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Abstract
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developed for graphs of groups by Bass. Given a covering of developable complexes
of groups, we construct the induced monomorphism of fundamental groups and
isometry of universal covers. We characterize faithful complexes of groups and prove
a conjugacy theorem for groups acting freely on polyhedral complexes. We also
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construct a bijection between such equivalence classes, and subgroups or overgroups
of a fixed lattice Γ in the automorphism group of a locally finite polyhedral complex
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1 Introduction

Let X be a locally finite polyhedral complex, such as a tree, a Davis com-
plex, or a Bruhat–Tits building. Then the group G of automorphisms of X
is naturally a locally compact group (see Section 2.2 below). Subgroups of G
with prescribed properties, for example discreteness or cocompactness, may
be encoded by graphs of groups (in the case of trees) or complexes of groups
(for dim(X) ≥ 2). A covering theory for graphs of groups was developed by
Bass in [1]. This has proved very useful for the study of tree lattices: see the
reference Bass–Lubotzky [3].

The theory of complexes of groups is due to Gersten–Stallings [6], Corson [5]
and Haefliger [7], [4]. Haefliger, in Chapter III.C of [4], translated into the
framework of complexes of groups the general theory of coverings of étale
groupoids. (Chapter III.G of [4] discusses groupoids of local isometries.) While
covering theory for étale groupoids is powerful, as it is strictly parallel to the
theory of coverings for topological spaces, the correspondence between cover-
ings of complexes of groups and coverings of étale groupoids is not stated in [4].
Even the definition of the étale groupoid canonically associated to a complex
of groups is quite involved (pp. 595–596 of [4]). The étale groupoid perspec-
tive thus does not easily yield results or constructions suitable for investigating
concrete questions concerning group actions on polyhedral complexes.

One aim of this paper is to make covering theory for complexes of groups more
accessible, by following a more explicit approach. We also prove several results
for group actions which we hope will be broadly useful, including a charac-
terization of faithful complexes of groups (in Section 3.3), and the Conjugacy
Theorem (Theorem 3 below). Finally, we establish in Section 5 a bijection
between suitably defined isomorphism classes of coverings and subgroups or
overgroups of a fixed Γ < Aut(X). This forms the technical background for our
work [9] on counting overlattices, and hopefully will have other applications.

Let us briefly recall Haefliger’s theory of complexes of groups (see Section 2.4
below for details, and in particular for the definition of covering). The action of
a group G on a simply connected polyhedral complex X induces a complex of
groups G(Y ) over the quotient Y = G\X. The fundamental group π1(G(Y ))

then acts on the simply connected universal cover G̃(Y ), with π1(G(Y )) iso-

morphic to G, and G̃(Y ) isometric to X. An arbitrary complex of groups G(Y )
is developable if it is induced by a group action in this way. A key difference
between Bass–Serre theory and the theory of complexes of groups is that com-
plexes of groups need not be developable. However, if a complex of groups has
nonpositive curvature (see Section 2.4.4), it is developable.

Our first main result describes the functoriality of coverings.
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Theorem 1 Let λ : G(Y ) → G′(Y ′) be a covering of developable complexes
of groups. Then λ induces a monomorphism of fundamental groups

Λ : π1(G(Y )) → π1(G
′(Y ′))

and a Λ-equivariant isometry of universal covers

L : G̃(Y ) → G̃′(Y ′).

Theorem 1 also follows from covering theory for étale groupoids (Haefliger,
private communication). Our contribution is to construct the maps Λ and L
explicitly; we then make repeated use of these constructions in later sections of
this work. Theorem 1 is proved in Section 3.2, using material from Section 3.1.

In Section 3.3, we characterize the group

N = ker
(
π1(G(Y )) → Aut(G̃(Y ))

)

where G(Y ) is developable. If N is trivial, then the complex of groups G(Y )
is said to be faithful, and we may identify the fundamental group π1(G(Y ))

with a subgroup of Aut(G̃(Y )).

In Section 3.4 we develop technical results, similar to those in Section 4 of [1]
in the case of trees. As described in Proposition 2.1 of [10], Haefliger’s mor-
phisms of complexes of groups, when restricted to complexes of groups over 1–
dimensional spaces, are not the same as Bass’ morphisms of graphs of groups.
Also, the universal covers of graphs of groups and of complexes of groups
are defined with respect to different choices. Hence, our proofs differ in many
details from those of [1].

An additional consideration for complexes of groups, which has no analogue
in Bass–Serre theory, is the relationship between coverings and developability.
In Section 3.5, we show:

Proposition 2 Let λ : G(Y ) → G′(Y ′) be a covering of complexes of groups.

(1) If G′(Y ′) is developable, then G(Y ) is developable.
(2) If G(Y ) has nonpositive curvature (hence is developable), then G′(Y ′) has

nonpositive curvature, hence G′(Y ′) is developable.

One of the main applications of the results of Section 3.4 is the Conjugacy
Theorem below, proved as Theorem 47 in Section 4. Let H be a subgroup
(acting without inversions) of G = Aut(X), for X a locally finite polyhedral
complex, and define

GH = {g ∈ G | gσ ∈ Hσ for all cells σ of X}.
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Theorem 3 (Conjugacy Theorem) If Γ ≤ GH acts freely on X then there
is an element g ∈ GH such that gΓg−1 ≤ H.

The corresponding result for trees (Theorem 5.2 of [1]) was a basic tool in [2].
In [1], as well as a proof using covering theory for graphs of groups, a simple
direct proof due to the referee was given. This relied on the fact that a group
acting freely on a tree is free. In higher dimensions, it seems that covering
theory must be used.

In Section 5 we define isomorphism of coverings (see Definition 48) so that the
following bijection holds:

Theorem 4 Let X be a simply connected polyhedral complex, and let Γ be
a subgroup of Aut(X) (acting without inversions) which induces a complex
of groups G(Y ). Then there is a bijection between the set of subgroups of
Aut(X) (acting without inversions) which contain Γ, and the set of isomor-
phism classes of coverings of faithful, developable complexes of groups by G(Y ).

The main ingredients in the proof of Theorem 4 are Theorem 1 above, and
the results of Section 3.4. As a corollary to Theorem 4, we show that there
is a bijection between n–sheeted coverings, and overlattices of index n (that
is, lattices containing a fixed lattice Γ with index n). Similar results hold for
subgroups and sublattices. In [8], Lim defined isomorphism of coverings of
graphs of groups and proved the bijection of Theorem 4 for trees.

2 Background

We begin by recalling the basic theory of lattices, in Section 2.1. Since the
quotient of a simplicial complex by a simplicial group action is not in general
a simplicial complex, it is natural to define complexes of groups over polyhedral
complexes instead. In Section 2.2, we give definitions of polyhedral complexes
and the topology of their automorphism groups. Small categories without
loops, or scwols, are algebraic objects that substitute for polyhedral complexes.
These are described in Section 2.3 (following section III.C 1-2 of [4]). We
conclude this background material by, in Section 2.4, summarizing Haefliger’s
theory of complexes of groups, as presented in Chapter III.C of [4].

2.1 Lattices

Let G be a locally compact topological group with left-invariant Haar measure
µ. A discrete subgroup Γ of G is a lattice if its covolume µ(Γ\G) is finite. A
lattice is called cocompact or uniform if Γ\G is compact.
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Let S be a left G-set such that, for each s ∈ S, the stabilizer Gs is compact and
open. For any discrete subgroup Γ of G, the stabilizers Γs are finite groups,
and we define the S-covolume of Γ as

Vol(Γ\\S) =
∑

s∈Γ\S

1

|Γs| ≤ ∞.

It is shown in [3], Chapter 1, that if G\S is finite and G admits a lattice, then
there is a normalization of the Haar measure µ, depending only on S, such
that for every discrete subgroup Γ of G,

µ(Γ\G) = Vol(Γ\\S).

It is clear that for two lattices Γ ⊂ Γ′ of G, the index [Γ′ : Γ] is equal to the
ratio of the covolumes µ(Γ\G) : µ(Γ′\G).

2.2 Polyhedral complexes

Let Mn
κ be the complete, simply connected, Riemannian n-manifold of con-

stant sectional curvature κ ∈ R.

Definition 5 (polyhedral complex) An Mκ-polyhedral complex K is a finite-
dimensional CW-complex such that:

(1) each open cell of dimension n is isometric to the interior of a compact
convex polyhedron in Mn

κ ; and
(2) for each cell σ of K, the restriction of the attaching map to each open

codimension one face of σ is an isometry onto an open cell of K.

If an Mκ-polyhedral complex is locally finite, then it is a geodesic metric space
by the Hopf–Rinow Theorem (see, for example, [4]). More generally, we have:

Theorem 6 (Bridson, [4]) An Mκ-polyhedral complex with finitely many
isometry classes of cells is a complete geodesic metric space.

Let K be a locally finite, connected polyhedral complex, and let Aut(K) be
the group of cellular isometries, or automorphisms, of K. Then Aut(K) is
naturally a locally compact group, with a neighborhood basis of the identity
consisting of automorphisms fixing larger and larger balls. With respect to
this topology, a subgroup Γ of Aut(K) is discrete if and only if for each cell σ
of K, the stabilizer Γσ is finite. A subgroup Γ of Aut(K) is said to act without
inversions if whenever g ∈ Γ preserves a cell of K, g fixes that cell pointwise.
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2.3 Small categories without loops

In Chapter III.C of [4], complexes of groups are presented using the language
of scwols, or small categories without loops. As we explain in this section, to
any polyhedral complexK one may associate a scwol X , which has a geometric
realization |X | isometric to the barycentric subdivision of K. Morphisms of
scwols correspond to polyhedral maps, and group actions on scwols correspond
to actions without inversions on polyhedral complexes.

Definition 7 (scwol) A small category without loops (scwol) X is a disjoint
union of a set V (X ), the vertex set, and a set E(X ), the edge set, endowed
with maps

i : E(X ) → V (X ) and t : E(X ) → V (X )

and, if E(2)(X ) denotes the set of pairs (a, b) of edges where i(a) = t(b), with
a map

E(2)(X ) → E(X )

(a, b) 7→ ab

such that:

(1) if (a, b) ∈ E(2)(X ), then i(ab) = i(b) and t(ab) = t(a);
(2) if a, b, c ∈ E(X ) such that i(a) = t(b) and i(b) = t(c), then (ab)c = a(bc);

and
(3) if a ∈ E(X ), then i(a) 6= t(a).

For a ∈ E(X ), the vertices i(a) and t(a) are called the initial vertex and termi-
nal vertex of a respectively. If (a, b) ∈ E(2)(X ) we say a and b are composable,
and that ab is the composition of a and b. We will sometimes write α ∈ X for
α ∈ V (X ) ∪ E(X ). If α ∈ V (X ) then i(α) = t(α) = α.

The motivating example of a scwol is the scwol X associated to a polyhedral
complex K. The set of vertices V (X ) corresponds to the set of cells of K (or
the set of barycenters of the cells of K). The set of edges E(X ) is the set of
1-simplices of the barycentric subdivision of K, that is, each element of E(X )
corresponds to a pair of cells T ( S, with initial vertex S and terminal vertex
T . The composition of the edge a corresponding to T ( S and the edge b
corresponding to S ( U is the edge ab corresponding to T ( U .

b

a

ab
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Conversely, given a scwol X , we may construct a polyhedral complex, called
the geometric realization. For an integer k ≥ 0, let E(k)(X ) be the set of
sequences (a1, a2, . . . , ak) of composable edges, that is, (aj, aj+1) ∈ E(2)(X )
if k > 1, E(1)(X ) = E(X ), and E(0)(X ) = V (X ). The geometric realization
|X | of X is defined as a polyhedral complex whose cells of dimension k are
standard k-simplices indexed by the elements of E(k)(X ). For the details of
this construction, see [4], pp. 522–523. If X is the scwol associated to an Mκ-
polyhedral complex K, then |X | may be realized as an Mκ-polyhedral complex
isometric to the barycentric subdivision of K.

For a scwol X , let E±(X ) be the set of oriented edges, that is, the set of
symbols a+ and a−, where a ∈ E(X ). For e = a+, we define i(e) = t(a),
t(e) = i(a) and e−1 = a−. For e = a−, we define i(e) = i(a), t(e) = t(a) and
e−1 = a+.

An edge path in X joining the vertex σ to the vertex τ is a sequence (e1, e2, . . . , en)
of elements of E±(X ) such that i(e1) = σ, i(ej+1) = t(ej) for 1 ≤ j ≤ n − 1
and t(en) = τ .

A scwol X is connected if for any two vertices σ, τ ∈ V (X ), there is an edge
path joining σ to τ . Equivalently, X is connected if and only if the geometric
realization |X | is connected. A scwol is simply connected if and only if its
geometric realization is simply connected as a topological space.

Definition 8 (morphism of scwols) Let X and X ′ be two scwols. A mor-
phism l : X → X ′ is a map that sends V (X ) to V (X ′) and E(X ) to E(X ′),
such that

(1) for each a ∈ E(X ), we have i(l(a)) = l(i(a)) and t(l(a)) = l(t(a)); and
(2) for each (a, b) ∈ E(2)(X ), we have l(ab) = l(a)l(b).

A nondegenerate morphism of scwols is a morphism of scwols such that
in addition to (1) and (2),

(3) for each vertex σ ∈ V (X ), the restriction of l to the set of edges with
initial vertex σ is a bijection onto the set of edges of X ′ with initial vertex
l(σ).

An automorphism of a scwol X is a morphism l : X → X which has an inverse.
Note that Condition (3) in Definition 8 is automatic for automorphisms.

Definition 9 (covering of scwols) Let X be a (nonempty) scwol and let
X ′ be a connected scwol. A nondegenerate morphism of scwols l : X → X ′

is called a covering if, for every vertex σ of X , the restriction of l to the set
of edges with terminal vertex σ is a bijection onto the set of edges of X ′ with
terminal vertex l(σ).
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Let X and X ′ be scwols associated to polyhedral complexes K and K ′ respec-
tively. A polyhedral map K → K ′ induces a morphism of scwols X → X ′,
and conversely, a morphism l : X → X ′ induces a continuous polyhedral map
|l| : |X | → |X ′| (see [4], p. 526). The morphism l is nondegenerate if and only
if the restriction of |l| to the interior of each cell of K induces a homeomor-
phism onto the interior of a cell of K ′, and l is a covering if and only if |l| is
a (topological) covering. A morphism l : X → X is an automorphism of X if
and only if |l| : K → K is an automorphism of K.

Definition 10 (group actions on scwols) An action of a group G on a
scwol X is a homomorphism from G to the group of automorphisms of X such
that:

(1) for all a ∈ E(X ) and g ∈ G, we have g · i(a) 6= t(a); and
(2) for all g ∈ G and a ∈ E(X ), if g · i(a) = i(a) then g · a = a (no

“inversions”).

The action of a group G on a scwol X induces a quotient scwol Y = G\X ,
defined as follows. The vertex set is V (Y) = G\V (X ) and the edge set E(Y) =
G\E(X ). For every a ∈ E(X ) we have i(Ga) = Gi(a) and t(Ga) = Gt(a), and
if (a, b) ∈ E(2)(X ) then the composition of Ga and Gb is Gab. The natural
projection p : X → Y is a nondegenerate morphism of scwols.

Let X be the scwol associated to a polyhedral complex K, and let Γ be a
subgroup of G = Aut(K). Then Γ acts on X , in the sense of Definition 10, if
and only if Γ acts without inversions on K.

In the case K is locally finite, we define the covolume of a discrete subgroup
Γ ≤ G acting on X as follows. For the Γ-set S in Section 2.1, we choose the
set of vertices V (X ) (which corresponds to the set of cells of K). By the same
arguments as for tree lattices ([3], Chapter 1), it can be shown that if G\K is
finite, then Γ is a lattice if and only if its V (X )-covolume converges, and Γ is
a cocompact lattice if and only if Γ\V (X ) is a finite set. We now normalize
the Haar measure µ on G so that

µ(Γ\G) = Vol(Γ\\V (X )) =
∑

σ∈Γ\V (X )

1

|Γσ| .

2.4 Complexes of groups

In this section, we recall Haefliger’s theory of complexes of groups. We mainly
follow the notation and definitions of Chapter III.C of [4], although at times,
such as in Defintion 17 and Proposition 27 below, we indicate choices and
define maps more explicitly. Section 2.4.1 defines complexes of groups and
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their morphisms. Section 2.4.2 then discusses groups associated to complexes
of groups, in particular the fundamental group, and Section 2.4.3 discusses
scwols associated to complexes of groups, in particular the universal cover.
In Section 2.4.4 we describe the role of local developments and nonpositive
curvature. All references to [4] in this section are to Chapter III.C, which the
reader should consult for further details.

2.4.1 Objects and morphisms of the category of complexes of groups

Definition 11 (complex of groups) Let Y be a scwol. A complex of groups
G(Y) = (Gσ, ψa, ga,b) over Y is given by the following data:

(1) for each σ ∈ V (Y), a group Gσ, called the local group at σ;
(2) for each a ∈ E(Y), an injective group homomorphism ψa : Gi(a) → Gt(a);

and
(3) for each pair of composable edges (a, b) ∈ E(2)(Y), a twisting element

ga,b ∈ Gt(a);

with the following properties:

(i) Ad(ga,b)ψab = ψaψb, where Ad(ga,b) denotes conjugation by ga,b; and
(ii) ψa(gb,c)ga,bc = ga,bgab,c, for each triple (a, b, c) ∈ E(3)(Y).

For example, any group G is a complex of groups over a singleton Y = {∗} =
V (Y), with G∗ = G; since E(Y) = φ, no other data is necessary.

Definition 12 (morphism of complexes of groups) Let G(Y) be as in Def-
inition 11 and let G′(Y ′) = (G′σ′ , ψa′ , ga′,b′) be another complex of groups
over a scwol Y ′. Let l : Y → Y ′ be a morphism of scwols. A morphism
φ = (φσ, φ(a)) : G(Y) → G′(Y ′) of complexes of groups over l consists of

(1) a group homomorphism φσ : Gσ → G′l(σ), called the local map at σ, for
each σ ∈ V (Y); and

(2) an element φ(a) ∈ G′t(l(a)) for each a ∈ E(Y);

such that:

(i) Ad(φ(a))ψl(a)φi(a) = φt(a)ψa; and
(ii) φt(a)(ga,b)φ(ab) = φ(a)ψl(a)(φ(b))gl(a),l(b), for every (a, b) ∈ E(2)(Y).

A morphism φ is an isomorphism if l is an isomorphism of scwols and φσ is
a group isomorphism for every σ ∈ V (Y). A morphism φ is injective on the
local groups if each of the maps φσ is injective.

The composition φ′ ◦ φ of a morphism φ = (φσ, φ(a)) : G(Y) → G′(Y ′) over l
and a morphism φ′ = (φ′σ, φ

′(a)) : G′(Y ′) → G′′(Y ′′) over l′ is the morphism
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over l′◦ l defined by the homomorphisms (φ′◦φ)σ = φ′l(σ)◦φσ and the elements
(φ′ ◦ φ)(a) = φ′l(t(a))(φ(a))φ′(l(a)).

A special case of a morphism of complexes of groups is when Y ′ in Definition 12
is a singleton, with G′∗ = G′. In this case, φ may be regarded as a morphism
from the complex of groups G(Y) to the group G′.

Definition 13 (homotopy) Let φ and φ′ be two morphisms from G(Y) to a
group G′, given respectively by (φσ, φ(a)) and (φ′σ, φ

′(a)). A homotopy from φ
to φ′ is given by a family of elements kσ ∈ G′, indexed by σ ∈ V (Y), such that

(1) φ′σ = Ad(kσ)φσ for all σ ∈ V (Y); and
(2) φ′(a) = kt(a)φ(a)k−1

i(a) for all a ∈ E(Y).

Let G be a group acting on a scwol X with quotient Y = G\X , and let p :
X → Y be the natural projection. The complex of groups G(Y) = (Gσ, ψa, ga,b)
associated to the action of G on X is defined as follows.

For each vertex σ ∈ V (Y), choose a vertex σ ∈ V (X ) such that p(σ) = σ. For
each edge a ∈ E(Y) with i(a) = σ, there exists a unique edge a ∈ E(X ) such
that p(a) = a and i(a) = σ. Choose ha ∈ G such that ha · t(a) = t(a). For each
σ ∈ V (Y), let Gσ be the stabilizer in G of σ ∈ V (X ). For each a ∈ E(Y), let
ψa : Gi(a) → Gt(a) be conjugation by ha, that is,

ψa : g 7→ hagh
−1
a .

For every pair of composable edges (a, b) ∈ E(2)(Y), define ga,b = hahbh
−1
ab .

Then G(Y) = (Gσ, ψa, ga,b) is a complex of groups.

When precision is needed, we denote the set of choices of σ and ha in this
construction by C•, and the complex of groups G(Y) constructed with respect
to these choices by G(Y)C• . If C ′• is another choice of σ′, h′a, then an isomor-
phism φ = (φσ, φ(a)) from G(Y)C• to G(Y)C′• is obtained by choosing elements
kσ ∈ G, such that for each σ ∈ V (Y), kσ · σ = σ′. Then put φσ = Ad(kσ)|Gσ

and φ(a) = kt(a)hak
−1
i(a)h

′−1
a .

When G(Y) is a complex of groups associated to an action of a group G, there
is a canonical morphism of complexes of groups φ1 : G(Y) → G, given by
φ1 = (φσ, φ(a)), with φσ = Gσ → G the inclusion, and φ(a) = ha.

Definition 14 (developable) A complex of groups G(Y) is developable if it
is isomorphic to a complex of groups associated to the action of a group G on
a scwol X in the above sense, with Y = G\X .

Proposition 15 (Corollary 2.15, [4]) A complex of groups G(Y) is devel-
opable if and only if there exists a morphism φ from G(Y) to some group G
which is injective on the local groups.
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We now define coverings.

Definition 16 (covering of complexes of groups) Let φ : G(Y) → G′(Y ′)
be a morphism of complexes of groups over a nondegenerate morphism of sc-
wols l : Y → Y ′, where Y ′ is connected. The morphism φ is a covering (of
G′(Y ′) by G(Y)) if for each vertex σ ∈ V (Y),

(1) the group homomorphism φσ : Gσ → G′l(σ) is injective, and
(2) for every a′ ∈ E(Y ′) and σ ∈ V (Y) with t(a′) = σ′ = l(σ), the map

∐

a∈l−1(a′)
t(a)=σ

Gσ/ψa(Gi(a)) → G′σ′/ψa′(G
′
i(a′))

induced by
g 7→ φσ(g)φ(a)

is bijective.

From Condition (2) of this definition, it follows that

∑

a∈l−1(a′)
t(a)=σ

|Gσ|
|Gi(a)| =

|G′σ′|
|G′i(a′)|

.

Since Y ′ is connected, the value of

n :=
∑

σ∈ l−1(σ′)

|G′σ′|
|Gσ| =

∑

a∈l−1(a′)

|G′i(a′)|
|Gi(a)|

is independent of the vertex σ′ and the edge a′. A covering of complexes of
groups with the above n is said to be n–sheeted.

We will often use Definition 17 below, which defines a morphism of complexes
of groups induced by an equivariant morphism of scwols, keeping track of the
choices we make.

Definition 17 (induced morphism) Let X and X ′ be simply connected sc-
wols, endowed with actions of groups G and G′, and let Y = G\X and
Y ′ = G′\X ′ be the quotient scwols. Let L : X → X ′ be a morphism of sc-
wols which is equivariant with respect to a group morphism Λ : G → G′. Let
l : Y → Y ′ be the induced morphism of the quotients.

For any choices C• and C ′• of data for the actions of G and G′ on X and X ′,
and for any choice N• of elements kσ ∈ G′ indexed by σ ∈ V (Y) such that
kσ · L(σ) = l(σ), there is an associated morphism of complexes of groups

λ = λC•,C′•,N• : G(Y)C• → G′(Y ′)C′•

11



over l, given by

λσ : Gσ → G′l(σ)

g 7→ kσΛ(g)k−1
σ

and

λ(a) = kt(a)Λ(ha)k
−1
i(a)h

′−1
l(a)

(see Section 2.9(4), [4]).

2.4.2 The fundamental group of a complex of groups

There are two definitions of the fundamental group of a complex of groups,
which result in canonically isomorphic groups. Both definitions involve the
universal group.

Definition 18 (universal group) The universal group FG(Y) of a complex
of groups G(Y) over a scwol Y is the group presented by the generating set

∐

σ∈V (Y)

Gσ

∐
E±(Y)

with the following relations:

(1) the relations in the groups Gσ;
(2) (a+)−1 = a− and (a−)−1 = a+;
(3) a+b+ = ga,b(ab)

+, for every (a, b) ∈ E(2)(Y); and
(4) ψa(g) = a+ga−, for every g ∈ Gi(a).

There is a natural morphism ι = (ισ, ι(a)) : G(Y) → FG(Y), where ισ : Gσ →
FG(Y) takes Gσ to its image in FG(Y), and ι(a) = a+.

Proposition 19 (Proposition 3.9, [4]) A complex of groups G(Y) over a
connected scwol Y is developable if and only if ι : G(Y) → FG(Y) is injective
on the local groups.

The first definition of the fundamental group of a complex of groups G(Y)
involves the choice of a basepoint σ0 ∈ V (Y). A G(Y)-path starting from σ0 is
then a sequence (g0, e1, g1, e2, . . . , en, gn) where (e1, e2, . . . , en) is an edge path
in Y starting from σ0, we have g0 ∈ Gσ0 , and gj ∈ Gt(ej) for 1 ≤ j ≤ n. A
G(Y)-path joining σ0 to σ0 is called a G(Y)–loop at σ0.

To each path c = (g0, e1, g1, e2, . . . , en, gn), we associate the element π(c) of
FG(Y) represented by the word g0e1g1 · · · engn. Suppose now that c and c′ =
(g′0, e

′
1, g

′
1, . . . , e

′
n, g

′
n) are two G(Y)–loops at σ0. We say c and c′ are homotopic

if π(c) = π(c′), and denote the homotopy class of c by [c]. The concatenation
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of c and c′ is the G(Y)–loop

c ∗ c′ = (g0, e1, . . . , en, gng
′
0, e

′
1, . . . , e

′
n′ , g

′
n′).

The operation [c][c′] = [c∗ c′] defines a group structure on the set of homotopy
classes of G(Y)–loops at σ0.

Definition 20 (fundamental group of G(Y) at σ0) The fundamental group
of G(Y) at σ0 is the set of homotopy classes of G(Y)–loops at σ0, with the group
structure induced by concatenation. It is denoted π1(G(Y), σ0).

Different choices of basepoint σ0 ∈ V (Y) result in isomorphic fundamental
groups.

The second definition of the fundamental group of a complex of groups involves
the choice of a maximal tree T in the 1-skeleton of the geometric realization
|Y|. By abuse of notation, we will say that T is a maximal tree in Y .

Proposition 21 (Theorem 3.7, [4]) For any maximal tree T in Y, the fun-
damental group π1(G(Y), σ0) is isomorphic to the abstract group π1(G(Y), T ),
presented by the generating set

∐

σ∈V (Y)

Gσ

∐
E±(Y)

with the following relations:

(1) the relations in the groups Gσ;
(2) (a+)−1 = a− and (a−)−1 = a+;
(3) a+b+ = ga,b(ab)

+, for every (a, b) ∈ E(2)(Y);
(4) ψa(g) = a+ga−, for every g ∈ Gi(a); and
(5) a+ = 1 for every edge a ∈ T .

If Y is simply connected, then π1(G(Y), T ) is isomorphic to the direct limit of
the diagram of groupsGσ and monomorphisms ψa. The isomorphism π1(G(Y), σ0) →
π1(G(Y), T ) is the restriction of the natural projection FG(Y) → π1(G(Y), T ).
Its inverse κT is defined in the proof of Proposition 27 in Section 2.4.3 below.

Let φ : G(Y) → G′(Y ′) be a morphism over a morphism of scwols l : Y →
Y ′. Then φ induces a homomorphism Fφ : FG(Y) → FG′(Y ′), defined by
Fφ(g) = φσ(g) for g ∈ Gσ, and Fφ(a+) = φ(a)l(a)+. The restriction of Fφ to
π1(G(Y), σ0) is a natural homomorphism

π1(φ, σ0) : π1(G(Y), σ0) → π1(G
′(Y ′), l(σ0)).

13



In the particular case of a morphism φ : G(Y) → G, where G is a group, the
induced homomorphism

π1(φ, σ0) : π1(G(Y), σ0) → G

is defined by g 7→ φσ(g) for g ∈ Gσ, and a+ 7→ φ(a).

2.4.3 Developments and the universal cover

Any morphism from a complex of groups to a group induces a scwol, called
the development.

Definition 22 (development) Let φ : G(Y) → G be a morphism from a
complex of groups G(Y) to a group G. The scwol D(Y , φ), called the develop-
ment of G(Y) with respect to φ, is defined as follows.

The set of vertices is

V (D(Y , φ)) = {([g], σ) : σ ∈ V (Y), [g] ∈ G/φσ(Gσ)}

and the set of edges is

E(D(Y , φ)) = {([g], a) : a ∈ E(Y), [g] ∈ G/φi(a)(Gi(a))}.

The maps to initial and terminal vertices are given by

i([g], a) = ([g], i(a))

and

t([g], a) = ([gφ(a)−1], t(a))

and the composition of edges ([g], a)([h], b) = ([h], ab) is defined where (a, b) ∈
E(2)(Y), g, h ∈ G and g−1hφ(b)−1 ∈ φi(a)(Gi(a)).

The group G acts naturally on D(Y , φ): given g, h ∈ G and α ∈ Y, the action
is h · ([g], α) = ([hg], α).

Proposition 23 (Theorems 2.13, 3.14 and 3.15, [4]) Let G(Y) be a com-
plex of groups over a connected scwol Y and let G be a group.

(1) Let φ : G(Y) → G be a morphism which is injective on the local groups.
Then G(Y) is the complex of groups (with respect to canonical choices) as-
sociated to the action of G on the development D(Y , φ), and φ : G(Y) →
G equals the canonical morphism φ1 : G(Y) → G.

(2) Suppose G(Y) is a complex of groups associated to the action of G on a
simply connected scwol X , and φ1 : G(Y) → G is the canonical morphism.
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Then φ1 induces a group isomorphism

π1(φ1, σ0) : π1(G(Y), σ0)
∼→ G

(see the final paragraph of Section 2.4.2), and there is a G-equivariant
isomorphism of scwols

Φ1 : D(Y , φ1)
∼→ X

given by, for g ∈ G and α ∈ Y,

([g], α) 7→ g · α.

The following result, on the functoriality of developments, is used to prove
Theorem 1, stated in the introduction.

Proposition 24 (Theorem 2.18, [4]) Let G(Y) and G′(Y ′) be complexes
of groups over scwols Y and Y ′. Let φ : G(Y) → G and φ′ : G′(Y ′) → G′ be
morphisms to groups G and G′ and let Λ : G→ G′ be a group homomorphism.
Let λ : G(Y) → G′(Y ′) be a morphism over l : Y → Y ′.

Suppose there is a homotopy from Λφ to φ′λ, given by elements kσ ∈ G′ (see
Definition 13). Then there is a Λ-equivariant morphism of the developments

L : D(Y , φ) → D(Y ′, φ′)

given by, for g ∈ G and α ∈ Y,

([g], α) 7→ ([Λ(g)k−1
i(α)], l(α)).

Moreover, if φ and φ′ are injective on the local groups, and λ and Λ are
isomorphisms, then L is an isomorphism of scwols.

We now define the universal cover.

Definition 25 (universal cover of a developable complex of groups)
Let G(Y) be a developable complex of groups over a connected scwol Y. Choose
a maximal tree T in Y. Let

ιT : G(Y) → π1(G(Y), T )

be the morphism of complexes of groups mapping the local group Gσ to its
image in π1(G(Y), T ), and the edge a to the image of a+ in π1(G(Y), T ). The
development D(Y , T ) = D(Y , ιT ) is called a universal cover of G(Y).

Theorem 26 (Theorem 3.13, [4]) The universal cover D(Y , T ) is connected
and simply connected.
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As described in Definition 22, the fundamental group π1(G(Y), T ) acts canon-
ically on D(Y , T ).

A group action on a scwol induces the following explicit isomorphisms of
groups and scwols.

Proposition 27 Let G be a group acting on a simply connected scwol X ,
and let G(Y) be the induced complex of groups (with respect to some choices
C• = {σ, ha}). Choose a maximal tree T in Y and a vertex σ0 ∈ V (Y). For
e ∈ E±(Y), let

he =




ha if e = a+

h−1
a if e = a−

.

For σ ∈ V (Y), let cσ = (e1, e2, . . . , en) be the unique edge-path contained in T ,
with no backtracking, which joins σ0 to σ, and let hσ = he1he2 · · ·hen.

Then there is a group isomorphism

ΛT : π1(G(Y), T )→G

defined on generators by

g 7→hσgh
−1
σ for g ∈ Gσ

a+ 7→ht(a)hah
−1
i(a)

and a ΛT -equivariant isomorphism of scwols

L̃T : D(Y , T ) → X
([g], α) 7→ ΛT (g)hi(α) · α.

PROOF. For σ ∈ V (Y) let πσ = e1e2 · · · en be the element of FG(Y) corre-
sponding to the edge-path cσ. Then by Theorem 3.7, [4], there is a canonical
isomorphism

κT : π1(G(Y), T )
∼→ π1(G(Y), σ0)

defined on generators by

g 7→πσgπ
−1
σ for g ∈ Gσ

a+ 7→πt(a)a
+π−1

i(a).

By Proposition 23, the canonical morphism of complexes of groups φ1 : G(Y) →
G induces a group isomorphism π1(φ1, σ0) : π1(G(Y), σ0) → G. Composing κT

with π1(φ1, σ0), we obtain the group isomorphism ΛT : π1(G(Y), T )
∼→ G

defined above.
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We now have the square

G(Y)
ιT //

λ=Id
²²

π1(G(Y), T )

ΛT

²²
G(Y)

φ1 //G.

This commutes up to a homotopy from ΛT ιT to φ1λ, given by the elements
h−1

σ . Thus, by Proposition 24, there is a ΛT -equivariant morphism of scwols

LT : D(Y , T ) → D(Y , φ1)

([g], α) 7→ ([ΛT (g)hi(α)], α)

which is an isomorphism since ιT and φ1 are injective on the local groups, and
both λ and ΛT are isomorphisms. Composing LT with the G-equivariant iso-
morphism Φ1 : D(Y , φ1) → X (see Proposition 23), we obtain a ΛT -equivariant
isomorphism of scwols

L̃T : D(Y , T ) → X
([g], α) 7→ ΛT (g)hi(α) · α

as required.

2.4.4 Local developments and nonpositive curvature

Let K be a connected polyhedral complex and let Y be the scwol associated
to K, so that |Y| is the first barycentric subdivision of K. The star St(σ)
of a vertex σ ∈ V (Y) is the union of the interiors of the simplices in |Y|
which meet σ. If G(Y) is a complex of groups over Y , then each σ ∈ V (Y)
has a local development, even if G(Y) is not developable. That is, we may
naturally associate to each vertex σ ∈ V (Y) an action of Gσ on some simplicial
complex St(σ̃) containing a vertex σ̃, such that St(σ) is the quotient of St(σ̃)
by the action of Gσ. If G(Y) is developable, then for each σ ∈ V (Y), the local
development at σ is isomorphic to the star of each lift σ̃ of σ in the universal
cover D(Y , T ).

We denote by st(σ̃) the star of σ̃ in St(σ̃).

Lemma 28 (Lemma 5.2, [4]) Let λ : G(Y) → G′(Y ′) be a covering of com-
plexes of groups, over a morphism of scwols l : Y → Y ′. Then for each
σ ∈ V (Y ′), Condition (2) in the definition of a covering (Definition 16) is

equivalent to the existence of a λσ-equivariant bijection st(σ̃) → st(l̃(σ)).

In the case that Y is the scwol associated to a polyhedral complex K, each
local development St(σ̃) has a metric structure induced by that of K (see
p. 562, [4]). A complex of groups G(Y) has nonpositive curvature if for all
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σ ∈ V (Y), the local development at σ has nonpositive curvature (that is, St(σ̃)
is locally CAT(κ) for some κ ≤ 0) in this induced metric. The importance of
this condition is given by:

Theorem 29 (Theorem 4.17, [4]) If a complex of groups has nonpositive
curvature, it is developable.

We will use the following condition to establish nonpositive curvature:

Lemma 30 (Remark 4.18, [4]) Let Y be the scwol associated to an Mκ-
polyhedral complex K, with κ ≤ 0. Then G(Y) has nonpositive curvature if
and only if, for each vertex τ of K, the geometric link of τ̃ in st(τ̃), with the
induced spherical structure, is CAT(1).

3 Covering theory for complexes of groups

This section contains our results for complexes of groups which are analogous
to those for graphs of groups in [1]. We consider the functoriality of morphisms
of complexes of groups in Section 3.1 and that of coverings in Section 3.2,
culminating in the (constructive) proof of Theorem 1. Section 3.3 then char-
acterizes faithfulness of complexes of groups. In Section 3.4 a key technical
result, the Main Lemma (Lemma 40), is proved. The Main Lemma makes pre-
cise the relationship between maps of groups and scwols, and induced maps of
fundamental groups and universal covers of complexes of groups. We consider
the relationship between coverings and developability in Section 3.5; this has
no analogy for graphs of groups since every graph of groups is developable.

3.1 Functoriality of morphisms

Proposition 31 below gives explicit constructions of the maps on fundamental
groups and universal covers induced by a morphism of developable complexes
of groups.

Proposition 31 Let λ : G(Y) → G′(Y ′) be a morphism of complexes of
groups over a morphism of scwols l : Y → Y ′, where Y and Y ′ are connected.
Assume G(Y) and G′(Y ′) are developable. For any choice of σ0 ∈ V (Y) and
maximal trees T and T ′ in Y and Y ′ respectively, λ induces a homomorphism
of fundamental groups

ΛT,T ′ = Λλ
T,T ′ : π1(G(Y), T ) → π1(G

′(Y ′), T ′)
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and a ΛT,T ′-equivariant morphism of universal covers

Lλ
T,T ′ : D(Y , T ) → D(Y ′, T ′).

PROOF. Let σ′0 = l(σ0). Recall from the proof of Proposition 27 that there
is a canonical isomorphism

κT : π1(G(Y), T )
∼−→ π1(G(Y), σ0)

and from the last paragraph of Section 2.4.2 that the morphism λ induces a
group homomorphism π1(λ, σ0) : π1(G(Y), σ0) → π1(G

′(Y ′), σ′0) which is the
restriction of the morphism Fλ : FG(Y) → FG′(Y ′). The group homomor-
phism

ΛT,T ′ : π1(G(Y), T ) → π1(G
′(Y ′), T ′)

is defined by the composition κ′−1
T ′ ◦ π1(λ, σ0) ◦ κT :

π1(G(Y), T )
∼−→ π1(G(Y), σ0) −→ π1(G

′(Y ′), σ′0) ∼−→ π1(G
′(Y ′), T ′)

We now have a square

G(Y)
ιT //

λ
²²

π1(G(Y), T )

ΛT,T ′
²²

G′(Y ′) ι′
T ′ //π1(G

′(Y ′), T ′).

We claim that that there is a homotopy from ΛT,T ′ ◦ιT to ι′T ′ ◦λ. For σ ∈ V (Y)
let πσ = e1e2 · · · en be the element of FG(Y) corresponding to the unique
path (e1, e2, . . . , en) in T without backtracking from σ0 to σ, and similarly for
π′l(σ) ∈ FG′(Y ′). Then for g ∈ Gσ, we have

(ΛT,T ′ ◦ ιT )(g) =ΛT,T ′(g)

=κ′−1
T ′ ◦ π1(λ, σ0) ◦ κT (g)

=κ′−1
T ′ ◦ π1(λ, σ0)(πσgπ

−1
σ )

=κ′−1
T ′ {Fλ(πσ)λσ(g)(Fλ(πσ))−1}

=κ′−1
T ′ {Fλ(πσ)(π′l(σ))

−1} (ι′T ′◦ λσ)(g)κ′−1
T ′ {π′l(σ)(Fλ(πσ))−1}.

Setting

uσ = κ′−1
T ′ {Fλ(πσ)(π′l(σ))

−1} ∈ π1(G
′(Y ′), T ′)

we conclude

(ΛT,T ′ ◦ ιT )(g) = uσ(ι′T ′ ◦ λσ)(g)u−1
σ = Ad(uσ)(ι′T ′ ◦ λ)(g).
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Similarly, if a ∈ E(Y), we compute

(ΛT,T ′ ◦ ιT )(a) = κ′−1
T ′ ◦ π1(λ, σ0) ◦ κT (a+)

= κ′−1
T ′ ◦ π1(λ, σ0)(πt(a)a

+π−1
i(a))

= ut(a)λ(a)l(a)+u−1
i(a)

= ut(a)(ι
′
T ′ ◦ λ)(a)u−1

i(a).

The last equality comes from the definition of composition of morphisms,

(ι′T ′ ◦ λ)(a) = (ι′T ′)l(t(a))(λ(a))ι′T ′(l(a)) = λ(a)l(a)+.

Hence the desired homotopy from ΛT,T ′ ◦ ιT to ι′T ′ ◦λ is given by the elements
u−1

σ .

By Proposition 24 there is thus a ΛT,T ′-equivariant morphism of universal
covers

Lλ
T,T ′ : D(Y , T ) → D(Y ′, T ′)

given by

([g], α) 7→ ([ΛT,T ′(g)ui(α)], l(α)).

Corollary 32 below says that if a diagram of morphisms of developable com-
plexes of groups commutes, then the corresponding diagrams of the induced
maps on fundamental groups and universal covers, defined in Proposition 31
above, also commute.

Corollary 32 With the notation of Proposition 31, let G′′(Y ′′) be a devel-
opable complex of groups over a connected scwol Y ′′, and assume there is a
morphism λ′ : G′(Y ′) → G′′(Y ′′). Choose a maximal tree T ′′ in Y ′′. Then the
composition

λ′′ = λ′ ◦ λ
induces a group homomorphism ΛT,T ′′ : π1(G(Y), T ) → π1(G

′′(Y ′′), T ′′) and a
ΛT,T ′′-equivariant morphism of universal covers Lλ′′

T,T ′′ : D(Y , T ) → D(Y ′′, T ′′),
such that

Lλ′′
T,T ′′ = Lλ′

T ′,T ′′ ◦ Lλ
T,T ′

and

ΛT,T ′′ = ΛT ′,T ′′ ◦ ΛT,T ′ .

PROOF. The proof follows from the constructions given in Proposition 31
above, and the definition of composition of morphisms.
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3.2 Functoriality of coverings

In this section we prove Theorem 1, stated in the Introduction. The maps
ΛT,T ′ and Lλ

T,T ′ are those defined in Proposition 31 above.

Proposition 33 Let λ : G(Y) → G′(Y ′) be a covering of complexes of groups
over a morphism of scwols l : Y → Y ′, where Y and Y ′ are connected. Assume
G(Y) and G′(Y ′) are developable. For any choice of σ0 ∈ V (Y) and maxi-
mal trees T and T ′ in Y and Y ′ respectively, the induced homomorphism of
fundamental groups

ΛT,T ′ : π1(G(Y), T ) → π1(G
′(Y ′), T ′)

is a monomorphism and

Lλ
T,T ′ : D(Y , T ) → D(Y ′, T ′)

is a ΛT,T ′-equivariant isomorphism of scwols.

PROOF. We begin with Lemma 34 below, which shows that Lλ
T,T ′ is a cov-

ering of scwols (see Definition 9). Corollary 35 of this lemma shows that Lλ
T,T ′

is an isomorphism of scwols. We then use this result to show that ΛT,T ′ is
injective.

Lemma 34 The morphism Lλ
T,T ′ is a covering of scwols.

PROOF. Let g ∈ π1(G(Y), T ) and σ ∈ V (Y).

We first show that Lλ
T,T ′ is injective on the set of edges with terminal vertex

([g], σ). Suppose a1 and a2 are edges of Y (with t(a1) = t(a2) = σ), that for
some h1, h2 ∈ π1(G(Y), T )

t ([h1], a1) = ([g], σ) = t ([h2], a2)

and that

Lλ
T,T ′ ([h1], a1) = Lλ

T,T ′ ([h2], a2) .

By definition of Lλ
T,T ′ , we then have l(a1) = l(a2) = a′ say, with t(a′) =

l(t(a1)) = l(σ) = σ′. Also, by definition of the map t : E(D(Y , T )) →
V (D(Y , T )), we have, for some h ∈ Gσ,

h1a
−
1 = h2a

−
2 h

−1.
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Now by definition of Lλ
T,T ′ , it follows that the group G′i(a′) contains

(
ΛT,T ′(h1)ui(a1)

)−1 (
ΛT,T ′(h2)ui(a2)

)

= u−1
i(a1)ΛT,T ′

(
a−1 h a

+
2

)
ui(a2)

= u−1
i(a1)ui(a1)l(a1)

−λ(a1)
−1u−1

t(a1)uσλσ(h)u−1
σ ut(a2)λ(a2)l(a2)

+u−1
i(a2)ui(a2)

= a′−λ(a1)
−1λσ(h)λ(a2)a

′+.

Thus by the relation a′+ka′− = ψa′(k), for all k ∈ G′i(a′),

λ(a1)
−1 λσ(h)λ(a2) ∈ ψa′(G

′
i(a′)).

That is, λ(a1) and λσ(h)λ(a2) belong to the same coset of ψa′(G
′
i(a′)) in G′σ′ .

By Condition (2) in the definition of a covering (Definition 16, this implies
a1 = a2 = a, say, and h ∈ ψa(Gi(a)). It follows that h1 and h2 belong to the
same coset of Gi(a) in π1(G(Y), T ). Thus Lλ

T,T ′ is injective on the set of edges
with terminal vertex ([g], σ).

We now show that Lλ
T,T ′ surjects onto the set of edges of D(Y ′, T ′) with ter-

minal vertex Lλ
T,T ′([g], σ). Suppose

t ([h′], a′) = Lλ
T,T ′ ([g], σ)

where h′ ∈ π1(G
′(Y ′), T ′), a′ ∈ E(Y ′). Then t(a′) = σ′ = l(σ) and by definition

of Lλ
T,T ′ ,

h′a′− = ΛT,T ′(g)uσkσ′ (1)

for some kσ′ ∈ G′σ′ . By Condition 2 in the definition of a covering, there exists
an edge a ∈ E(Y) with l(a) = a′ and t(a) = σ, and an element kσ ∈ Gσ, such
that λσ(kσ)λ(a) and kσ′ belong to the same coset of ψa′(Gi(a′)) in G′σ′ . Let
h = gkσa

+ ∈ π1(G(Y), T ) and note that by Definition 22,

t ([h], a) =
(
[gkσa

+ιT (a)−1], t(a)
)

=
(
[gkσa

+a−], σ
)

= ([gkσ], σ) = ([g], σ) .

We claim
Lλ

T,T ′ ([h], a) = ([h′], a′) .

By Equation (1) above, the choice of a and kσ and the relation ψa′(k
′) =

a′+k′a′− for all k′ ∈ G′i(a′), we have

ΛT,T ′(h)ui(a) = ΛT,T ′(g)uσλσ(kσ)u−1
σ ut(a)λ(a)l(a)+u−1

i(a)ui(a)

= h′a′−k−1
σ′ λσ(kσ)λ(a)a′+

∈ h′G′i(a′).

Hence,
Lλ

T,T ′ ([h], a) =
([

ΛT,T ′(h)ui(a)

]
, a′

)
= ([h′], a′).

We conclude that Lλ
T,T ′ is a covering of scwols.
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Corollary 35 Under the assumptions of Proposition 33, the morphism Lλ
T,T ′ :

D(Y , T ) → D(Y ′, T ′) is an isomorphism of scwols.

PROOF. By Lemma 34, Lλ
T,T ′ is a covering morphism. Since D(Y ′, T ′) is

connected, Lλ
T,T ′ is surjective, and since D(Y , T ) is connected and D(Y ′, T ′)

is simply connected, Lλ
T,T ′ is injective. See Remark 1.9(2), [4].

We complete the proof of Proposition 33 by showing that ΛT,T ′ is a monomor-
phism of groups. Suppose g ∈ π1(G(Y), T ) and ΛT,T ′(g) = 1. Since Lλ

T,T ′ is
injective and ΛT,T ′-equivariant, g must act trivially on D(Y , T ). In particular,

g · ([1], σ0) = ([g], σ0) = ([1], σ0)

so g ∈ Gσ0 . We then calculate

ΛT,T ′(g) = κ′−1
T ′ ◦ π1(λ, σ0) ◦ κT ((ιT )σ0(g))

= κ′−1
T ′ (λσ0((ιT )σ0(g)))

= 1.

Since κ′−1
T ′ , λσ0 and (ιT )σ0 are each injective, this implies g = 1. Thus ΛT,T ′ is

injective.

Corollary 36 Let λ : G(Y) → G′(Y ′) be a covering of complexes of groups.
Suppose for some κ ∈ R that the scwols Y and Y ′ are associated to Mκ-
polyhedral complexes with finitely many isometry classes of cells. If G(Y) and
G′(Y ′) are developable, then the geometric realizations of their respective uni-
versal covers are isometric (as polyhedral complexes).

3.3 Faithfulness

Definition 37 (faithful) Let G(Y) be a developable complex of groups. We
say G(Y) is faithful if the natural homomorphism π1(G(Y), T ) → Aut(D(Y , T ))
is a monomorphism, for any choice of maximal tree T in Y.

If G(Y) is a complex of groups associated to the action of a group G on a
scwol X , then G(Y) is faithful.

Proposition 38 below may be used to give sufficient conditions for faithfulness.

Proposition 38 Let G(Y) be a developable complex of groups over a con-
nected scwol Y. Choose a maximal tree T in Y, and identify each local group
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Gσ with its image in π1(G(Y), T ) under the morphism ιT . Let

NT = ker(π1(G(Y), T ) → D(Y , T )).

Then

(1) NT is a vertex subgroup, that is NT ≤ Gσ for each σ ∈ V (Y).
(2) NT is Y-invariant, that is ψa(NT ) = NT for each a ∈ E(Y).
(3) NT is normal, that is NT £Gσ for each σ ∈ V (Y).
(4) NT is maximal: if N ′

T is another Y-invariant normal vertex subgroup then
N ′

T ≤ NT .

PROOF. If h ∈ NT , then for all σ ∈ V (Y),

h · ([1], σ) = ([h], σ) = ([1], σ)

thus h ∈ Gσ. This proves (1). Since NT is normal in π1(G(Y), T ) it is normal
in each Gσ, proving (3).

To prove (2), let a ∈ E(Y). In the group π1(G(Y), T ) the following relation
holds for each g ∈ Gi(a):

ψa(g) = a+ga−.

Since NT is a subgroup of Gi(a) and NT is normal in π1(G(Y), T ), it follows
that

ψa(NT ) = a+NTa
− = NT

as required.

To prove (4), we have, for all g ∈ π1(G(Y), T ) and α ∈ Y ,

N ′
T · ([g], α) = gN ′

Tg
−1 · ([g], α) = g · ([1], α) = ([g], α)

since N ′
T is normal in π1(G(Y), T ) and N ′

T is a subgroup of Gi(α). Hence N ′
T

is contained in NT , as claimed.

3.4 Other functoriality results

This section contains results similar to those in Section 4, [1].

We first prove the following useful characterization of isomorphisms of com-
plexes of groups. This result corresponds to Corollary 4.6, [1].

Proposition 39 Let λ : G(Y) → G′(Y ′) be a morphism of developable com-
plexes of groups over a morphism of scwols l : Y → Y ′, where Y and Y ′ are
connected scwols. For any choice of σ0 ∈ V (Y) and maximal trees T and T ′
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in Y and Y ′ respectively, λ is an isomorphism if and only if both of the maps
Lλ

T,T ′ and ΛT,T ′ are isomorphisms.

PROOF. If λ is an isomorphism, it is clearly a covering. Proposition 33 thus
implies that Lλ

T,T ′ is an isomorphism of scwols and ΛT,T ′ is a monomorphism of

groups. Since λ−1 is also a covering, Λ−1
T,T ′ = (ΛT,T ′)

−1 is also a monomorphism,
hence ΛT,T ′ is an isomorphism.

Conversely, suppose λ is not an isomorphism, thus one of λ and λ−1 is not
a covering. Without loss of generality, we assume λ is not a covering. Then
either

(1) there is a homomorphism λσ : Gσ → G′l(σ) which is not injective, or
(2) there exists a′ ∈ E(Y ′) and σ ∈ V (Y) with t(a′) = σ′ = l(σ), such that

the map ∐

a∈l−1(a′)
t(a)=σ

Gσ/ψa(Gi(a)) → G′σ′/ψa′(G
′
i(a′))

induced by
g 7→ λσ(g)λ(a)

is not bijective.

Condition (1) implies that the map ΛT,T ′ is not a monomorphism at Gσ,
thus ΛT,T ′ is not an isomorphism. Condition (2) implies that Lλ

T,T ′ is not a
local bijection at St(σ̃) (see Remark 5.3, [4]), thus the map Lλ

T,T ′ is not an
isomorphism.

The Main Lemma below, which corresponds to Proposition 4.4, [1], will be
used many times in Section 5. The data for the Main Lemma is as follows.

Let X and X ′ be simply connected scwols, acted upon by groups G and G′

respectively, with quotient scwols Y = G\X and Y ′ = G′\X ′. Let G(Y)C• and
G′(Y ′)C′• be complexes of groups associated to the actions of G and G′, with
respect to choices C• = (σ, ha) and C ′• = (σ′, ha′).

Suppose L : X → X ′ is a morphism of scwols which is equivariant with respect
to some group homomorphism Λ : G → G′. Let l : Y → Y ′ be the induced
morphism of quotient scwols. Fix σ0 ∈ Y and let σ′0 = l(σ0). Let N• = {kσ}
be a set of elements of G′ such that kσ · L(σ) = l(σ) for all σ ∈ V (Y).

With respect to these choices, there is an induced morphism λ = λC•,C′•,N• :
G(Y) → G′(Y ′) (see Definition 17). For any choice of maximal trees T and T ′

in Y and Y ′, respectively, let

Λλ
T,T ′ : π1(G(Y), T ) → π1(G

′(Y ′), T ′)
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be the homomorphism of groups induced by λ and let

Lλ
T,T ′ : D(Y , T ) → D(Y ′, T ′)

be the associated Λλ
T,T ′-equivariant morphism of scwols (see Proposition 31).

By Proposition 27 we have isomorphisms of scwols

L̃T : D(Y , T )
∼−→ X and L̃T ′ : D(Y ′, T ′) ∼−→ X ′

which are equivariant with respect to group isomorphisms

ΛT : π1(G(Y), T )
∼−→ G and ΛT ′ : π1(G

′(Y ′), T ′) ∼−→ G′

respectively.

Lemma 40 (Main Lemma) Suppose C• and C ′• are chosen so that L(σ0) =
l(σ0) = σ′0, and N• is chosen so that kσ0 = 1. Then the following diagrams
commute:

(1)

π1(G(Y), T )
Λλ

T,T ′ //

ΛT

²²

π1(G
′(Y ′), T ′)

ΛT ′
²²

G
Λ //G′

(2)

D(Y , T )
Lλ

T,T ′ //

L̃T

²²

D(Y ′, T ′)
L̃T ′
²²

X L //X ′.

PROOF. We first show the commutativity of (1), and then use this diagram
and equivariance to prove that (2) commutes.

By construction,

ΛT = π1(φ1, σ0) ◦ κT and ΛT ′ = π1(φ
′
1, σ

′
0) ◦ κ′T ′

where φ1 : G(Y) → G and φ′1 : G′(Y ′) → G′ are the canonical morphisms.
Also, Λλ

T,T ′ = κ′−1
T ′ ◦ π1(λ, σ0) ◦ κT . Therefore it is enough to show that the

following diagram commutes:

π1(G(Y), σ0)
π1(λ,σ0) //

π1(φ1,σ0)

²²

π1(G
′(Y ′), σ′0)

π1(φ′1,σ′0)

²²
G

Λ //G′.

26



Let x ∈ π1(G(Y), σ0). Then x has the form

x = gσ0e1gσ1 · · · engσn

where (gσ0 , e1, gσ1 , . . . , en, gσn) is a G(Y)–loop based at σ0 = σn. It follows that

π1(φ1, σ0)(x) = gσ0he1gσ1 · · ·hengσn

where the elements hej
are as defined in Proposition 27. We now compute

π1(φ
′
1, σ

′
0) ◦ π1(λ, σ0)(x)

= (kσ0Λ(gσ0)k
−1
σ0

)(kσ0Λ(he1)k
−1
σ1
h−1

l(e1)
)hl(e1)(kσ1Λ(gσ1)k

−1
σ1

) · · · (kσnΛ(gσn)k−1
σn

)

= kσ0Λ(gσ0he1gσ1 · · ·hengσn)k−1
σn

= Λ ◦ π1(φ1, σ0)(x)

since kσ0 = kσn = 1. Thus (1) commutes.

To prove that (2) commutes, let

L̃ = L̃T ′ ◦ Lλ
T,T ′ ◦ L̃−1

T

We will show that L̃ = L. By the equivariance of the morphisms of scwols used
to define L̃, and the commutativity of (1), we have that L̃ is Λ-equivariant.
Thus it is enough to check (for example) that L̃(hi(α)α) = L(hi(α)α) for all
α ∈ Y . By Proposition 27,

L̃(hi(α)α) = L̃T ′ ◦ Lλ
T,T ′([1], α)

= L̃T ′([ui(α)], l(α))

= ΛT ′(ui(α))hi(l(α))l(α).

Let πi(α) = e1e2 · · · en be the element of FG(Y) which corresponds to the non-
backtracking path in T from σ0 to i(α), and similarly for π′i(l(α)) = e′1e

′
2 · · · e′n′

in FG′(Y ′). Then

ΛT ′(ui(α)) = ΛT ′ ◦ κ′−1
T ′

{
Fλ(πi(α))(π

′
i(l(α)))

−1
}

= π1(φ
′
1, σ

′
0)

{
Fλ(πi(α))(π

′
i(l(α)))

−1
}

= π1(φ
′
1, σ

′
0)

{
Fλ(e1)Fλ(e2) · · ·Fλ(en)e′−1

n′ · · · e′−1
2 e′−1

1

}

= kσ0Λ(he1)k
−1
σ1
kσ1Λ(he2)k

−1
σ2
· · · kσn−1Λ(hen)k−1

σn
h−1

e′
n′
· · ·h−1

e′2
h−1

e′1

= kσ0Λ(he1he2 · · ·hen)k−1
σn

(he′1he′2 · · ·he′
n′

)−1

= Λ(hi(α))k
−1
σn
h−1

i(l(α))
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since kσ0 = 1. Substituting, we obtain finally

L̃(hi(α)α) = Λ(hi(α))k
−1
σn
l(α)

= Λ(hi(α))k
−1
i(α)l(α)

= Λ(hi(α))L(α)

= L(hi(α)α)

as desired. This completes the proof of the Main Lemma.

The following result makes precise the relationship between a developable
complex of groups G(Y) and the complex of groups induced by the action of
π1(G(Y), T ) on D(Y , T ), for some maximal tree T in Y . It will be used to
prove the Corollary to the Main Lemma below.

Lemma 41 Let G(Y) be a developable complex of groups over a connected
scwol Y. Choose a vertex σ0 ∈ V (Y) and a maximal tree T in Y. Let Z be the
quotient scwol

Z = π1(G(Y), T )\D(Y , T )

and let f be the canonical isomorphism of scwols

f : Y → Z
α 7→ π1(G(Y), T ) · ([1], α)

Let C• be the following data for the action of π1(G(Y), T ) on D(Y , T ):

f(α) = ([1], α) and hf(a) = a+

and let G(Z)C• be the complex of groups associated to this data. Then there is
an isomorphism of complexes of groups

θ : G(Y) → G(Z)

over f such that

Λθ
T,f(T ) = Λ−1

f(T ) and Lθ
T,f(T ) = L̃−1

f(T )

where f(T ) is the image of T in Z.

PROOF. We define θ by θσ(g) = g for each g ∈ Gσ, and θ(a) = 1 for each
a ∈ E(Y) (here we are identifying Gσ with its image in π1(G(Y), T )).

We then have

Λθ
T,f(T ) ◦ Λf(T ) = κ−1

f(T ) ◦ π1(θ, σ0) ◦ κT ◦ π1(φ1, f(σ0)) ◦ κf(T ).
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We claim that

π1(θ, σ0) ◦ κT ◦ π1(φ1, f(σ0)) = 1. (2)

Let g ∈ π1(G(Z), f(σ0)). Then g = g0f(e1)g1 · · · f(en)gn for some G(Z)-loop
(g0, f(e1), g1, . . . , f(en), gn) based at f(σ0) = f(σn), and so

κT ◦ π1(φ1, f(σ0))(g) = κT (g0hf(e1)g1 · · ·hf(en)gn)

= πσ0g0π
−1
σ0
κT (hf(e1))πσ1g1π

−1
σ1
· · ·κT (hf(en))πσngnπ

−1
σn

where πσ is the unique non-backtracking path in T from σ0 to σ. Now, applying
hf(a) = a+ and κT (a+) = πt(a)a

+π−1
i(a), as well as πσ0 = πσn = 1, we have

π1(θ, σ0) ◦ κT ◦ π1(φ1, f(σ0))(g) = π1(θ, σ0)(g0e1g1 · · · engn)

= g0f(e1)g1 · · · f(en)gn

= g

and so Equation (2) holds. Thus Λθ
T,f(T ) ◦ Λf(T ) = 1. By conjugating Equa-

tion (2), we obtain

Λf(T ) ◦ Λθ
T,f(T ) = 1

and conclude that Λθ
T,f(T ) = Λ−1

f(T ).

To show that Lθ
T,f(T ) = L̃−1

f(T ), let

uσ = κ−1
f(T )

{
Fθ(πσ)

(
π′f(σ)

)−1
}

be the elements of π1(G(Z), f(T )) with respect to which Lθ
T,f(T ) is defined.

Here πσ denotes the non-backtracking path in T from σ0 to σ, and similarly
for π′f(σ) and f(T ). By definition of θ,

Fθ(πσ) = π′f(σ)

hence uσ = 1 for all σ ∈ V (Y). Also, for each α ∈ Y , the element hi(f(α)) ∈
π1(G(Y), T ) with respect to which L̃f(T ) is defined is a product of oriented
edges a± with a ∈ T . Hence hi(f(α)) = 1.

Applying these facts, we have, for g ∈ π1(G(Y), T ) and α ∈ Y ,

L̃f(T ) ◦ Lθ
T,f(T )([g], α) = L̃f(T )([Λ

θ
T,f(T )(g)], f(α))

= Λf(T ) ◦ Λθ
T,f(T )(g)hi(f(α))f(α)

= g([1], α)

= ([g], α)
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and

Lθ
T,f(T ) ◦ L̃f(T )([g], f(α)) = Lθ

T,f(T )(Λf(T )(g)f(α))

= Lθ
T,f(T )([Λf(T )(g)], α)

= ([Λθ
T,f(T ) ◦ Λf(T )(g)], f(α))

= ([g], f(α)).

Thus Lθ
T,f(T ) = L̃−1

f(T ).

The following result corresponds to Corollary 4.5, [1].

Corollary 42 (Corollary to the Main Lemma) Let G(Y) and G′(Y ′) be
developable complexes of groups over connected scwols Y and Y ′, and choose
maximal trees T and T ′ in Y and Y ′ respectively. Suppose L : D(Y , T ) →
D(Y ′, T ′) is a morphism of scwols which is equivariant with respect to some
homomorphism of groups Λ : π1(G(Y), T ) → π1(G

′(Y ′), T ′). If there is a σ0 ∈
V (Y) such that

L([1], σ0) = ([1], σ′0)

for some σ′0 ∈ V (Y ′), then there exists a morphism λ : G(Y) → G′(Y ′) of
complexes of groups such that L = Lλ

T,T ′ and Λ = Λλ
T,T ′.

PROOF. Let the quotient scwol Z, the isomorphism f : Y → Z, the data
C•, the complex of groups G(Y)C• and the isomorphism θ : G(Y) → G(Z) be
as in the statement of Lemma 41 above, and similarly for Z ′, f ′, C ′•, G

′(Y ′)C′•
and θ′. Let l : Z → Z ′ be the map of quotient scwols induced by L and Λ. By
definition of l, C• and C ′•, and by the assumption on L, we have

L(σ0) = l(σ0)

so we may choose N• with kσ0 = 1. Let

µ = µC•,C′•,N• : G(Z)C• → G′(Z ′)C′•

be the induced morphism of complexes of groups.

Let
λ = θ′−1 ◦ µ ◦ θ : G(Y) → G′(Y ′).

We claim that Λ = Λλ
T,T ′ and L = Lλ

T,T ′ . By Corollary 32, it is enough to show
that

Λ = (Λθ′
T ′,f ′(T ′))

−1 ◦ Λµ
f(T ),f ′(T ′) ◦ Λθ

T,f(T )

and
L = (Lθ′

T ′,f ′(T ′))
−1 ◦ Lµ

f(T ),f ′(T ′) ◦ Lθ
T,f(T ).

The result follows from the Main Lemma applied to µ, and Lemma 41 above.
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3.5 Coverings and developability

This section considers the relationship between the existence of a covering and
developability.

Lemma 43 Let G(Y) and G′(Y ′) be complexes of groups over nonempty, con-
nected scwols Y and Y ′. Assume there is a covering φ : G(Y) → G′(Y ′). If
G′(Y ′) is developable, then G(Y) is developable.

PROOF. Let ι′ : G′(Y ′) → FG′(Y ′) be the natural morphism defined after
Definition 18 in Section 2.4.2. By Proposition 19, since G′(Y ′) is developable,
ι′ is injective on the local groups. Thus, as φ is a covering, the composite
morphism ι′ ◦ φ : G(Y) → FG′(Y ′) is injective on the local groups. Hence, by
Proposition 15, the complex of groups G(Y) is developable.

We do not know if the converse to Lemma 43 holds in general. However, in
the presence of nonpositive curvature, we have the following partial converse
to Lemma 43. Recall that an Mκ-polyhedral complex is a polyhedral com-
plex with n-dimensional cells isometric to polyhedra in the simply connected
Riemannian n-manifold of constant sectional curvature κ.

Lemma 44 Let φ : G(Y) → G′(Y ′) be a covering of complexes of groups, over
a morphism of scwols l : Y → Y ′. Suppose that for some κ ≤ 0, Y and Y ′
are the scwols associated to connected Mκ-polyhedral complexes with finitely
many isometry classes of cells K and K ′ respectively, and that |l| : |Y| → |Y ′|
is a local isometry on each simplex. If G(Y) has nonpositive curvature (thus
is developable), then G′(Y ′) also has nonpositive curvature, thus G′(Y ′) is
developable.

PROOF. By Lemma 30, to show that G′(Y ′) is nonpositively curved, it suf-
fices to show that for each vertex τ ′ of K ′, the geometric link of τ̃ ′ in the local
development st(τ̃ ′), with the induced spherical structure, is CAT(1). We first
show, using the following lemma, that if τ ′ is a vertex of K ′, then τ ′ = f(τ)
for some vertex τ of K.

Lemma 45 The nondegenerate morphism of scwols l : Y → Y ′ associated to
the covering φ : G(Y) → G′(Y ′) surjects onto the set of vertices of Y ′.

PROOF. Let σ ∈ V (Y) and l(σ) = σ′ ∈ V (Y ′). From the definitions of
nondegenerate morphism of scwols and covering of complexes of groups, it
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follows that every vertex of Y ′ which is incident to an edge meeting σ′ lies in
the image of l. Since Y ′ is connected, we conclude that l surjects onto V (Y ′).

Let τ ′ be a vertex of K ′. By Lemma 45, τ ′ = l(τ) for some τ ∈ V (Y). Suppose
τ is not a vertex of K. Then there is an a ∈ E(Y) such that i(a) = τ . It
follows that i(l(a)) = l(i(a)) = τ ′, so l(a) ∈ E(Y ′) has initial vertex τ ′. This
contradicts τ ′ a vertex of K ′. Hence τ is a vertex of K.

Since G(Y) is nonpositively curved, the geometric link of τ̃ in the local devel-
opment st(τ̃), with the induced spherical structure, is CAT(1). By Lemma 28,
there is a φτ -equivariant bijection st(τ̃) → st(τ̃ ′). We claim this bijection is an
isometry in the induced metric, which completes the proof.

By definition of the induced metric, the action of Gτ on st(τ̃) induces a sim-
plicial map st(τ̃) → st(τ) which is a local isometry on each simplex. Similarly,
the action of Gτ ′ on st(τ̃ ′) induces st(τ̃) → st(τ) which is a local isometry on
each simplex. By assumption, the restriction of |l| to st(τ) is a local isometry
on each simplex. Hence, the bijection st(τ̃) → st(τ̃ ′) is a local isometry on
each simplex, and thus an isometry.

4 The Conjugacy Theorem for Complexes of Groups

In this section, we prove the analogue for complexes of groups of the Conjugacy
Theorem for graphs of groups (Theorem 5.2 of [1]). Let us prove the following
lemma which characterizes coverings.

Lemma 46 (Corollary 4.6, [1]) With the notation in Definition 17, the in-
duced morphism λ is a covering if and only if Λ is a monomorphism and L is
an isomorphism.

PROOF. By the Main Lemma in Section 3, since the vertical maps are iso-
morphisms, Λ is a monomorphism if and only if Λλ

T,T ′ is a monomorphism,
and L an isomorphism if and only if Lλ

T,T ′ is an isomorphism.

Suppose λ is a covering. Then by Proposition 33, Λλ
T,T ′ is a monomorphism

and Lλ
T,T ′ is an isomorphism, and the conclusion follows.

Conversely, suppose Λ is a monomorphism and L is an isomorphism. Assume
by contradiction that λ is not a covering. Then either

(1) there is a homomorphism λσ : Gσ → G′l(σ) which is not injective, or
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(2) there exists a′ ∈ E(Y ′) and σ ∈ V (Y) with t(a′) = σ′ = l(σ), such that
the map ∐

a∈l−1(a′)
t(a)=σ

Gσ/ψa(Gi(a)) → G′σ′/ψa′(G
′
i(a′))

induced by
g 7→ λσ(g)λ(a)

is not bijective.

Condition (1) implies that the map Λλ
T,T ′ is not a monomorphism at Gσ,

thus Λλ
T,T ′ is not a monomorphism. Condition (2) implies that Lλ

T,T ′ is not a
local bijection at St(σ̃) (see Remark 5.3, [4]), thus the map Lλ

T,T ′ is not an
isomorphism. By contradiction, we conclude that λ is a covering.

Let X be the scwol associated to a polyhedral complex K. Let G = Aut(K),
and let H be a subgroup of G acting without inversions. Then H acts on X
in the sense of Definition 10. Define

GH = {g ∈ G | gσ ∈ Hσ for all σ ∈ V (X )}.

Then GH is a subgroup of Aut(K), H is a subgroup of GH and

H\X = GH\X .

The following theorem is the same as the Conjugacy Theorem stated in the
Introduction.

Theorem 47 If Γ ≤ GH acts freely on X then there is an element g ∈ GH

such that gΓg−1 ≤ H.

PROOF. Let A = H\X = GH\X and B = Γ\X and let f : B → A be
the natural projection (coming from Γ ≤ GH). We form quotient complexes
of groups G(A) = (Gσ, ψa, ga,b) induced by the action of H and G′(A) =
(G′σ, ψ

′
a, g

′
a,b) induced by the action of GH , using the same maximal tree TA

in the one-skeleton of A and the same family of elements ha ∈ H ≤ GH , for
a ∈ E(A). Then for each σ ∈ V (A) we have Gσ ≤ G′σ, and for each edge
a ∈ E(A) we have ψ′a|Gi(a)

= ψa. There is then by Corollary 46 a covering
morphism

λ : G(A) → G′(A)

induced by the identity map L : A → A and the inclusion Λ : H → GH . By
definition of induced morphism, each λσ is inclusion, and each λ(a) is trivial.
Hence for all a ∈ E(A), the inclusion induced map

Gt(a)/ψa(Gi(a)) → G′t(a)/ψ
′
a(G

′
i(a))
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given by [g] 7→ [g] is a bijection.

Now form the quotient complex of (trivial) groups (since Γ acts freely),G′′(B) =
(G′′σ, ψ

′′
a , g

′′
a,b) and let φ = (φσ, φ(b)) : G′′(B) → G′(A) be a covering morphism

induced by the inclusion Γ ≤ GH over the natural projection f : B → A. For
each a ∈ E(A) with t(a) = f(τ), there is a bijection

{b ∈ f−1(a) | t(b) = τ} → G′t(a)/ψ
′
a(G

′
i(a))

given by b 7→ [φ(b)] where since G′′(B) is a complex of trivial groups, we
replace the one-element sets G′′τ/ψ

′′
b (G

′′
i(b)) by {b}. Thus since λ is a covering,

for each b ∈ E(B′), with f(b) = a, we can find elements gb ∈ Gt(a) such that

[φ(b)] = [gb]

in G′t(a)/ψ
′
a(G

′
i(a)).

We now define a morphism φ′ : G′′(B) → G(A) over f , by each φ′σ being the
inclusion of the trivial group, and φ′(b) ∈ Gt(f(b)) being φ′(b) = gb. We then
have a bijection

{b ∈ f−1(a) | t(b) = τ} → Gt(a)/ψa(Gi(a))

given by b 7→ [gb] hence φ′ is a covering.

Choose a maximal tree TB in B and recall that we chose a maximal tree TA
in A. By Proposition 33 the covering φ′ : G′′(B) → G(A) induces a monomor-
phism of groups

Λφ′
TB,TA : π1(G

′′(B), TB) → π1(G(A), TA)

and a ΛTB,TA–equivariant isomorphism of scwols

Lφ′
TB,TA : D(G′′(B), TB) → D(G(A), TA)

such that the following diagram commutes:

D(G′′(B), TB)
Lφ′

TB,TA //

²²

D(G(A), TA)

²²
B f //A

where the vertical arrows are the natural projections. Let L̃TB : D(G′′(B), TB) →
X and L̃TA : D(G(A), TA) → X be the canonical isomorphisms, equivariant
with respect to the isomorphisms of groups ΛTB : π1(G

′′(B), TB) → Γ and
ΛTA : π1(G(A), TA) → H, respectively. Let g ∈ Aut(X ) be the following
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composition of isomorphisms

g = L̃TA ◦ Lφ′
TB,TA ◦ L̃−1

TB : X → X .

Then g is equivariant with respect to the monomorphism θ : Γ → H given by

θ = ΛTA ◦ Λφ′
TB,TA ◦ Λ−1

TB : Γ → H.

Thus for all γ ∈ Γ ≤ Aut(X ), we have

g ◦ γ = θ(γ) ◦ g

and so g ◦ γ ◦ g−1 = θ(γ) ≤ H. That is, gΓg−1 ≤ H.

It remains to show that g ∈ GH . Let p : X → A = H\X = GH\X and pΓ :
X → B = Γ\X be the natural projections. Then p = f ◦ pΓ. We wish to show
that p ◦ g = p. Now pΓ is the composition of L̃−1

TB : X → D(G′′(B), TB) with
the natural projection D(G′′(B), TB) → B, and similarly p is the composition
of L̃−1

TA : X → D(G(A), TA) with the natural projection D(G(A), TA) → A.
Hence the definition of g and the commutativity of the diagram above mean
that p ◦ g = f ◦ pΓ = p as required.

5 Coverings and overgroups

In this section we prove Theorem 4, stated in the Introduction. We first define
isomorphism of coverings. In Section 5.1 we define a map from overgroups to
coverings, and in Section 5.2 a map from coverings to overgroups. Then in
Section 5.3 we conclude the proof of Theorem 4 by showing that these maps
are mutual inverses.

Definition 48 (isomorphism of coverings) Let λ : G(Y) → G′(Y ′) and
λ′ : G(Y) → G′′(Y ′′) be coverings of developable complexes of groups over con-
nected scwols. Fix σ0 ∈ V (Y). We say that λ and λ′ are isomorphic coverings
if for any choice of maximal trees T , T ′ and T ′′ in Y, Y ′ and Y ′′ respectively,
there exists an isomorphism λ′′ : G′(Y ′) → G′′(Y ′′) of complexes of groups
such that the following diagram of morphisms of universal covers (defined in
Proposition 31) commutes

D(Y , T )
Lλ

T,T ′ //

Lλ′
T,T ′′ ''NNNNNNNNNNN D(Y ′, T ′)

Lλ′′
T ′,T ′′

²²
D(Y ′′, T ′′).
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Note that by Corollary 32, this diagram commutes for one triple (T, T ′, T ′′)
if and only if it commutes for all triples (T, T ′, T ′′). By Proposition 33, since
λ and λ′ are coverings, Lλ

T,T ′ and Lλ′
T,T ′′ are isomorphisms. By Proposition 39,

since λ′′ is an isomorphism, the map Lλ′′
T ′,T ′′ is an isomorphism. Hence, two

coverings are isomorphic if and only if they induce a commutative diagram of
isomorphisms of universal covers.

For the remainder of Section 5, we fix the following data:

• X , the scwol associated to a simply connected polyhedral complex K,
• Γ, a subgroup of Aut(K) which acts on X , with quotient Y = Γ\X ,
• a vertex σ0 ∈ V (Y), and
• a set of choices C• = (σ, ha) giving rise to a complex of groups G(Y)C• =

(Gσ, ψa, ga,b) induced by the action of Γ on X .

Let Over(Γ) be the set of overgroups of Γ which act without inversions, that
is, the set of subgroups of Aut(K) containing Γ which act without inversions.
Let Cov(G(Y)) be the set of isomorphism classes of coverings of faithful, de-
velopable complexes of groups by G(Y).

5.1 The map from overgroups to coverings

In this section we construct a map

a : Over(Γ) → Cov(G(Y)).

We first show in Lemma 49 that an overgroup induces a covering of complexes
of groups. Then in Lemma 50 we show that, without loss of generality, we may
apply the Main Lemma to this covering. In Lemma 51, we define a and show
that a is well-defined on isomorphism classes of coverings.

Lemma 49 Let Γ′ be an overgroup of Γ acting without inversions. Let G′(Y ′)C′•
be a complex of groups over Y ′ = Γ′\X induced by the action of Γ′ on X , for
some choices C ′•. Let L = Id : X → X and let Λ : Γ ↪→ Γ′ be inclusion,
inducing l : Y → Y ′. For some choices N•, let

λ = λC•,C′•,N• : G(Y)C• → G′(Y ′)C′•

be the morphism of complexes of groups over l induced by L and Λ (see Defi-
nition 17). Then λ is a covering.

PROOF. By definition, λσ = Ad(kσ), where kσ : σ 7→ l(σ). The local maps
λσ are thus injective.
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We write [g]a for the coset of g ∈ Gt(a) in Gt(a)/ψa(Gi(a)), and similarly for
[g′]a′ when g′ ∈ G′t(a′). It now suffices to show that for every a′ ∈ E(Y ′) with
t(a′) = σ′ = l(σ) ∈ V (Y), the map on cosets

∐

a∈l−1(a′)
t(a)=σ

Γσ/ha(Γi(a))h
−1
a −→ Γ′

l(σ)
/h′a′(Γ

′
i(a′))h

′−1
a′

[g]a 7−→ [λσ(g)λ(a)]a′

is bijective. Suppose [λσ(g)λ(a)]a′ = [λσ(h)λ(b)]a′ . Then by definition of λ,

h′a′ki(b)h
−1
b k−1

t(b)kσh
−1gk−1

σ kt(a)hak
−1
i(a)(h

′
a′)

−1 ∈ h′a′G′i(a′)(h′a′)−1

hence
ki(b)h

−1
b h−1ghak

−1
i(a) ∈ Γ′

i(a′).

Since ki(a) and ki(b) send i(a) and i(b) respectively to i(a′), the element h−1
b h−1gha

in Γ sends i(a) to i(b). Since l(a) = l(b), this implies that a = b. Hence h−1g
maps i(a) to itself, thus [h]a = [g]a. Therefore the map on cosets is injective.

Let us show that the map on cosets is surjective. Let [h′]a′ be an element of
the target set. Let b′ = k−1

σ h′h′a′(a′). Since h′ ∈ Γ′
σ′ , we have t(b′) = σ. Let

c = p(b′), where p is the natural projection X → Y = Γ\X . Let g ∈ Γσ be
such that g(hcc) = b′. We claim that [g]c maps to [h′]a′ , that is,

h′−1kσghck
−1
i(c)h

′−1
a′ ∈ h′a′Γ′i(a′)h′−1

a′ .

Since k−1
i(c) sends i(a′) to i(c), and the element kσghc sends i(c) to i(kσb

′) =

i(h′h′a′(a′)), it follows that h′−1
a′ h

′−1kσghck
−1
i(c) fixes i(a′), which proves the claim.

We now show that every covering λ induced by an overgroup, as in Lemma 49,
is isomorphic to a covering λ′ to which the Main Lemma may be applied. More
precisely:

Lemma 50 With the notation of Lemma 49, fix a vertex σ0 ∈ V (Y). Then
there is a choice C ′′• of data for Γ′ acting on X such that σ0 = l(σ0), and a
choice N ′

• = {k′σ} such that k′σ0
= 1, so that λ is isomorphic to the covering

λ′ = λ′C•,C′′• ,N ′• : G(Y)C• → G′′(Y ′′)C′′•

where G′′(Y ′′)C′′• is the complex of groups induced by C ′′• .

PROOF. By definition of l, there is a choice C ′′• so that σ0, determined by
C•, equals l(σ0) determined by C ′′• . We now define a collection N ′

• = {k′σ} such
that k′σσ = l(σ) for all σ ∈ V (Y).
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Choose a section s : V (Y ′) → V (Y) for l. That is, for each σ′ ∈ V (Y ′),
choose s(σ′) ∈ V (Y) such that l(s(σ′)) = σ′. In particular, if σ′0 = l(σ0), let
s(σ′0) = σ0.

For each s(σ′) ∈ V (Y), choose an element k′s(σ′) ∈ Γ′ such that k′s(σ′)s(σ′) = σ′,

where s(σ′) is determined by C• and σ′ by C ′′• . Since s(σ′0) = σ0, and by choice
of C ′′• , we have k′σ0

σ0 = l(σ0) = σ0, so we may choose k′σ0
= 1. For all other

σ ∈ V (Y), let
k′σ = k′s(l(σ))k

−1
s(l(σ))kσ (3)

where N• = {kσ}. Note that

k′σσ = k′s(l(σ))k
−1
s(l(σ))kσσ = k′s(l(σ))k

−1
s(l(σ))l(σ) = k′s(l(σ))s(l(σ)) = l(s).

This defines a collection N ′
• = {k′σ} with k′σ0

= 1. Let λ′ : G(Y)C• → G′′(Y ′′)C′•
be the covering induced by N ′

•.

We now construct an isomorphism of complexes of groups µ : G′(Y ′) →
G′′(Y ′′) such that the following diagram commutes

G(Y) λ //

λ′ %%JJJJJJJJJ G′(Y ′)
µ

²²
G′′(Y ′′).

(4)

By Corollary 32, it follows that λ is isomorphic to λ′.

Let f : Y ′ → Y ′′ be the identity map (both Y ′ and Y ′′ are the quotient Γ′\X ).
We choose a collection N ′′

• = {k′′σ′} of elements of Γ′ such that k′′σ′σ′ = f(σ′)
as follows. By Equation (3), if l(σ1) = l(σ2) then k′σ1

k−1
σ1

= k′σ2
k−1

σ2
. Given

σ′ ∈ V (Y ′), it is thus well-defined to put

k′′σ′ = k′σk
−1
σ

for any σ ∈ l−1(σ′). We check

k′′σ′σ′ = k′σk
−1
σ σ′ = k′σσ = σ′ = f(σ′)

as required. Define µ = µC′•,C′′• ,N ′′• : G′(Y ′)C′• → G′′(Y ′′)C′′• . Since G′(Y ′) and
G′′(Y ′′) are both associated to the action of Γ′ on X , µ is an isomorphism.

By definition of composition of morphisms, for g ∈ Gσ we have

(µ ◦ λ)σ(g) = µl(σ) ◦ λσ(g)

= Ad(k′′l(σ)) ◦ Ad(kσ)(g)

= Ad(k′′l(σ)kσ)(g)

= Ad(k′σ)(g)

= λ′σ(g)
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and for a ∈ E(Y)

(µ ◦ λ)(a) = µl(t(a))(λ(a))µ(l(a))

= Ad(k′′l(t(a)))(kt(a)hak
−1
i(a)h

−1
l(a))k

′′
t(l(a))hl(a)(k

′′
i(l(a)))

−1h−1
f(l(a))

= k′′l(t(a))kt(a)hak
−1
i(a)(k

′′
i(l(a)))

−1h−1
f(l(a))

= k′t(a)ha(k
′
i(a))

−1hf(l(a))

= λ′(a)

hence the diagram at (4) commutes.

Lemma 51 Let

a : Over(Γ) → Cov(G(Y))

be a map taking an overgroup Γ′ of Γ to a covering, as described in Lemma 49.
Let C ′•, N• and C ′′• , N

′
• be any two choices for the construction of a(Γ′)

λC•,C′•,N• : G(Y)C• → G′(Y ′)C′• and λ′C•,C′′• ,N ′• : G(Y)C• → G′′(Y ′′)C′′•

Then λ and λ′ are isomorphic coverings, so a is well-defined.

PROOF. Fix a vertex σ0 ∈ V (Y) and let σ′0 = l(σ0). By Lemma 50, we may
without loss of generality assume that the Main Lemma may be applied to
λ and λ′. As in the proof of Lemma 50, choose a collection N ′′

• = {k′′σ′} with
k′′σ′0 = k′σ0

k−1
σ0

= 1. Then we may apply the Main Lemma to the isomorphism
of complexes of groups

λ′′ = λC′•,C′′• ,N ′′• : G′(Y ′)C′• → G′′(Y ′′)C′′• .

Choose maximal trees T , T ′ and T ′′ in Y , Y ′ and Y ′′ respectively. We need to
check that the triangle

D(Y , T )
Lλ

T,T ′ //

Lλ′
T,T ′′ &&NNNNNNNNNNN D(Y ′, T ′)

Lλ′′
T ′,T ′′

²²
D(Y ′′, T ′′)

(5)
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commutes. Using the Main Lemma three times, we obtain the diagram

D(Y , T )

L̃T

²²

Lλ′
T,T ′′ ++XXXXXXXXXXXXXXXXXXXXXXXXXXX

Lλ
T,T ′′ //D(Y ′, T ′)

L̃T ′

²²

Lλ′′
T ′,T ′′

''OOOOOOOOOOO

D(Y ′′, T ′′)

L̃T ′′

²²

X Id //

Id

,,XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X
Id

''PPPPPPPPPPPPPP

X ,

and see that the commutativity of (5) is equivalent to the commutativity of
the tautological triangle

X Id //

Id ÃÃA
AA

AA
AA

X
Id
²²
X

which is obvious.

5.2 The map from coverings to overgroups

We now show that there is a map

b : Cov(G(Y)) → Over(Γ)

Let λ : G(Y) → G′(Y ′) be a covering of complexes of groups, where G′(Y ′)
is faithful and developable. For any maximal subtrees T and T ′ of Y and Y ′
respectively, let ΛT,T ′ : π1(G(Y), T ) → π1(G

′(Y ′), T ′) be the associated group
monomorphism, and Lλ

T,T ′ : D(Y , T ) → D(Y ′, T ′) be the associated ΛT,T ′-

equivariant isomorphism of scwols. Composition with the isomorphism L̃−1
T

(see Proposition 27) yields an isomorphism of scwols

Lλ,T ′ = Lλ
T,T ′ ◦ L̃−1

T : X → D(Y ′, T ′)

which is equivariant with respect to ΛT,T ′ ◦ Λ−1
T : Γ → π1(G

′(Y ′), T ′). We set
b(λ) to be the group

b(λ) = L−1
λ,T ′(π1(G

′(Y ′), T ′))Lλ,T ′

which acts on X . Since G′(Y ′) is faithful, π1(G
′(Y ′), T ′) acts faithfully on

D(Y ′, T ′). Hence we may identify b(λ) with a subgroup of Aut(K) which acts
on X . As ΛT,T ′ is injective, b(λ) is an overgroup of Γ.
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Lemma 52 below shows that b is well-defined, that is, only depends on the
isomorphism class of the covering λ.

Lemma 52 Let λ : G(Y) → G′(Y ′) and λ′ : G(Y) → G′′(Y ′′) be isomorphic
coverings of complexes of finite groups, with G′(Y ′) and G′′(Y ′′) faithful and
developable. Then b(λ) = b(λ′).

PROOF. By definition, there exists an isomorphism λ′′ : G′(Y ′) → G′′(Y ′′)
such that, for any choice of maximal trees, we have a commuting triangle

D(Y , T )
Lλ

T,T ′ //

Lλ′
T,T ′′ &&NNNNNNNNNNN D(Y ′, T ′)

Lλ′′
T ′,T ′′

²²
D(Y ′′, T ′′)

and thus, composing with L̃−1
T , a commuting triangle

X Lλ,T ′//

Lλ′,T ′′ $$JJJJJJJJJJ D(Y ′, T ′)
Lλ′′

T ′,T ′′
²²

D(Y ′′, T ′′).

Since λ′′ is an isomorphism, by Proposition 39 the group homomorphism
ΛT ′,T ′′ : π1(G

′(Y ′), T ′) → π1(G
′′(Y ′′), T ′′) is an isomorphism. Thus, as Lλ′′

T ′,T ′′

is ΛT ′,T ′′-equivariant,

b(λ′) = L−1
λ′,T ′′(π1(G

′′(Y ′′), T ′′))L−1
λ′,T ′′

= L−1
λ,T ′(L

λ′′
T ′,T ′′)

−1(π1(G
′′(Y ′′), T ′′))Lλ′′

T ′,T ′′Lλ,T ′

= L−1
λ,T ′(π1(G

′(Y ′), T ′))Lλ,T ′

= b(λ).

Therefore b is well-defined.

5.3 Proof of Theorem 4

We now complete the proof of Theorem 4. Let a : Over(Γ) → Cov(G(Y))
be as defined in Section 5.1 and b : Cov(G(Y)) → Over(Γ) be as defined in
Section 5.2.

Proposition 53 The maps a and b are mutually inverse bijections.
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PROOF. We first prove that b ◦ a = 1. For this, let Γ′ be an overgroup of Γ
acting without inversions, and let a(Γ′) = λ : G(Y) → G′(Y ′) be an associated
covering over a morphism of scwols l : Y → Y ′. By Lemma 50, we may assume
that we can apply the Main Lemma to λ. For any maximal subtrees T and T ′

of Y and Y ′ respectively, we have then a commuting diagram of (equivariant)
isomorphisms of scwols

D(Y , T )

L̃T

²²

Lλ
T,T ′ //D(Y ′, T ′)

L̃T ′
²²

X L=Id
//X .

Thus

b(λ) = L−1
λ,T ′(π1(G

′(Y ′), T ′))Lλ,T ′

= (Lλ
T,T ′ ◦ L̃−1

T )−1(π1(G
′(Y ′), T ′))Lλ

T,T ′ ◦ L̃−1
T

= L̃T ′(π1(G
′(Y ′), T ′))L̃−1

T ′

= Γ′

since L̃T ′ is equivariant with respect to the isomorphism ΛT ′ : π1(G
′(Y ′), T ′) →

Γ′. We conclude that b a(Γ′) = Γ′.

We now prove that a ◦ b = 1. Let λ : G(Y) → G′(Y ′) be a covering of
a faithful developable complex of groups G′(Y ′) over a morphism of scwols
l : Y → Y ′. Choose a vertex σ0 ∈ V (Y) and maximal trees T and T ′ in Y
and Y ′ respectively. Without loss of generality, we identify G′(Y ′) with the
complex of groups induced by the action of π1(G

′(Y ′), T ′) on D(Y ′, T ′), using
the isomorphism θ′ defined in Lemma 41 above. By abuse of notation, we write
λ for θ′ ◦ λ. Let Γ′ = b(λ).

Let µ = a(Γ′) be a covering µ : G(Y) → G′′(Y ′′)C′′• over a morphism of scwols
l′ : Y → Y ′′, where G′′(Y ′′) is a complex of groups induced by the action of Γ′

on X . By Lemma 50, we may assume that σ0 = l′(σ0) so that we can apply
the Main Lemma to µ. We now show that λ and µ = a b(λ) are isomorphic
coverings.

The map b induces a group isomorphism

Λb : π1(G
′(Y ′), T ′) → b(λ)

with, for each g′ ∈ π1(G
′(Y ′), T ′) and each α ∈ X ,

Λb(g
′) · α = L−1

λ,T ′(g
′ · Lλ,T ′(α)).
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By construction, L−1
λ,T ′ : D(Y ′, T ′) → X is Λb-equivariant. Let f : Y ′ → Y ′′ be

the induced map of the quotient scwols

Y ′ = π1(G
′(Y ′), T ′)\D(Y ′, T ′) and Y ′′ = Γ′\X .

Since Λb and L−1
λ,T ′ are both isomorphisms, f is an isomorphism of scwols. We

claim that the following diagram of morphisms of scwols commutes:

Y l //

l′ ÃÃB
BB

BB
BB

B Y ′
f
²²

Y ′′.
Let α ∈ Y . Then α = Γα with α ∈ X . We identify l(α) ∈ Y ′ with the orbit
π1(G

′(Y ′), T ′)([1], l(α)) = π1(G
′(Y ′), T ′)([ui(α)], l(α)). Then

f(l(α)) = Γ′L−1
λ,T ′([ui(α)], l(α)) = Γ′hi(α)α = Γ′α = l′(α)

proving the claim.

We next choose elements kσ′ ∈ Γ′ such that, for each σ′ ∈ V (Y ′),
kσ′ L

−1
λ,T ′([1], σ′) = f(σ′).

We claim that L−1
λ,T ′([1], l(σ0)) = f(l(σ0)). Now

Lλ,T ′(f(l(σ0))) = Lλ
T,T ′ ◦ L̃−1

T (f(l(σ0))) = Lλ
T,T ′([1], σ0) = ([1], l(σ0))

since hi(f(l(σ0))) = 1 and uσ0 = 1, which proves the claim. Hence we may, and
do, choose kσ′0 = 1.

The elements kσ′ then induce a morphism φ : G′(Y ′) → G′′(Y ′′) over f , given
by φσ′(g

′) = kσ′Λb(g
′)k−1

σ′ for g′ ∈ G′σ′ , and φ(a′) = kt(a′)Λb(a
′+)k−1

i(a′)h
−1
f(a′) for

a′ ∈ E(Y ′). Since Λb and f are isomorphisms, φ is an isomorphism of complexes
of groups. Moreover, the following diagram commutes up to a homotopy from
Λbι

′
T ′ to φ′′1φ, given by the elements {kσ′}:

G′(Y ′) ι′
T ′ //

φ
²²

π1(G
′(Y ′), T ′)
Λb

²²
G′′(Y ′′) φ′′1 // Γ′.

Hence, by Proposition 24, there is a Λb-equivariant isomorphism of scwols

Lb : D(Y ′, T ′) → D(Y ′′, φ′′1)
given explicitly by

([g′], α′) 7→ ([Λb(g
′)k−1

i(α′)], f(α′)).
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We now choose a maximal subtree T ′′ of Y ′′ and compose Lb with the isomor-
phism L−1

T ′′ : D(Y ′′, φ′′1) → D(Y ′′, T ′′) to obtain an isomorphism of scwols

L : D(Y ′, T ′) → D(Y ′′, T ′′)

which is equivariant with respect to the composition of group isomorphisms

Λ−1
T ′′ ◦ Λb : π1(G

′(Y ′), T ′) → Γ′ → π1(G
′′(Y ′′), T ′′).

Since kσ′0 = 1 and hf(σ′0) = 1,

Lb([1], σ′0) = ([kσ′0 ], f(σ′0)) = ([hf(σ′0)], f(σ′0)) = LT ′′([1], f(σ′0))

hence L([1], σ′0) = ([1], f(σ′0)). We may thus apply the Corollary to the Main
Lemma to L. We now have L = Lλ′

T ′,T ′′ for some morphism λ′ : G′(Y ′) →
G′′(Y ′′). By Proposition 39, since L is an isomorphism of scwols which is
equivariant with respect to an isomorphism of groups, λ′ is an isomorphism
of complexes of groups.

To complete the proof, it now suffices to show that the following diagram
commutes:

D(Y , T )
Lλ

T,T ′ //

Lµ

T,T ′′ ''NNNNNNNNNNN D(Y ′, T ′)
L=Lλ′

T ′,T ′′
²²

D(Y ′′, T ′′).
By definition of L, it suffices to show that

Lb ◦ Lλ
T,T ′ = LT ′′ ◦ Lµ

T,T ′′ .

Let g ∈ π1(G(Y), T ) and α ∈ Y . We write uλ
i(α) for the element of π1(G

′(Y ′), T ′)
with respect to which Lλ

T,T ′ is defined, and similarly for uµ
i(α) ∈ π1(G

′′(Y ′′), T ′′).
Then

Lb ◦ Lλ
T,T ′([g], α) =

([
Λb

{
ΛT,T ′(g)u

λ
i(α)

}
k−1

i(l(α))

]
, f(l(α))

)

and

LT ′′ ◦ Lµ
T,T ′′([g], α) =

([
ΛT ′′

{
ΛT,T ′′(g)u

µ
i(α)

}
hi(l′(α))

]
, l′(α)

)
.

Since f ◦ l = l′, it suffices to show that

Λb

{
ΛT,T ′(g)u

λ
i(α)

}
k−1

i(l(α))f(l(α)) = ΛT ′′
{
ΛT,T ′′(g)u

µ
i(α)

}
hi(l′(α))l′(α). (6)
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By definition of the elements kσ′ , the left-hand side of (6) equals

Λb

{
ΛT,T ′(g)u

λ
i(α)

}
L−1

λ,T ′ ([1], l(α))

= L−1
λ,T ′

(
ΛT,T ′(g)u

λ
i(α) · ([1], l(α))

)
since L−1

λ,T ′ is Λb-equivariant

= L−1
λ,T ′

(
ΛT,T ′(g) · ([uλ

i(α)], l(α))
)

= L−1
λ,T ′

(
ΛT,T ′(g) · Lλ

T,T ′([1], α)
)

= L−1
λ,T ′ ◦ Lλ

T,T ′([g], α) since Lλ
T,T ′ is ΛT,T ′-equivariant

= L̃T ([g], α) by definition of Lλ,T ′ .

On the right-hand side of (6), we have, by definition of L̃T ′′ ,

ΛT ′′
{
ΛT,T ′′(g)u

µ
i(α)

}
L̃T ′′([1], l′(α))

= L̃T ′′
(
ΛT,T ′′(g)u

µ
i(α) · ([1], l′(α))

)
since L̃T ′′ is ΛT ′′-equivariant

= L̃T ′′
(
ΛT,T ′′(g) · ([uµ

i(α)], l
′(α))

)

= L̃T ′′
(
ΛT,T ′′(g) · Lµ

T,T ′′([1], α)
)

= L̃T ′′ ◦ Lµ
T,T ′′([g], α) since Lµ

T,T ′′ is ΛT,T ′′-equivariant.

But by the Main Lemma applied to µ, we have a commuting square

D(Y , T )

L̃T

²²

Lµ

T,T ′′ //D(Y ′′, T ′′)
L̃T ′′
²²

X Id
//X

hence equation (6) holds.

We conclude by establishing a bijection between n–sheeted coverings and over-
lattices of index n.

Corollary 54 Let K be a simply connected, locally finite polyhedral complex,
and let Γ be a cocompact lattice in Aut(K) (acting without inversions) which
induces a complex of groups G(Y). Then there is a bijection between the set
of overlattices of Γ of index n (acting without inversions) and the set of iso-
morphism classes of n–sheeted coverings of faithful developable complexes of
groups by G(Y).

PROOF. By the definition of n–sheeted covering, the bijection of Theorem 4
sends an isomorphism class of finite-sheeted coverings to an overgroup con-
taining Γ with finite index.

45



Since Γ is cocompact, the quotient scwol Y is finite and the local groups Gσ

of G(Y) are finite groups. Let λ : G(Y) → G′(Y ′) be a finite-sheeted covering,
where G′(Y ′) is a faithful, developable complex of groups. Then Y ′ is finite
by Lemma 45, and the local groups G′σ′ are finite since λ is finite-sheeted. It
follows that the overgroup b(λ) is a cocompact lattice acting without inversions
on K.

It remains to show that the bijection a sends an overlattice Γ′ of index n to an
n′-sheeted covering, with n = n′. Let λ = a(Γ′) : G(Y) → G′(Y ′) be a covering
associated to Γ′, over the morphism of quotient scwols l : Γ\X → Γ′\X . Then

n = [Γ′ : Γ] =
Vol(Γ\\V (X ))

Vol(Γ′\\V (X ))
=

∑
σ∈V (Y)

1
|Gσ|∑

σ′∈V (Y ′)
1

|G′
σ′ |

=

∑
σ′∈V (Y′)

∑
σ∈l−1(σ′)

1
|Gσ |∑

σ′∈V (Y ′)
1

|G′
σ′ |

=

∑
σ′∈V (Y′)

n′
|G′

σ′ |∑
σ′∈V (Y′)

1
|G′

σ′ |
= n′

as required.

We remark that we can define isomorphism between two coverings λ : G′(Y ′) →
G(Y) and λ : G′′(Y ′′) → G(Y) analogous to Definition 48 so that there is a bi-
jection between the set of subgroups of Γ of index n and the set of isomorphism
classes of n–sheeted coverings of G(Y) by faithful developable complexes of
groups. Since the proof is similar to that of Corollary 54, we omit it. Note
that the developability comes free by Lemma 43.
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