
WEEK 11

It will be convenient to make use of the following notation: if d and m are integers
then

“d |m” means “d is a divisor of m”.

That is, d |m if and only if there exists an integer k such that m = kd. Note that d | 0 is
true for all d, since 0 = 0d. On the other hand, 0 |m is only true if m = 0.

We also use “d - m” to mean “d is not a divisor of m.”

The introduction of this notation provides a good excuse for restating the two main
theorems of group theory that we have done so far.

Lagrange’s Theorem: If H is a subgroup of the finite group G then #H |#G.

Sylow’s Theorem: Let G be a finite group and p a prime number, and let #G = pkm,
where p - m. Let d be the number of subgroups of G of order pk. Then d |m, and d ≡ 1
(mod p).

An important corollary of Lagrange’s Theorem is that if g is an element of the finite
group G then Order(g) |#G. (Recall that the word “order” has two different meanings in
group theory. On the one hand, if G is a group then #G, the number of elements of G, is
called the order of G. On the other hand, if g is an element of a group then the order of
g is the least positive integer n such that gn is the identity element. The two usages are
related by the fact that each element g ∈ G generates a cyclic subgroup, 〈g〉, and whose
order is equal to the order of g. The corollary mentioned above follows immediately from
this , since Lagrange’s Theorem tells us that #〈g〉 |#G.)

In this week’s computer tutorial you were asked to list all the elements of a certain
group G of order 12, and then find a subgroup of G of order 4. Note that Sylow’s Theorem
guarantees that such a subgroup exists. If H is a subgroup of G with #H = 4 then, as
we have just noted, the order of any element of H will have to be a divisor of 4. In the
tutorial question it happens that eight of the twelve elements of G have order 3, and so
cannot possibly lie in any subgroup of order 4. So the H consists of the remaining four
elements: the identity (of order 1) and three elements of order 2.

Let us illustrate the proof of Sylow’s Theorem in one more case. Specifically, let us
show that a group of order 24 must have at one subgroup of order 8.

Let G be a group with #G = 24. Our task is to show that at least one of the
(
24
8

)
subsets of G with eight elements is a subgroup of G. In fact, an odd number of these
subsets are subgroups.

The first thing to observe is that the number
(
24
8

)
is odd. Indeed,(

24
8

)
=

24!
8!16!

=
24 · 23 · 22 · 21 · 20 · 19 · 18 · 17

8 · 7 · 6 · 5 · 4 · 3 · 2 · 1

and the powers of 2 occurring as factors of numbers in the numerator of this expression
are matched exactly by those occurring as factors of numbers in the denominator. For
each i from 0 to 7, the highest power of 2 that is a factor of 24 − i is the same as the
highest power of 2 that is a factor of 8− i. Cancelling all these 2’s leaves(

24
8

)
=

3 · 23 · 11 · 21 · 5 · 19 · 9 · 17
1 · 7 · 3 · 5 · 1 · 3 · 1 · 1
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and given that this is an integer it is undoubtedly odd, since it is a ratio of odd numbers.
(The actual value is 735471.)

Let S be the set of all 8-element subsets of G. We have just shown that #S is odd.
We define a relation ∼ on S by the rule that if X, Y ∈ S then X ∼ Y if and only if X
is a right translate of Y . We know from earlier work that ∼ is an equivalence relation.
Furthermore, for each X ∈ S the number of elements in the equivalence class containing
X is the number of right translates of X, and this equals #G/#Stab(X) = 24/#Stab(X),
where Stab(X) = { g ∈ G | Xg = X }. In particular, the number of elements in any
equivalence class must be a divisor of 24.

If X is any nonempty subset of G then the right translates of X must cover G, in the
sense that if g is any element of G then there is some h ∈ G such that g ∈ Xh. Indeed,
since X is nonempty we may choose an element x ∈ X, and now defining h = x−1g
gives g = xh ∈ Xh. Now if X has eight elements then all the translates of X also have
eight elements, and you need at least three sets with eight elements to cover a set with
twenty-four elements. So the number of translates of X is a divisor of 24 that is at least 3.
That is, it must be 24, 12, 8, 6, 4 or 3.

The 735471 elements of S are divided into equivalence classes, and since equivalence
classes are necessarily pairwise disjoint it follows that 735471 is the sum of the numbers
of elements in the various equivalence classes. Since you cannot write an odd number as
a sum of even numbers, at least one of the equivalence classes must have an odd number
of elements. But 3 is the only odd number in our list of possibilities for the number of
elements in an equivalence class; so there is at least one equivalence class having exactly
three elements.

We have now shown that there exists an eight-element subset X of G having exactly
three right translates. Since these three sets cover G they must be pairwise disjoint. As
we proved last week, it follows that one of these translates must be a subgroup.

Homomorphisms

Let G and H be sets, and let ∗ be a binary relation on G and ◦ a binary rela-
tion on H. A function φ:G → H is called a homomorphism from (G, ∗) to (H, ◦) if
φ(x ∗ y) = φ(x) ◦ φ(y) for all x, y ∈ G.

Example 1. Let G = R (the set of all real numbers) and ∗ the operation of addition, and
let H = R also, and ◦ the operation of multiplication. Define φ: R → R by φ(x) = 2x.
Then for all x, y ∈ R,

φ(x+ y) = 2x+y = 2x2y = φ(x)φ(y),

and so φ is a homomorphism from R with addition as the operation to R with multipli-
cation as the operation.

Example 2. Let ψ be the function from Matn(R) (the set of all n × n matrices over
R) to R given by ψ(X) = det(X) (the determinant of X) for all X ∈ Matn(R). We
know from junior level linear algebra that det(XY ) = det(X) det(Y ) holds for all n × n
matrices X and Y . That is, ψ(XY ) = ψ(X)ψ(Y ) for all X, Y ∈ Matn(R). So ψ is a
homomorphism from Matn(R) under matrix multiplication to R under multiplication.
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Example 3. Let S = Sym(n) and let ε:S → {1,−1} be defined by

ε(σ) =
{ 1 if σ is even,
−1 if σ is odd.

Permutation multiplication is an operation on S, and ordinary multiplication of numbers
defines an operation on {1,−1} (since it is trivial that {1,−1} is closed under multi-
plication). Note that in fact S and {1,−1} are groups under these operations. Since
ε(στ) = ε(σ)ε(τ) for all σ, τ ∈ S we see that ε is a homomorphism from the group S to
the group {1,−1}.

Of course, we are primarily interested in homomorphisms between groups.
Homomorphisms in group theory are the analogue of linear transformations in vector

space theory. More generally, it is very common in mathematics to investigate sets that
are equipped with with some kind of extra structure, and then it is natural to consider
functions that preserve this extra structure. Homomorphisms are the structure-preserving
functions of group theory, and as such they are of fundamental importance in the subject.

If G and H are any groups then there is always a homomorphism φ:G→ H given by
φ(x) = eH , the identity element of H, for all x ∈ G. These are trivial homomorphisms.
Non-trivial homomorphisms should be regarded as rather special, since they always carry
significant information concerning the group-theoretic structure of the groups in question.
For example, we shall prove that if φ:G→ H is a homomorphism then the set of all x ∈ G
such that φ(x) = eH is necessarily a subgroup G.

Lemma. Let G be a group and x ∈ G. If x2 = x then x is the identity element of G.

Proof. Let e be the identity element. If x2 = x then

e = x−1x = x−1x2 = (x−1x)x = ex = x,

as claimed. �

Theorem. Let G and H be groups and φ:G→ H a homomorphism. Then
(i) φ(eG) = eH , where eG and eH are the identity elements of G and H;

(ii) φ(x−1) = φ(x)−1 for all x ∈ G;
(iii) the set K = {x ∈ G | φ(x) = eH } is a subgroup of G;
(iv) the set I = {φ(g) | g ∈ G } is a subgroup of H.

Proof. Let h = φ(eG) ∈ H. Then

h2 = φ(eG)φ(eG) = φ(eGeG) = φ(eG) = h,

and it follows from the lemma that h = eH . So φ(eG) = eH , proving Part (i).
Let x ∈ G be arbitrary. Then

φ(x−1)φ(x) = φ(x−1x) = φ(eG) = eH ,

and so it follows that φ(x−1) is the inverse of φ(x). This proves Part (ii).
To prove Part (iii) we must show that K satisfies SG1, SG2 and SG3. For SG1, let

x, y ∈ K be arbitrary. Then φ(x) = eH and φ(y) = eH ; so

φ(xy) = φ(x)φ(y) = eheh = eH ,
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and thus xy ∈ K. Since x and y were arbitrary elements of K this shows that K is closed
under multiplication. That is, (SG1) holds.

It is immediate from Part (i) that K satisfies (SG2): since φ(eG) = eH , the definition
of K yields that eG ∈ K.

It is almost immediate from Part (ii) that K satisfies SG3. For if x ∈ K is arbitrary,
then φ(x) = eH , and so

φ(x−1) = φ(x−1)eH = φ(x−1)φ(x) = φ(x−1x) = φ(eG) = eH .

Thus x−1 ∈ K, and we have shown that x−1 ∈ K whenever x ∈ K. That is, (SG3) holds.
Since K satisfies (SG1), (SG2) and (SG3), it is a subgroup of G.
For the last part, we must show that the subset I of H satisfies SG1, SG2 and SG3.

For SG1, let a, b ∈ I. Then a = φ(x) and b = φ(y) for some x, y ∈ G, and so

ab = φ(x)φ(y) = φ(xy).

This shows that ab ∈ I, since ab is obtained by applying φ to some element of G (namely,
the element xy). Thus I is closed under multiplication: SG1 holds.

Since eH = φ(eG), we have that eH ∈ I. So I satisfies SG2.
Let a ∈ I. Then a = φ(x) for some x ∈ G, and so

a−1 = φ(x)−1 = φ(x−1) ∈ I.

Hence a−1 ∈ I whenever a ∈ I; that is, SG3 holds. �
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