
COUNTING OVERLATTICES FOR POLYHEDRAL COMPLEXES

SEONHEE LIM AND ANNE THOMAS

Abstract. We investigate the asymptotics of the number of “overlattices”
of a cocompact lattice Γ in Aut(X), where X is a locally finite polyhedral
complex. We use complexes of groups to prove an upper bound for general X,
and a lower bound for certain right-angled buildings.

1. Introduction

The group of automorphisms Aut(X) of a tree (or a locally finite polyhedral
complex) is a locally compact group, which shares many properties with rank one
simple Lie groups. This analogy has motivated many works, including the study of
lattices in Aut(X) (see [BL] and references therein).

One contrast between such Lie groups and Aut(X) is in the covolumes of lattices.
A theorem of Kazhdan-Margulis [KM] says that for a given connected semisimple
Lie group G, there is a positive lower bound on the set of covolumes µ(Γ\G) of
lattices in G. On the other hand, if G is the automorphism group of a locally finite
regular tree, Bass–Kulkarni [BK] constructed infinite strictly ascending sequences
(called towers) of lattices

Γ1 < Γ2 < · · · < Γi < · · ·
in G, hence the covolumes µ(Γi\G) tend to zero. A question raised by Bass and
Lubotzky ([BL], Section 0.7) is to find the asymptotic behavior of the number uΓ(n)
of overlattices of Γ of index n, that is, the number of lattices Γ′ ≤ G containing
Γ with [Γ′ : Γ] = n. The growth of uΓ(n) is non-trivial (that is, u(n) > 0 for
arbitrarily large n) if there exists a tower of lattices starting with Γ1 = Γ.

In this paper, we consider the asymptotics of uΓ(n) for Γ cocompact in the auto-
morphism group G of a locally finite polyhedral complex X. By arguments similar
to those for tree lattices (Theorem 6.5, [BK]), for such lattices Γ the cardinality
uΓ(n) is finite.

The case X is a tree is treated by Lim [L]. In higher dimensions, uΓ(n) may
have trivial growth for all Γ. For example, suppose X is the classical Bruhat–Tits
building associated to a higher-rank semisimple group G over a nonarchimedean
local field of characteristic 0 (for example, G = SL3(Qp)). Here, G has finite index
in Aut(X) (Tits, [T]) and the covolumes of lattices in G are bounded away from 0
(Borel–Prasad [BP]), hence uΓ(n) = 0 for large enough n. In contrast, the existence
of towers is known for certain right-angled buildings (see [Gl] for towers of lattices
for the product of two trees and Thomas [Th] for towers of lattices for much more
general right-angled buildings). Note also that, as in the tree case (see [Go]), for
a fixed X such that Aut(X) admits a tower of lattices, the existence of a tower
starting with a given lattice Γ depends on Γ (see [Gl] for examples of irreducible
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lattices Γ < Aut(X), where X is the product of two regular trees, for which the
growth of uΓ(n) is trivial).

In this work we establish an upper bound on uΓ(n) for very general X (see
Theorem 1.1 below), and a lower bound for some lattices in certain right-angled
buildings X (see Theorem 1.2). We note that there cannot be a non-trivial lower
bound for general Γ and general X, by the previous paragraph. Our proofs use
covering theory for complexes of groups, developed by Haefliger in [BH] and further
in our article [LT].

Theorem 1.1. Let X be a simply connected, locally finite polyhedral complex and
Γ ≤ Aut(X) a cocompact lattice. Then there are positive constants C0 and C1,
depending only on Γ, such that

∀n > 1, uΓ(n) ≤ (C0n)C1 log2(n).

This bound is asymptotically the same as the upper bound for tree lattices in [L].
Although the proof uses the same deep results of finite group theory, Haefliger’s
definition of covering of complexes of groups makes this bound easier to obtain than
the result for trees (which uses Bass’ covering theory for graphs of groups [B]), thus
giving a simpler proof of the tree case. Alternatively, we can obtain this upper
bound using the upper bound for tree lattices (see Section 3.1).

The lower bound, proved in Section 3.2, is for certain right-angled buildings. A
special case of the lower bound we obtain is:

Theorem 1.2. Let q be prime and let X be a Bourdon building Ip,2q (see [Bo]).
Then there is a cocompact lattice Γ in Aut(X), and constants C0 and C1, such that
for any N > 0, there exists n > N with

uΓ(n) ≥ (C0n)C1 log n.

The full statement, in Theorem 3.1, applies to more general right-angled buildings,
including examples in arbitrarily high dimension. The proof applies the Functor
Theorem of [Th] to a construction for tree lattices in [L].

Theorems 1.1 and 3.1, together with the examples given above for buildings,
are presently the only known behaviors for overlattice counting functions in higher
dimensions.

Acknowledgements. We are grateful to Frédéric Paulin and Benson Farb for
their constant help, advice and encouragement. We also thank Yale University and
the University of Chicago for supporting mutual visits which enabled this work.

2. Background

In Section 2.1 we describe the topology on G the group of automorphisms of a
locally finite polyhedral complex X, and characterize cocompact lattices in G using
a combinatorial normalization of Haar measure. We also in this section recall the
basic theory of complexes of groups. In Section 2.2 we state the pertinent results
of [LT], on covering theory for complexes of groups. Section 2.3 defines right-angled
buildings and recalls properties that we will need to prove Theorem 3.1 below.

2.1. General background on lattices and complexes of groups.
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2.1.1. Lattices in automorphism groups of polyhedral complexes. Let X be a con-
nected, locally finite polyhedral complex, with first barycentric subdivision X ′. Let
V (X ′) be the set of vertices of X ′, which is in bijection with the set of cells of X.
Let Aut(X) be the group of cellular isometries of X. A subgroup of Aut(X) acts
without inversions on X if its elements fix pointwise each cell that they preserve.

The group G = Aut(X) is naturally a locally compact group, with the compact-
open topology. In this topology, a subgroup Γ ≤ G is discrete if and only if it acts
on X with finite cell stabilizers. Using Serre’s normalization (see [S]) and the same
arguments as for tree lattices ([BL], Chapter 1), it can be shown that if G\X is
finite, then a discrete subgroup Γ ≤ G is a lattice (that is, µ(Γ\G) <∞ where µ is
left-invariant Haar measure on G) if and only if its V (X ′)–covolume

Vol(Γ\\V (X ′)) :=
∑

s∈Γ\V (X′)

1
|Γs| ≤ ∞

converges, and Γ is cocompact (that is, the quotient Γ\G is compact) if and only
if this sum has finitely many terms. We now normalize the Haar measure µ on
G = Aut(X) so that for all lattices Γ ≤ G, the covolume of Γ is

µ(Γ\G) = Vol(Γ\\V (X ′)).

2.1.2. Complexes of groups. We give here the definitions from Haefliger’s theory of
complexes of groups [BH] needed to state the relevant results of [LT].

Let Y be a polyhedral complex with barycentric subdivision Y ′. Let V (Y ′) be
the set of vertices of Y ′ and E(Y ′) its set of edges. Each a ∈ E(Y ′) corresponds to
cells τ ⊂ σ of Y , and so may be oriented from σ to τ , with i(a) = σ and t(a) = τ .
Two edges a and b of Y ′ are composable if i(a) = t(b), in which case there exists
an edge c = ab of Y ′ such that i(c) = i(b), t(c) = t(a) and a, b and c form the
boundary of a 2–simplex in Y ′.

A complex of groups G(Y ) = (Gσ, ψa, ga,b) over a polyhedral complex Y is given
by:

(1) a group Gσ for each σ ∈ V (Y ′), called the local group at σ;
(2) a monomorphism ψa : Gi(a) → Gt(a) for each a ∈ E(Y ′); and
(3) for each pair of composable edges a, b in Y ′, a “twisting” element ga,b ∈

Gt(a), such that

Ad(ga,b) ◦ ψab = ψa ◦ ψb

where Ad(ga,b) is conjugation by ga,b in Gt(a), and for each triple of com-
posable edges a, b, c, the following cocycle condition holds

ψa(gb,c)ga,bc = ga,bgab,c.

Let G(Y ) = (Gσ, ψa, ga,b) and H(Z) = (Hσ, ψa′ , ga′,b′) be complexes of groups
over polyhedral complexes Y and Z respectively. Let f : Y ′ → Z ′ be a simplicial
map sending vertices to vertices and edges to edges (such an f is nondegenerate).
A morphism φ : G(Y ) → H(Z) over f : Y ′ → Z ′ consists of:

(1) a homomorphism φσ : Gσ → Hf(σ) for each σ ∈ V (Y ′), and
(2) an element φ(a) ∈ Ht(f(a)) for each a ∈ E(Y ′), such that

Ad(φ(a)) ◦ ψf(a) ◦ φi(a) = φt(a) ◦ ψa,



4 SEONHEE LIM AND ANNE THOMAS

where Ad(φ(a))(g) = φ(a)gφ(a)−1, and for all pairs of composable edges
(a, b) in E(Y ′),

φt(a)(ga,b)φ(ab) = φ(a)ψf(a)(φ(b))gf(a),f(b).

If f is an isomorphism of simplicial complexes, and each φσ is an isomorphism of
groups, then the morphism φ is an isomorphism.

A morphism of complexes of groups φ : G(Y ) → H(Z) is a covering if
(1) each φσ is injective, and
(2) for each σ ∈ V (Y ′) and b ∈ E(Z ′) such that t(b) = f(σ) = τ , the map

∐

a∈f−1(b)
t(a)=σ

Gσ/ψa(Gi(a)) → Hτ/ψb(Hi(b))

induced by g 7→ φσ(g)φ(a) is a bijection.
An isomorphism of complexes of groups is clearly a covering. From Condition (2)
in the definition of covering, and the connectedness of Y ′, if the value of

n :=
∑

σ∈ f−1(τ)

|Hτ |
|Gσ| =

∑

a∈f−1(b)

|Hi(b)|
|Gi(a)|

is finite, it is independent of the vertex τ and the edge b. A covering of complexes
of groups with the above n is said to be n–sheeted.

Any action (without inversions) by a group G on a polyhedral complexX induces
a complex of groups over the quotient G\X, which is unique up to isomorphism
of complexes of groups. A complex of groups is developable if it is isomorphic to a
complex of groups induced by an action.

Haefliger proved that a certain local condition, called nonpositive curvature, of
a complex of groups G(Y ) ensures developability (see [BH]). To define this, for
some κ ≤ 0, each cell of Y must be equipped with a Riemannian metric of constant
sectional curvature κ. For each vertex σ of Y ′, there is a simplicial complex called
the local development at σ, which is defined combinatorially using the local groups
of G(Y ) at σ and neighboring vertices. Gromov’s Link Condition (see [BH]) implies
that if, for each σ ∈ V (Y ′), the link of the local development at σ is CAT(1), then
G(Y ) is nonpositively curved. In particular, if dim(Y ) = 2, then the link of the
local development at each σ ∈ V (Y ′) is a metric graph, and G(Y ) is nonpositively
curved if and only if each of these links contains no circuits of length < 2π.

The fundamental group π1(G(Y ), T ) of a complex of groups G(Y ) is defined with
respect to a choice of maximal tree T in the 1–skeleton of Y ′, so that if Y is simply
connected and all twisting elements ga,b are trivial, then π1(G(Y ), T ) is isomorphic
to the direct limit of the family of groups Gσ and monomorphisms ψa.

If a complex of groups G(Y ) is developable, then its universal cover D(G(Y ), T )
is a connected, simply-connected polyhedral complex. Different choices of trees T
result in isometric universal covers. The universal cover is equipped with a natural
action of π1(G(Y ), T ), so that the complex of groups induced by the action of the
fundamental group on the universal cover D(G(Y ), T ) is canonically isomorphic to
G(Y ).

Let G(Y ) be a developable complex of groups, with fundamental group Γ and
universal cover X. We say that G(Y ) is faithful if Γ acts faithfully on X, in which
case Γ may be regarded as a subgroup of Aut(X). In this case, by Section 2.1.1



COUNTING OVERLATTICES 5

above, Γ is a cocompact lattice in Aut(X) if and only if all local groups of G(Y )
are finite and Y is a finite polyhedral complex.

2.2. Covering theory for complexes of groups. To count overlattices, we use
several results from our previous paper [LT], which we recall in this section. The
main result is Theorem 2.1 below, which gives a one-to-one correspondence between
isomorphism classes of coverings of complexes of groups and overlattices.

Theorem 2.1. Let X be a simply connected, locally finite polyhedral complex, and
let Γ be a cocompact lattice in Aut(X) (acting without inversions) which induces a
complex of groups G(Y ) over Y = Γ\X. Then there is a bijection between the set of
overlattices of Γ of index n (acting without inversions) and the set of isomorphism
classes of n–sheeted coverings of faithful developable complexes of groups by G(Y ).

The definition of isomorphism of coverings is given at the end of this section.
We will need Proposition 2.2 below, which gives sufficient conditions for a de-

velopable complex of groups G(Y ) to be faithful. For any choice of tree T in the
1–skeleton on Y ′, there is a canonical morphism of complexes of groups

ιT : G(Y ) → π1(G(Y ), T )

which is injective on each local group Gσ (here, the group π1(G(Y ), T ) is considered
as a complex of groups over a single vertex).

Proposition 2.2. Let G(Y ) be a developable complex of groups over a connected
polyhedral complex Y . Choose a maximal tree T in the 1–skeleton of Y ′, and identify
each local group Gσ with its image in π1(G(Y ), T ) under ιT . Let

NT = ker(π1(G(Y ), T ) → D(G(Y ), T )).

Then
(1) NT is a vertex subgroup, that is NT ≤ Gσ for each σ ∈ V (Y ′).
(2) NT is Y –invariant, that is ψa(NT ) = NT for each a ∈ E(Y ′).
(3) NT is normal, that is NT £Gσ for each σ ∈ V (Y ′).
(4) NT is maximal: if N ′

T is another Y –invariant normal vertex subgroup then
N ′

T ≤ NT .

The following result appears as Proposition 2.5 in [LT], where the induced maps
ΛT1,T2 and Lλ

T1,T2
are explicitly defined.

Proposition 2.3. Let λ : G(Y1) → G(Y2) be a covering of complexes of groups
over a nondegenerate simplicial map l : Y ′1 → Y ′2 , where Y1 and Y2 are connected
polyhedral complexes. Assume G(Y1) and G(Y2) are developable. For any maximal
trees T1 and T2 in the 1–skeletons of Y ′1 and Y ′2 respectively, there is an induced
monomorphism of fundamental groups

ΛT1,T2 : π1(G(Y1), T1) → π1(G(Y2), T2)

and a ΛT1,T2–equivariant isomorphism of universal covers

Lλ
T1,T2

: D(G(Y1), T1) → D(G(Y2), T2).

Proposition 2.3 is used to define isomorphism of coverings, as follows. Let
λ : G(Y1) → G(Y2) and λ′ : G(Y1) → G(Y3) be coverings of developable com-
plexes of groups over connected polyhedral complexes. We say that λ and λ′ are
isomorphic coverings if for any choice of maximal trees T1, T2 and T3 in Y1, Y2
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and Y3 respectively, there exists an isomorphism λ′′ : G(Y2) → G(Y3) of com-
plexes of groups such that the diagram of induced isomorphisms of universal covers
commutes, that is,

Lλ′′
T2,T3

◦ Lλ
T1,T2

= Lλ′
T1,T3

.

2.3. Right-angled buildings. In this section, we recall the definition and some
properties of right-angled buildings, for which we obtain a nontrivial lower bound
in Theorem 3.1. This class of buildings not only contains right-angled hyperbolic
buildings, but also some Euclidean buildings (which are not classical Bruhat–Tits
buildings). We mostly follow Davis [D].

Recall that a Coxeter system (W,S) is a group W with presentation

W = 〈S | (st)mst = 1 for all s, t ∈ S 〉
where mss = 1 for all s ∈ S, and mst ∈ {2, 3, . . .} ∪ {∞} for s 6= t in S, with
mst = ∞ meaning that the element st has infinite order. A Coxeter system is
right-angled if for all s, t ∈ S with s 6= t, mst ∈ {2,∞}.

For any Coxeter system (W,S) there is a locally finite simplicial complex Σ,
called the Davis complex for (W,S), on which W acts properly discontinuously and
cocompactly by isometries. The definition is as follows. Let K be the cone on the
barycentric subdivision of the nerve L for (W,S). Write S for the set of subsets
T ⊂ S such that the subgroup WT of W generated by T is finite. By convention,
W∅ = 1. There is then a one-to-one correspondence between the vertices of K and
the types T ∈ S, with the cone point having type ∅. For each s ∈ S, let Ks be the
closed star of the vertex {s} in the barycentric subdivision of L. We call Ks the
s–mirror of K. For each x ∈ K, put

S(x) = {s ∈ S | x ∈ Ks}.
Then the Davis complex Σ is defined by

Σ := (W ×K)/ ∼
where (w, x) ∼ (w′, x′) if and only if x = x′ and w−1w′ ∈ WS(x). The natural
W–action on W ×K induces a W–action on Σ with strict fundamental domain K.
This W–action preserves types, so each vertex of Σ has type some T ∈ S.

The Davis complex Σ may be equipped with a piecewise Euclidean metric so
that it is a CAT(0) space, and conditions are known for when Σ may be equipped
with a piecewise hyperbolic metric so that it is CAT(−1) (see [D]). From now on
we assume that Σ is equipped with one of these metrics.

Definition 2.4. Let (W,S) be a right-angled Coxeter system. A right-angled build-
ing of type (W,S) is a polyhedral complex X, equipped with a maximal family of
subcomplexes, called apartments. Each apartment is polyhedrally isometric to the
Davis complex Σ for (W,S), and the copies of K in X are called chambers. The
apartments and chambers of X satisfy the axioms:

(1) any two chambers of X are contained in a common apartment; and
(2) given any two apartments Σ and Σ′ of X, there is an isometry Σ → Σ′

which fixes the intersection Σ ∩ Σ′.

Note that X, although a building, is not in general isomorphic to any classical
Bruhat–Tits building for an algebraic group over nonarchimedean local field.

Each vertex of a right-angled building X has a type T ∈ S, induced by the
types of vertices of its apartments, and any copy of an s–mirror Ks of a chamber
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K in X will be called an s–mirror of X. For s ∈ S, an {s}–residue of X is a
connected subcomplex consisting of all chambers which meet a given s–mirror of
X. A right-angled building X is regular if for each s ∈ S, there is a cardinality
qs ≥ 2 such that every {s}–residue of X contains exactly qs chambers. We will
refer to a regular right-angled building of type (W,S) as a building of type (W,S)
and parameters {qs}s∈S .

The following result classifies regular right-angled buildings, and will be used in
the proof of Theorem 3.1 below.

Theorem 2.5 (Proposition 1.2, [HP]). Let (W,S) be a right-angled Coxeter system
and {qs}s∈S a family of cardinalities (qs ≥ 2). Then there exists a unique (up to
isometry) building X of type (W,S), such that for each s ∈ S, the {s}–residue of
X has cardinality qs.

In the 2–dimensional case, this result is due to Bourdon [Bo]. According to [HP],
Theorem 2.5 was proved by M. Globus, and was known also to M. Davis, T. Janusz-
kiewicz and J. Świa̧tkowski.

For example, let (W,S) be the Coxeter system generated by reflections in the
sides of a regular right-angled hyperbolic p–gon P (with p ≥ 5). The Davis complex
Σ for (W,S) may then be equipped with a piecewise hyperbolic metric, and with this
metric is isometric to the barycentric subdivision of the tesselation of the hyperbolic
plane by copies of P . An example of a regular building of type (W,S) is Bourdon’s
building X = Ip,q, in which every 2–cell is a copy of the p–gon P , and there are q
copies of P glued around each 1–cell of X, with q ≥ 2.

3. Proof of main results

3.1. Upper bound. We now prove the upper bound of Theorem 1.1, stated in
the introduction, using the bijection between overlattices and coverings given in
Theorem 2.1 above. We will also use the following deep results of finite group
theory. Suppose G is a group of order m =

∏t
i=1 p

ki
i (pi are primes) and let

µ(m) = max{ki}. By results of Lucchini [Luc], Guralnick [G] and Sims [Si], the
minimal number d(G) of generators of G is bounded above by µ(m) + 1. By work
of Pyber [P] and Sims [Si], there is also an upper bound on the number f(m) of
isomorphism classes of groups of order m:

f(m) ≤ mg(m),

where g(m) = 2
27µ(m)2 + 1

2µ
5/3(m) + 75µ(m) + 16.

Now let Γ be a cocompact lattice in G the automorphism group of a simply
connected, locally finite polyhedral complex X. Fix a quotient complex of groups
G(Y ) induced by the action of Γ on X. From the definition of covering, as Y is a
finite polyhedral complex, there exist only finitely many polyhedral complexes Z
such that a covering (of any number of sheets) may be defined over a simplicial
map l : Y ′ → Z ′ (since l must be surjective). Thus it is enough to count the n–
sheeted coverings of complexes of groups λ : G(Y ) → H(Z) = (Hτ , ψa′ , ga′,b′) over
morphisms l : Y → Z, where Z is fixed.

For σ ∈ V (Y ′), let cσ = |Gσ|, and for τ ∈ V (Z ′) let

cτ =


 ∑

σ∈f−1(τ)

c−1
σ



−1

.
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By the definition of an n–sheeted covering, the cardinality |Hτ | is equal to ncτ . Let
c0 = |V (Y ′)| ≥ |V (Z ′)| and c1 = |E(Y ′)| ≥ |E(Z ′)|.

Let us first count the number of possible complexes of groups H(Z). There are
at most

∏
τ∈V (Z′)(cτn)g(cτ n) isomorphism classes of groups Hτ . There are at most∏

b∈E(Z′)(ct(b)n)µ(ci(b)n)+1 monomorphisms ψb : Hi(b) → Ht(b) determined by the
images of generators of Hi(b), and at most

∏
a∈E(Z′)(ct(a)n)c1 twisting elements

ga′,b′ . Now for a given complex of groups H(Z), we count the number of possible
coverings determined by local maps λσ and elements λ(a). There are at most∏

σ∈V (Y ′)(cl(σ)n)µ(cσ)+1 injections λσ : Gσ → Hl(σ), and at most
∏

a∈E(Y ′) nct(l(a))

choices for the λ(a).
Let M = max

σ∈V (Y ′)
max{cσ, cl(σ)} and µ = µ(Mn). The number uΓ(n) is at most

the product of the number of isomorphism classes of groups Hτ , the number of
monomorphisms ψb, the number of twisting elements ga′,b′ , the number of local
maps λσ, and the number of elements λ(a). Combining all the estimates above, we
get the following upper bound for uΓ(n):

uΓ(n) ≤ Π
τ∈V Z′

(cτn)g(cτ n) Π
b∈EZ′

(ct(b)n)µ(ci(b)n)+1+c1 Π
σ∈V Y ′

(cl(σ)n)µ(cσ)+1 Π
a∈EY ′

nct(l(a))

≤(Mn)c0g(Mn)+c1(µ(Mn)+c1+1)+c0(µ(M)+1)+c1 ≤ (Mn)C1µ(Mn)2

≤(C0n)C′1(log n)2

where C0 = M , C1 = c0(2/27 + 1/2 + 75 + 16 + 1 + 1) + c1(1 + c1 + 2) and
C ′1 = 2C1µ(M). This completes the proof of Theorem 1.1.

Remarks.

(1) The leading term comes from the number of isomorphism classes of local
groups Hτ . More careful counting of other morphisms or twisting elements
does not change the asymptotics of the upper bound.

(2) We do not insist on the complex of groups H(Z) being faithful or devel-
opable, which indicates that a better general upper bound might be ob-
tained. However, the faithfulness condition seems to translate into a hard
question in finite group theory. For example, in Goldschmidt’s deep re-
sult [Go], the finite number of amalgams comes from faithfulness of certain
graphs of groups. Indeed, the Goldschmidt–Sims Conjecture (the analogue
of [Go] for more general amalgams) has been open for several decades.

(3) Here is an alternative proof of Theorem 1.1, using the upper bound in [L].
Let X and Γ be as in Theorem 1.1. Let X(1) be the 1–skeleton of X,

N = π1(X(1), ·) its (free) fundamental group, and T = X̃(1) its universal
covering tree. There is a short exact sequence

1 → N → H = N Aut(X) → Aut(X) → 1,

and an action of H on the tree T , giving rise to an embedding H < Aut(T ).
The group ΓN < H < Aut(T ) is a uniform lattice in H, thus the number
of overlattices of Γ < Aut(X) is bounded by the number of overlattices of
ΓN in Aut(T ).

Note that to prove the upper bound for tree overlattices in [L], standard
Bass–Serre theory does not suffice, and similar results to those given in
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Section 2.2 above had to be proved. Therefore, given the results in [LT],
this alternative proof roughly amounts to our main proof.

3.2. Lower bound for right-angled buildings. We now prove Theorem 3.1,
which gives a lower bound on the number of overlattices, for certain right-angled
buildings. See Section 2.3 above for definitions.

Theorem 3.1. Let X be a regular right-angled building of type (W,S) and param-
eters {qs}s∈S. Assume that for some t, t′ ∈ S, with t 6= t′,

(1) qt = qt′ = 2p where p is prime; and
(2) mtt′ = ∞.

Then there is a cocompact lattice Γ in Aut(X), acting without inversions, such that
for n = pk, and k ≥ 3,

uΓ(n) ≥ n
1
2 (k−3).

Let X be as in Theorem 3.1 above. Let T2p be the 2p–regular tree. In [L],
Lim constructed many non-isomorphic coverings of faithful graphs of groups with
universal cover T2p, as sketched in Figure 1. Let Γ2p < Aut(T2p) be the cocompact
lattice which is the fundamental group of the left-hand graph of groups in Figure 1.
The lower bound obtained from these constructions is uΓ2p(n) ≥ n

1
2 (k−3), for n = pk

and k ≥ 3.

{1}

α1

HG

α2

Z/pZ

Figure 1. Coverings of faithful graphs of groups with universal
cover T2p

To obtain the same lower bound for overlattices of a certain cocompact lattice
Γ in Aut(X), we first take the “double cover” of the graphs of groups in Figure 1,
as shown in Figure 2.

G

H

H

Z/pZ A = G

α2

A0 = Z/pZ

α2

α1

α1{1}

{1}

Figure 2. “Double cover” of graphs of groups in Figure 1

We now carry out a special case of the Functor Theorem of [Th], for the graphs
of groups A0 and A in Figure 2. The idea is to “fatten up” these graphs of groups to
obtain complexes of groups G0(Y ) and G(Y ) respectively, so that the fundamental
group Γ of G0(Y ) is a cocompact lattice in Aut(X), and the fundamental group of
G(Y ) is an overlattice of Γ.
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Let A be the graph underlying both of the graphs of groups in Figure 2. Let
K be the cone on the barycentric subdivision of the nerve for (W,S), as described
in Section 2.3 above. Note that since mtt′ = ∞, the t– and t′–mirrors of K are
disjoint. Let K1 and K2 be two copies of K. Glue together, preserving types, the t–
mirrors of K1 and K2, and similarly with the t′–mirrors. Denote by Y the resulting
polyhedral complex. The vertices of Y have well-defined types T ∈ S, induced by
the types of the vertices of K1 and K2. The edges of Y are then naturally oriented,
so that an edge a of Y joining vertices of types T, T ′ ∈ S has i(a) of type T and t(a)
of type T ′ if and only if T ( T ′. Composable edges may then also be defined, and
thus we may define a complex of groups over Y (without first taking the barycentric
subdivision).

Choose an identification of the two vertices of the graph A with the vertices of
Y of types {t} and {t′}, and of the two edges of A with the two vertices of Y of
type ∅. An example is sketched on the left of Figure 3 below, which shows the
complex Y , and the types of its vertices, for K the barycentric subdivision of a
regular right-angled hyperbolic hexagon with Kt and Kt′ on opposite sides of the
hexagon.

We now explain how A induces a complex of groups G(Y ) over Y . The con-
struction for A0 is similar. First, fix the local groups G and H induced by the
identification of the vertices and edges of A with certain vertices of Y . Each of the
monomorphisms αi : H → G in A then induces a monomorphism ψa along an edge
a of Y with i(a) of type ∅ and t(a) of type either {t} or {t′}.

To assign the remaining local groups and monomorphisms in G(Y ), for each
s ∈ S, let Gs be a group of order qs. Let T ∈ S. If T contains neither t nor t′, then
the local group at the two vertices of Y of type T is

H ×
∏

s∈T

Gs.

The monomorphisms between such local groups are natural inclusions. Now sup-
pose T contains one of t and t′. (Since mtt′ = ∞ and WT is finite, T cannot contain
both t and t′.) Without loss of generality, suppose T contains t. Then the unique
vertex of type T in Y is contained in the glued t–mirror, and we assign the local
group at this vertex to be

G×
∏

s∈T
s 6=t

Gs.

The monomorphism from G (the local group at the vertex of Y of type {t}) to this
local group is inclusion onto the first factor. For each T ′ ⊂ T with t ∈ T ′, the
monomorphism

G×
∏

s∈T ′
s 6=t

Gs → G×
∏

s∈T
s 6=t

Gs

is the natural inclusion. For each T ′ ⊂ T with t 6∈ T ′, the monomorphism

H ×
∏

s∈T ′
Gs → G×

∏

s∈T
s 6=t

Gs

is a monomorphism αi : H → G from the graph of groups A on the first factor,
with i = 1, 2 chosen so that all triangles of monomorphisms commute, and natural
inclusions on the other factors. Put all ga,b = 1, and we have a complex of groups
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G(Y ). See the right of Figure 3 for an example. Let G0(Y ) be the complex of
groups induced in the same way by A0.

G

H

H
G×Gs1

G×Gs4 G×Gs3

G×Gs2

G(Y ) =

G

H ×Gs1

H ×Gs1 H ×Gs2

H ×Gs3

H ×Gs3

H ×Gs4

H ×Gs4

H ×Gs1 ×Gs2

H ×Gs2

H ×Gs3 ×Gs4

{t′}

{s4}

{t}

{s1}

{s3}
{s3}

{t, s1}

{t, s4}

{t′, s2}

{t′, s3}

{s1}
{s2}
{s2}

∅

∅

{s4}

{s1, s2}

{s3, s4}

Y =

Figure 3. The space Y and the complex of groups G(Y )

We now show that G0(Y ) and G(Y ) have nonpositive curvature and are thus
developable, and that they have universal cover the regular right-angled building
X. For this, we claim first that the link of each vertex of G0(Y ) of type T in its
local development is the join of |T | sets of points of cardinalities respectively qs,
s ∈ T . The only vertices where this requires some care are those of type T where
T contains either t or t′; here there are two collections of cosets of the trivial group
{1} in Z/pZ (or of H in G for G(Y )), each of cardinality p, and since qt = qt′ = 2p
the claim follows. For example, in Figure 3, the local development at the vertex of
type T = {t, s1} is the (barycentric subdivision of) the complete bipartite graph
Kqs1 ,qt ; the cosets in G×Gs1 of G contribute qs1 vertices, and the cosets in G×Gs1

of the two copies of H ×Gs1 contribute qt = 2p vertices.
With the usual piecewise Euclidean metric on K, which induces a metric on Y , it

follows that G0(Y ) and G(Y ) have nonpositive curvature and are thus developable.
The universal cover of G0(Y ) and of G(Y ) is a building of type (W,S) (see Section
3.3 of Gaboriau–Paulin [GP]), and by construction it is regular. Theorem 2.5 above
then implies that the universal cover of G0(Y ) and of G(Y ) is the unique regular
right-angled building X of type (W,S) and parameters {qs}. Hence G0(Y ) and
G(Y ) are developable complexes of groups with universal cover X.

By construction, every covering as in Figure 2 induces a covering of complexes
of groups G0(Y ) → G(Y ). Recall that the graphs of groups in [L] are faithful
because there is no nontrivial subgroup of H whose images in G under α1 and α2

are the same. This condition implies that there is no nontrivial group NT satisfying
the conditions in Proposition 2.2, thus each G(Y ) is faithful. Moreover, in Lim’s
construction, distinct coverings of the form in Figure 1 are non-isomorphic because
the vertex and edge groups G and H are non-isomorphic, thus they induce non-
isomorphic coverings G0(Y ) → G(Y ). By Theorem 2.1, this completes the proof.
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