertex set the edges incident with a given vertex and edges the faces is
isomorphic to L. In the notation of Buekenhout [Bu], the geometry has diagram

(k) T
° ° °

vertices edges faces

where the label (k) denotes the vertex-edge incidence graph of a k-cycle and L denotes the vertex-edge
incidence graph of L.

We call a (k, L)-complex connected if both the link graph and the vertex-edge incidence graph are con-
nected. A flag in the geometry is an incident vertex-edge-face triple. All connected (k, L)-complexes that
can be embedded in E? and have a Euclidean symmetry group acting transitively on flags were classified by
Pellicer and Schulte [PS1, PS2]. The only finite ones were seen to be the eighteen finite regular polyhedra.
Polyhedra are precisely the finite (k, L)-complexes with L a cycle.

3. GRAPH- AND GROUP-THEORETIC DEFINITIONS AND NOTATION

In Section 3.1 we discuss the main definitions from graph theory that we will require, and then in Sec-
tion 3.2 we define the group-theoretic notation that we will use. For ease of comparison with the literature,
we now switch to standard graph-theoretic notation. We also assume some basic definitions from algebraic
graph theory [GR] and from the theory of permutation groups [DM]. All graphs considered in this paper
are finite.

3.1. Graph theory. Let I" be a graph with vertex set V(I') and edge set E(T'). If T is simple, that is, a
graph without loops or multiple edges, and e € E(T") connects the vertices u and v, then we identify the
(undirected) edge e with the set {u,v}, and we denote the arc (directed edge) from u to v by uv. For each
vertex v we denote by I'(v) the set of neighbours of v, that is, the set of vertices adjacent to v. The set of
all vertices at distance 7 from v will be denoted by I';(v). In particular, I';(v) = I'(v). For X C V(I'), the
restriction of ' to X is the graph I' |x with vertex set X and edge set consisting of those edges of I' that
have both endpoints in X. The girth girth(T") is the length of the shortest cycle in T'. The valency of a vertex
is the number of neighbours that it has and the graph I is called k-regular if each v € V(T") has valency k. A
3-regular graph is also called a cubic graph. If I is k-regular then we also say that I has valency k. A graph
is called regular if it is k-regular for some k. We say that a graph T is biregular or has bi-valency {¢,r} if T
is bipartite and vertices in the two parts of the bipartition have valency ¢ and r, respectively.

If G is a group of automorphisms of T and v € V(T") then G,, denotes the stabiliser in G of the vertex v.
If X C V() is stabilised setwise by a subgroup H < G then we denote by H*X the permutation group
induced by H on X. In particular, GE(U) is the group induced on I'(v) by G,. We say that G is locally

transitive, locally primitive, locally 2-transitive, or locally fully symmetric if for each v € V(I") the group GE(”)
is transitive, primitive, 2-transitive, or the symmetric group on I'(v), respectively. The graph T is locally
transitive, locally primitive, locally 2-transitive, or locally fully symmetric if there exists G < Aut(T") with
the appropriate property (equivalently, as all four properties hold in overgroups, Aut(I") has the appropriate
property).

For an edge {u,v} we define G, .} to be the setwise stabiliser of {u,v}, and for an arc uv, we define
Guy := G, N G,. Let d be the usual distance function on I', so that each edge has length 1. Then for each
natural number n and each v € V(I'), we define

G = {ge G, | w? = wYw € V(T) such that d(v,w) < n}
as the pointwise stabiliser of the ball of radius n around v. For {u,v} € E(T), G’Lll], = GE] N G’Ll].

An s-arc in a graph I' is an (s + 1)-tuple (vo,v1,...,vs) of vertices such that {v;,v;11} € E(I') and
vi—1 # v;iy1, that is, it is a walk of length s that does not immediately turn back on itself. Let G < Aut(T).
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We say that T is locally (G, s)-arc transitive if for each vertex v, the stabiliser G, acts transitively on the
set of s-arcs of I" starting at v. If G is transitive on the set of all s-arcs in I then we say that I' is (G, s)-arc
transitive. If all vertices of I' have valency at least two then locally s-arc transitive implies locally (s — 1)-arc
transitive. Moreover, s-arc transitive implies locally s-arc transitive. Conversely, if G is transitive on V(I")
and T is locally (G, s)-arc transitive then I" is (G, s)-arc transitive. We observe that a graph with all vertices
having valency at least 2 is locally (G, 2)-arc transitive if and only if GV is 2 transitive for all vertices v
(see for example [GLP1, Lemma 3.2]). Moreover, if I" is locally G-transitive then G acts transitively on E(T")
and either G is transitive on V(') or I is bipartite and G acts transitively on both sets of the bipartition.
If T is (G, s)-arc-transitive but not (G, s + 1)-arc-transitive then we say that I' is (G, s)-transitive. Finally,
if G = Aut(T") then we drop the name G from all notation introduced in this paragraph and say that T is
locally s-arc-transitive, s-arc-transitive, and s-transitive, respectively.

The study of s-arc transitive graphs goes back to the seminal work of Tutte [T1, T2] who showed that
a cubic graph is at most 5-arc transitive. This was later extended by Weiss [W3] to show that any graph
of valency at least three is at most 7-arc transitive. Weiss [W1] also showed that a cubic graph is at most
locally 7-arc transitive while Stellmacher [St] has announced that a graph of valency at least 3 is at most
locally 9-arc transitive. In each case the upper bound is met. Note that a cycle is s-arc transitive for all
values of s.

The following definitions, using a slightly different language, were introduced by Lazarovich [L].

Definition 3.1. Let T" be a simple graph, let v € V(I'), and let e = {u,v} € E(T'). The open star
of v, denoted st(v), is the union of {v} and the set {f € E(T') | f isincident to v}. Similarly, the
open edge-star of e, denoted st(e) or st({u,v}), is the union of the sets {u}, {v}, and {f € EI) |
f is incident to at least one of u, v}.
Given two open stars st(vy) and st(vg), a star isomorphism is a bijection ¢ : st(v1) — st(ve) such that
p(v1) = va.
Given two open edge-stars st({ui,v1}) and st({ug,v2}), an edge-star isomorphism is a bijection ¢ :
st({u1,v1}) — st({ug, va}) such that:
(i) p({u1,v1}) = {u2,v2}, that is, the vertices u1,v; are mapped (in some order) to the vertices ug, va;
and
(ii) ¢ is incidence-preserving, that is, f € E(T') Nst({u1,v1}) is incident to u;y if and only if o(f) is
incident to p(u1) and f € E(T")Nst({u1,v1}) is incident to vy if and only if ¢(f) is incident to ¢ (v1).

Definition 3.2. Let I' be a simple graph, and let G < Aut(T"). Then T is called

(i) G-vertez-star transitive if for all v1,vo € V(T') and for all star isomorphisms ¢ : st(v1) — st(va),
there exists an automorphism ¢ € G such that (v1) = ¢(v1) and for all f € E(T') Nst(vy) we have
B(F) = ol f); and

(ii) G-edge-star transitive if for all {u1,v1 }, {ug,v2} € E(T") and edge-star isomorphisms ¢ : st({u1,v1}) —
st({uz,v2}), there exists an automorphism 1 € G such that ¥(u1) = p(u1), ¥ (v1) = ¢(v1), and for
all f € E(T) Nst({u1,v1}) we have ¥(f) = p(f).

If G = Aut(T) then we simply say that T is vertex-star transitive or edge-star transitive, respectively.

A subtlety of Definition 3.2 is that if there is no star-isomorphism st(vy) — st(vs) or edge-star isomorphism
st({u1,v1}) = st({uz, va}), then the required property of extending to a graph automorphism holds trivially.
Another subtlety is the introduction of the notions of vertex-star transitivity and edge-star transitivity
relative to subgroups G < Aut(I"). Counsidering subgroups of Aut(I") with certain transitivity properties is
quite common in algebraic graph theory; the main reason is that there are examples where some G < Aut(I")
extends to covers of I but the full automorphism group does not. For example, the icosahedron is a cover
of the complete graph Kg but not all of Aut(Kg) = Sg extends.

The reason for the somewhat cumbersome formulation of the definitions above is that in the case when
girth(T') < 4, the definition of a star isomorphism or edge-star isomorphism ¢ does not require that ¢
preserves the possible adjacency relations among the neighbours of the vertices occurring in the open stars
and edge-stars. However, the graph automorphisms defined in Definition 3.2, extending the star isomorphisms
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and edge-star isomorphisms, must preserve such adjacency relations. The following result, whose proof is
immediate, says that for large enough girth we can work with much simpler definitions. Given a vertex v we
let X (v) :={v} UI'(v), and for an edge {u,v} we let X ({u,v}) := {u} U{v} U (u) UT(v).

Proposition 3.3. (i) If girth(I') > 4 then for v € V(T'), st(v) can be identified with the restriction I' | x ().
A star isomorphism is then a graph isomorphism @1 : I |x(u)= ' | x(0p) and T is vertez-star transitive if
and only if every star isomorphism extends to an automorphism of .

(ii) If girth(I') > 5 then for {u,v} € E(T), st({u,v}) can be identified with the restriction T' |x({u,v})-
An edge-star isomorphism is then a graph isomorphism 02 : T | x (fui,01) = T | X (fus,ve}) and the graph T is
edge-star transitive if and only if every edge-star isomorphism extends to an automorphism of T'.

3.2. Group-theoretic notation. For a natural number &k, we denote by S the symmetric group on k
letters, by Ay the alternating group on k letters, by Cj the cyclic group of order k, and by Doy the dihedral
group of order 2k. The projective special linear group, projective general linear group, and projective
semilinear group of dimension d over a field of size ¢ are denoted by PSL(d, ¢), PGL(d, q), and PT'L(d, q),
respectively. Given a group A and a natural number k, we denote by A wr Sy the following wreath product:
let B be the direct product of k copies of A. Then Sy acts naturally on B by permuting the k& copies of A,
and A wr Sy, is the semidirect product induced by this action. We denote a semidirect product of two groups
A and B by A:B. A group that is a (not necessarily split) extension of a subgroup A by a group B will be
denoted by A.B. Given a prime p, p" will be used to denote an elementary abelian group of order p™, and
we will use [p™] to denote a group of order p™ when we do not wish to specify the isomorphism type. The
socle of a group G is the subgroup generated by all the minimal normal subgroups of GG, and is denoted by
soc(G). When n > 5 or n = 3, we have that soc(S,) = A,.

We refer to a triple of groups (A, B, AN B) as an amalgam. A completion of the amalgam (A, B, AN B)
is a group G together with group homomorphisms ¢; : A — G and ¢ : B — G such that ¢; and ¢o are
one-to-one, G = (¢1(A), p2(B)) and ¢1(A) N d2(B) = ¢1(AN B) = ¢2(AN B).

4. GRAPHS WITH SMALL GIRTH OR WITH SMALL MINIMAL VALENCY

In this section, we characterise vertex-star transitive and edge-star transitive graphs of girth at most four,
so that in the rest of the paper we can concentrate on the case girth(I") > 5 and use the simplified description
of stars and edge-stars, as given in Proposition 3.3. We also characterise vertex-star transitive and edge-star
transitive graphs of minimal valency one or two.

Lemma 4.1. The only connected vertex-star transitive graphs of girth 3 are the complete graphs Ky, for
some n > 3. The only connected edge-star transitive graph of girth 3 is the triangle K3. The only connected
edge-star transitive graphs of girth 4 are the complete bipartite graphs K, n, for some m,n > 2.

Proof. Let {u,v,w} be a cycle of length 3 in I, and suppose that I' is vertex-star transitive. Considering
the extensions of all star isomorphisms ¢ : st(v) — st(v) to automorphisms of T', we obtain that any two
vertices in I'(v) are adjacent. Hence, for any € I'(v), x is contained in a cycle of length 3, and by the same
argument as above all neighbours of = are adjacent. In particular, all y € I'(z) \ {v} are adjacent to v, and
so {v}UT(v) = {z}UT(x). As T is connected, we obtain that V(I') = {v} UI'(v) and I is a complete graph.

Suppose now that {u,v,w} is a cycle of length 3 in T', and that T is edge-star transitive. If the vertex u
has valency greater than 2 then there exists an edge-star isomorphism ¢ : st({u,v}) — st({u,v}) such that
pu) = u, p) = v, p({u,w}) # {u,w}, and p({v,w}) = {v,w}. However, ¢ cannot be extended to an
automorphism of I', a contradiction. Similarly, v and w also must be of valency 2 and so, as I' is connected,
V() = {u,v,w}.

Finally, suppose that girth(T') = 4, T is edge-star transitive, and let {u, v, w, 2z} be a 4-cycle. Considering
the extensions of all edge-star isomorphisms ¢ : st({u,v}) — st({u,v}) that fix v and v, we obtain that,
as an image of the edge {w, z}, every pair {wq, 21} with w; € I'(v) and z; € I'(u) is in E(T'). Therefore,
for every wy € I'(v) we have I'(wy) D I'(u). Repeating the same argument with edge-star isomorphisms
¢ st({wy,v}) — st({wy,v}) and a four-cycle containing {wy,z}, we obtain that for every ws € I'(v) we
have I'(wg) 2 T'(w1). In particular, for we = w, I'(wq) = I'(v). As wy was an arbitrary element of I'(v),
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all vertices in I'(v) have the same neighbours. Similarly, all vertices in I'(u) have the same neighbours,
V(') =T (u) UT'(v), and T' is a complete bipartite graph. O

Next, we characterise the vertex-star transitive and edge-star transitive graphs with a vertex of valency one.
For n > 3, we define the spider graph T, as a graph with 2n + 1 vertices V(T3,) = {Z,¥1, .-, Yns 21, - -+, 2n}
and 2n edges E(T,) = {{z,vi}, {yi,z:} | 1 <i <n}.

Lemma 4.2. The only connected vertex-star transitive graphs with a vertex of valency one are the complete
bipartite graphs K1 ,,, for somen > 1. The only connected edge-star transitive graphs with a vertez of valency
one are: the complete bipartite graphs K ,,, for some n > 1; the path P, with four vertices; and the spider
graphs Ty, for some n > 3.

Proof. Let T be a simple graph, let v € V(T') have valency one, and let u be the unique neighbour of v.
If T is vertex-star transitive then, considering the star-isomorphisms ¢ : st(u) — st(u) mapping v to other
neighbours of u, we obtain that all neighbours of « have valency one. As I is connected, we obtain I' = K ,,,
where n is the valency of u.

Suppose now that I' is edge-star transitive. We distinguish three cases, according to the valency of u. If
u has valency at least three then let w, z be neighbours of w that are different from v. Considering edge-
star isomorphisms ¢ : st({u,w}) — st({u,w}) that fix u and map v to neighbours of v different from w, we
obtain that all neighbours of u different from w have valency one. Repeating the same process with edge-star
isomorphisms ¢ : st({u, z}) — st({u, z}), we deduce that w also has valency one and I" = K ,,, where n is
the valency of u.

If u has valency one then I' = K ;. If u has valency two then let 2 be the neighbour of u different from
v. We distinguish three subcases, according to the valency of x. If z has valency one then I' = K; 5. If
x has valency two then, from the edge-star isomorphism ¢ : st({u,x}) — st({u,z}) that exchanges u and
x, we obtain that I' & P,. Finally, if the valency of x is at least three then let w, z be neighbours of x
that are different from w. Considering edge-star isomorphisms ¢ : st({z,w}) — st({z,w}) that fix  and
map u to neighbours of z different from w, we obtain that all neighbours of x different from w have valency
two and are adjacent to a vertex of valency one. Repeating the argument with edge-star isomorphisms
v :st({z, z}) = st({z, z}), we see that the neighbour w also has this property and so I 2 T,,, where n is the
valency of x. O

Finally, we handle the case of minimal valency two. For any n > 3, the cycle C,, is 2-regular, vertex-star
transitive, and edge-star transitive. We obtain further examples by the following constructions.

Let ¥ be a simple graph of minimal valency at least three. We construct the 1-subdivision I' of ¥ by
replacing each edge by a path of length two. Formally, we define V(') = V(2) U E(X). The sets V(X) and
E(X) are independent in I', and v € V(X) is connected to e € E(X) in I' if and only if v and e are incident
in ¥. Similarly, we construct the 2-subdivision of X by replacing each edge by a path of length three. The
following proposition is easy to verify.

Proposition 4.3. Let X be an arc-transitive graph of minimal valency at least three which is locally fully
symmetric. Then the 1-subdivision of ¥ is both vertex-star transitive and edge-star transitive. The 2-
subdivision of ¥ is edge-star transitive, but not vertex-star transitive.

Lemma 4.4. Suppose that T is vertex-star transitive and the minimal valency in T is two, but T’ is not 2-
reqular. Then there exists an arc-transitive graph % of valency at least three which is locally fully symmetric
such that T is isomorphic to the 1-subdivision of X.

Proof. Since I' is not 2-regular, there exists {v,w} € E(I") with v of valency k > 2 and w with valency 2.
Lazarovich [L, Lemma 1.1] proved that this implies I" is edge-transitive; consequently, all edges of T connect
valency 2 vertices with vertices of valency k. Hence I is bipartite and I' is a 1-subdivision of a graph X with
minimal valency at least 3.

Automorphisms of ', restricted to the vertices of valency k, naturally define automorphisms of . Star
isomorphisms st(v) — st(v), with v € V(') and v of valency k, show that ¥ is locally fully symmetric, and
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consequently ¥ is edge-transitive. Finally, star isomorphisms st(w) — st(w) of ', with w € V(T") of valency
two, show that edges in ¥ can be turned around by automorphisms, and so ¥ is arc-transitive. O

Lemma 4.5. Suppose that T' is edge-star transitive, the minimal valency in T is two, but T' is not 2-regular.
Then there exists an edge-transitive graph X of minimal valency at least three which is locally fully symmetric
such that one of the following holds.

(1) X is non-regular and T is isomorphic to the 1-subdivision of X.
(2) X is arc-transitive, and T" is isomorphic to the 1- or 2-subdivision of X.

Proof. We claim that there are no three vertices u, v, w, all of valency two, such that {u,v} € E(I') and
{v,w} € E(T). Indeed, if u, v, w are such vertices then there is a unique path in I" starting with the edge
{u,v}, consisting of vertices of valency two, such that the endpoint x of the path has a neighbour z of
valency greater than two. Then, for the last two vertices x and y of this path, the edge-star isomorphism
v :st({z,y}) = st({z,y}) that exchanges x and y has no extension to an automorphism of I, a contradiction.

Let {v,w} € E(T') with v of valency greater than 2 and w with valency 2, let z, y be two further neighbours
of v, and let m be the maximal number of vertices on a path starting at w and consisting of vertices of valency
2. By the claim in the previous paragraph, m € {1,2}. Considering the edge-star isomorphisms

(1) st({z,v}) = st({z,v}) and st({y,v}) = st({y,v})

that fix the vertex v, we obtain that all neighbours of v have valency 2 and for each neighbour z, the maximal
length of a path starting at z and consisting of vertices of valency 2 is m. Then, by induction on the distance
from v, we get that all vertices v’ of valency greater than 2 have this property, and so I is the m-subdivision
of a graph ¥ of minimal valency at least 3.

Automorphisms of I', restricted to the vertices of valency greater than two, naturally define automorphisms
of 3. The edge-star isomorphisms in (1) show that ¥ is locally fully symmetric, and consequently ¥ is edge-
transitive. If m = 2 and vwab is a path in I' connecting the vertices v, b of valency greater than 2 then the
edge-star isomorphism st({w, a}) — st({w, a}) that exchanges w and a shows that ¥ is arc-transitive and we
are in case (2) of the lemma. If m =1 and ¥ is regular then let vwd a path in I’ connecting the vertices v, b
of valency greater than 2. The edge-star isomorphism st({w,v}) — st({w, b}) shows that ¥ is arc-transitive,
and again we are in case (2). Finally, if ¥ is non-regular then we are in case (1). O

Combining the results of this section, we obtain Theorem 1.3.

5. CONNECTIONS AMONG VERTEX-STAR TRANSITIVITY, EDGE-STAR TRANSITIVITY, AND
ARC-TRANSITIVITY

This section contains preliminary results used for the proofs of Theorem 1.1 and 1.2. We begin by recording
the following result of Lazarovich [L, Lemma 1.1]:

Lemma 5.1. If T is a connected vertex-star transitive graph then either:
(1) T is 2-arc-transitive; or
(2) T is edge-transitive and bipartite, with V(I') = Ay U A, and there exist di,ds € N so that for all
v € A;, the vertex v has valency d; (i =1,2).

It is noted in the proof of [L, Lemma 1.1] that in Case (2), dy # d2. We will discuss both cases of Lemma
5.1 further below. Our first observations are as follows.

Lemma 5.2. Let I be a G-vertezx-star transitive graph. If T is k-reqular then T is G-vertez-transitive.

Lemma 5.3. Let ' be a G-vertex-star transitive graph. Then Gg(”) = Sir(v)| for allv € V(T'), that is, T is
locally fully symmetric.

The converse of Lemma 5.3 does not hold, as there are graphs which are locally fully symmetric but are not
vertex-star transitive. In fact, there are regular graphs which are locally fully symmetric but are not vertex-
star transitive. The following example was first described by Lipschutz and Xu [LX]. Let G = PGL(2, p) for
p prime, p = +1 (mod 24). Then G is generated by subgroups H = Doy and K = Sy, such that HNK = Dg.
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The graph T is defined to be the bipartite graph with vertex set G/H U G/K and edge set G/(H N K), so

that the edge g(H N K), for g € G, connects the vertices gH and gK. Then I' is cubic and locally fully

symmetric, since the natural left-action of G induces S3 at each vertex. However, I is not vertex-transitive.
The following sufficient conditions for vertex-star transitivity are easily verified.

Lemma 5.4. If there exists a subgroup G < Aut(T') such that either:

(1) G is locally fully symmetric and vertex-transitive; or
(2) G is locally fully symmetric and edge-transitive, and there are natural numbers k # £ such that each
vertex has valency either k or (;

then IT' is G-vertex-star transitive.

We now consider edge-star transitivity. Lazarovich’s main results concern graphs which are both vertex-
star transitive and edge-star transitive. We shall prove that, with the exception of the small-valency cases
handled in Section 4, edge-star transitivity implies vertex-star transitivity. Recall that for v € V(I') and
{u,v} € E(T'), we defined X (v) = {v} UT(v) and X({u,v}) = {u} U{v} UT(u) UT(v).

Lemma 5.5. A connected graph T’ with G = Aut(T"), minimal valency at least three and girth at least four
is edge-star transitive if and only if it is edge-transitive and either:

(1) there is a k € N so that for all edges {u, v}, Gi(g;’v}) = Si_1wr Sy, in which case I' is k-regular; or

(2) there are k,£ € N with k # £ so that for all edges {u,v}, Gﬁf%’v}) = Sk_1 X S¢_1, in which case T’

is (k, £)-biregular.

Proof. Observe first that since the minimum valency of I is at least three then I is not a tree. If I' has girth
four and is edge-star transitive then Lemma 4.1 implies that I" is complete bipartite. Thus I" is edge-transitive
and (1) holds if T" is regular while (2) holds if T" is biregular. Conversely, assume that I' has girth four, is
edge-transitive and either (1) or (2) holds. Let {u,v,w, z} be a 4-cycle. Then z%wvw  the orbit of Gy v
on z, is equal to I'(u)\{v} and so I'(u) = T'(w). Similarly we see that I'(v) = I'(z) and so T' is complete
bipartite and hence edge-star transitive.

If girth(I') > 5 then clearly Aut(T" |x({u,v})) = Sk—1wrS2 or Si_1 x S¢_; in the cases k = £ and k # £,
respectively. Moreover, by Proposition 3.3(ii), every edge-star isomorphism is a graph isomorphism, and
I' is st(edge)-transiitive if and only if I' is edge-transitive and every ¢ € Aut(I' |x({u,»})) extends to an
automorphism in Gy, ). Since the restriction of any ¢ € Gy, ) to X({u,v}) is in Aut(I' |x({u,0})) the
result follows. |

Lemma 5.6. Let ' be a G-edge-star transitive graph of minimum valency at least three. Then I" is G-vertex-
star transitive.

Proof. If girth(T') < 4 then I" = K,, ,, by Lemma 4.1 and the statement of this lemma holds. Suppose that
girth(I') > 5, let {u,v} be an edge of T, let k be the valency of v and let G = Aut(I'). By Lemma 5.5,
GrM — g Letw e I'(v)\{u}. Then again by Lemma 5.5, GrMW — g As k> 3, it follows
that GE(”) = Sk and in particular GE(I) = S|p(2)| for each vertex x. Thus I is locally fully symmetric, hence
locally 2-arc transitive and edge-transitive.

If u has valency ¢ # k then Lemma 5.4(2) implies that T' is vertex-star transitive. If u also has valency
k then, since T" is edge-star transitive, Lemma 5.5(1) implies that there is an element of G interchanging u
and v. Hence G is arc-transitive and in particular vertex-transitive. Thus by Lemma 5.4(1), I" is vertex-star
transitive. ]

‘We now consider actions on arcs.

Lemma 5.7. IfT is G-vertez-star transitive then G is locally 2-transitive on T and thus T is locally (G, 2)-arc
transitive.

Proof. Since GE(”) = S|r(v)| Which is 2-transitive, the graph I is locally 2-transitive. O
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It follows that if a connected vertex-star transitive graph I' is vertex-transitive then I is 2-arc transitive,
as was given in Case (1) of Lemma 5.1 above.

Lemma 5.8. IfT' has minimal valency at least three and T is G-edge-star transitive then T is locally (G, 3)-
arc transitive.

Proof. By Lemma 5.6, T" is G-vertex-star transitive and so by Lemma 5.7, T' is locally (G, 2)-arc transitive.
Let (u,v,w) be a 2-arc of I'. Since I' is G-edge-star transitive, Lemma 5.5 applied to the edge {v,w} implies
that GLIWMYY — Sir(w)|—1- Hence Gy acts transitively on the set of 3-arcs starting with (u,v,w). Thus
T is locally (G, 3)-arc transitive. O

By Lemmas 5.8, 5.6 and 5.2, we have the following corollary.

Corollary 5.9. Suppose I is a connected k-reqular graph. If T' is G-vertex-star transitive and G-edge-star
transitive, then T is (G, 3)-arc transitive.

6. THE VERTEX-TRANSITIVE CASE

In this section we prove Theorem 1.1, that is, we conduct a local analysis of vertex-transitive and edge-star
transitive graphs. We recall that a group is called p-local for some prime p if it contains a nontrivial normal
p-subgroup. Part (1) of the following fundamental theorem was proven by Gardiner [G, Corollary 2.3] and
was also established by Weiss in [W2]. Part (2) of the theorem is due to Weiss [W3]. With the hypothesis as
in Theorem 6.1(2), Weiss [W3] proved additional results on the structure of the point stabiliser G, which
we shall recall as needed in the proofs of Lemmas 6.4 and 6.6.

Theorem 6.1. Let I' be a connected graph and let G < Aut(I') be vertex-transitive and locally primitive.
Then there exists a prime p such that for all arcs uv:

(1) Gi s a p-group, possibly trivial; and
(2) if in addition el # 1 then GL™ s p-local.

Let T be a connected graph, and let G < Aut(T") be vertex-transitive. Recall that a (G, s)-arc-transitive
graph is called (G, s)-transitive if it is not (G, s+ 1)-arc-transitive. For small valencies, the explicit structure
of a vertex stabiliser is known. For example, in the cubic case we have the following result due to Tutte [T1],
and Djokovi¢ and Miller [DM2].

Theorem 6.2. Let T' be a cubic (G, s)-transitive graph. Then one of the following hold:
(1) s=1 and G, = Cs;
(2) s=2 and G, = Ss;
(8) s =3 and G, = S3 x Cy;
(4) s =4 and G, = Sy;
(5) s=25 ande:S4><C’2.

Corollary 6.3. Let T be a cubic (G, s)-transitive graph. Then T is G-vertez-star transitive if and only if
s > 2, while I' is G-vertex-star transitive and G-edge-star transitive if and only if s > 3.

In the 4-regular case, a complete determination of the vertex stabilisers for 4-regular 2-arc transitive
graphs was given by Potocnik [P], building on earlier work of Weiss [W4].

Lemma 6.4. Let T' be 4-regular, let v € V(T'), and let G < Aut(I"). Then T' is G-vertezx-star transitive if
and only if one of the following statements holds:
(1) T is (G,2)-transitive, and Gy, = Sy;
(2) T is (G, 3)-transitive, and G, = Sy x S5 or Gy, = (A4 x C3).2 with the element of order 2 inducing
a nontrivial automorphism of both C3 and Ay;
(3) T is (G, 4)-transitive, and G, = 3%: GL(2, 3);
(4) T is (G, 7)-transitive, and G, = [3%]: GL(2, 3).
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Proof. Suppose first that G satisfies one of the conditions (1)—(4). Then G is locally 2-transitive, so GL)
Ay or Sy. None of the listed point stabilisers have a quotient group isomorphic to Ay, so Gg(") >~ Sy
Consequently, by Lemma 5.4, T" is G-vertex-star transitive.

Conversely, suppose that I' is G-vertex-star transitive. By Lemma 5.3, GE(U) = Sy = PGL(2,3). If
GLl] =1, then G, = GE(”) = 5S4 and so the stabiliser G, of the 2-arc wvw is isomorphic to S3. Hence
Guvw 1s not transitive on the set of three 3-arcs beginning with wvw and so I' is (G, 2)-transitive.

Suppose that el # 1 and let {v,w} € E(T"). If Gl = 1, then
1 Gl = GG, = (GHYT™) 9 GE = s,

Thus, GLl] = (5 or Sz, and so for u € I'(v)\{w} we have that G, induces either C3 or S3 on the set of
three 3-arcs beginning with uvw. Hence T is (G, 3)-arc-transitive. Moreover, since Gwﬂ =1, it follows from
[W3] that I' is not (G, 4)-arc-transitive. Since S5 has no outer automorphisms, if G = S5 then we must

have G, = S3 x Sy. If GLl] = C5 then G, = C5 x Sy or (C5 x Ay).2 with the element of order 2 inducing
a nontrivial automorphism of both C5 and A4. However, the first case does not occur (see for example [P,
p.1330]). Thus G, = S5 x Sy or (C5 x A4).2 and in both cases T is (G, 3)-transitive.

Finally, assume that el # 1. Then by [W3], Gl is a 3-group,
G, = 3% GL(2,3), or [3°]: GL(2,3),

and T is (G, 4)-transitive or (G, 7)-transitive, respectively. O
Remarks:
(1) In case (2) of Lemma 6.4 we have G, = S3 X S3 or G,y = (C3 x C3).2 with respectively G,[Jl] =53
or Cs.

(2) The stabiliser G, = 32: GL(2,3) is a parabolic subgroup of PGL(3,3), while the stabiliser G, =
[3%]: GL(2,3) is a parabolic subgroup of the exceptional group G2(3) of Lie type. In both cases
GE™ = PGL(2,3) = 4 and (GI)F(®) = g,

Lemma 6.5. Assume that I' is 4-regular, let v € V(I'), and let G < Aut(I'). Then I' is G-vertex-star
transitive and G-edge-star transitive if and only if one of the following is true.

(1) T is (G, 3)-transitive, and G, = Sq x S3;

(2) T is (G, 4)-transitive, and G, = 3%: GL(2,3);

(3) T is (G, 7)-transitive, and G, = [3°]: GL(2, 3).

Proof. By Corollary 5.9 and Lemma 5.5, if " is G-vertex-star transitive and G-edge-star transitive then I’
is (G, 3)-arc transitive and G,,, induces S3 x S3 on (I'(v) UT(w))\{v,w}. This rules out case (1) of Lemma
6.4 and case (2) where G, = (A4 x C5).2. By Lemma 5.5 and the remarks following Lemma 6.4, it follows
that the case where G, = Sy x S5 is G-edge-star transitive. It remains to prove that the (G, 4)-arc-transitive

