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Metric Spaces 2000

Tutorial 9

(For all subspaces of R, use the usual (Euclidean) metric.)

1. Let X = (0,1/4) and let f: X — X be given by f(x) = 22. Prove that f
is a contraction mapping with no fixed point in X. Reconcile this with the
Contraction Mapping Theorem.

Solution.

A closed subset of a complete space is a complete space, but (0,1/4) is not
closed in R. And indeed it is not complete, since (for example) the sequence
(1/n)$2, is a Cauchy sequence in (0,1/4) which has no limit in (0,1/4).
Completeness of the space is an important hypothesis of the Contraction
Mapping Theorem; since the hypotheses are not all satisfied here, the theorem
cannot be applied.

If 0 <z < 1/4 then 0 < 22 < 1/16 < 1/4; hence f(z) = 2% does define a map
from (0,1/4) to (0,1/4). The only solutions in R of 2> = x are x = 0 and
x = 1, neither of which lie in (0,1/4). So f has no fixed points. Finally, if
x,y € (0,1/4) then

|2 — | = o —yllz +y| < o —yl(|z] + |y]) < |z —yl(G + 3);
that is, d(f(z), f(y)) < %d(m, y), which shows that f is a contraction mapping.

2. Let X ={ze€Q|z>1}andlet f: X — X be defined by f(z) = % + 1.
Show that f is a contraction mapping and that f has no fixed point in X.

Solution.

The question asserts that given formula for f defines a mapping X — X;
let us check that it is true. If z € Q then /2 € Q and 1/z € Q; so
(/2)+ (1/2) € Q. If 1 <z <2then1/2<1/x <1and 1/2 <z/2<1;so0
(x/2) 4+ (1/z) > (1/2) + (1/2) = 1. If > 2 then (z/2) + (1/z) > z/2 > 1.
So if x € Q and x > 1 then (x/2) + (1/z) > 1, as required.

If f(z) = « then (x/2) + (1/z) = x, which gives 1/z = /2, and = +/2.
So f(x) = x has no solution in X. And if z, y € X then

d(f(2), f() =z = 9)(5 — 7;)| < 3d(@,y)

since z, y > 1 gives —5 < z— == < =. So f is a contraction mapping. (Again
the space X is not complete )
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Let X = [1,00) and let f: X — X be given by f(z) =  + 1/x. Show that
d(f(z), f(y)) < d(z,y) for all z, y € X with & # y, and show that f has no
fixed point in X.

Solution.

This time the Contraction Mapping Theorem will not apply since it is not in
fact true that there is an o < 1 with d(f(z), f(y)) < ad(z,y) for all z, y € X.
(So f is not a contraction mapping in the sense of the theorem.) It is clear
that = + (1/z) > 1 whenever > 1 (since 1/x > 0), and so the formula does
define a function X — X. There is no fixed point, since x + (1/x) = z gives
1/z =0, and hence 1 = 0. Now for z, y > 1,

d(f(2), f(y) = [(z —y) A1 = )| = d(z,y)(1 = 3;) < d(z,y),
as claimed.

Let X = [1,00) and let f: X — X be given by f(z) = 22(z+1/z). Show that
d(f(z), f(y)) < 22d(z,y) (whence f is a contraction mapping). By solving
the equation algebralcally, show that 5 is the unique fixed point of f.

Solution.

d(f(z), f(y)) = 2d(z,y)(1+ zly) < 284(x,y) (cf. Question 3). It is important
that the given formula does define a map X — X so let us check that z > 1
implies 2—2(374— (1/x)) > 1. If > 2% then %(x—k (1/z)) > Bz > 1. If
1<z §22 then 25 § < 1and 1+2% <z+4+1 =, giving QZ(er ) > 1627765 > 1.
Note that X is a Complete metric space, bemg a closed subset of the complete
space R. So the Contraction Mapping Theorem guarantees that there is a
unique z € X with f(z) = . In this case we can easily confirm this by just
solving the equation. If f(z) = z then 22z = x + I, giving 2% = 25, so that
x =5 is the only possible solution in X. (And f(5 ) = 5 is easily checked.)

Let X = [0,1] and let f: X — X be given by f(z) = 1(2® 4+ 2? +1). Show
that d(f(z), f(y)) < 2d(=,y). Calculate f(0), f@(0), £3)(0), ..., and hence
find, to three decimal places, the fixed point of f.

Solution.

IfO<z<1lthen0<a3+22+1<3, andso0< %(x?’—&—xz—i—l)g % < 1.
So again the question has not lied: we do have a function X — X. Now

d(f(2), f(y)) = #|(@*~y*)+(2*—y*)| = 7d(z,y)|a* +ay+y*+a+y| < 3d(z,y)

whenever z, y € [0,1] (since 2%, zy etc. are all in [0,1]). Again X is a

complete space, being a closed subbet of R. According to my calculator:

£(0)~0.142857, £ (0)~0.146189, £©)(0)~0.1463565, f*(0)~0.1463650,
—but this is not a course in numerical analysis.
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Let X = [1,2] N Q and let f: X — X be defined by f(z) = —3(2* —2) + z.
Prove that f is a contraction mapping and that f has no fixed point in X.

Solution.

The space is not complete, of course. If X were defined simply to be [1,2]
then the Contraction Mapping Theorem would apply; however, the solution
of f(z) = = in [1,2] turns out to be irrational, and so not in the set X as
actually defined. Indeed, f(x) = z if and only if 22 — 2 = 0, and this has no
solution in Q. The quadratic f%(xz —2) 4z has its turning point at 2, where
the function value is 2. So f(1) = 2 < f(z) < f(2) = 2 for all z € [1,2].
This confirms that f(x) € [1,2], as the question asserts. And it is also clear

that z € Q implies —§(2? —2) + 2 € Q. For all z, y € [1,2],

d(f(z), f(y)) = |z —yl[1 = (= + y)| < 3d(2,y)
(since =1 <1—1(z+y) < 1);s0 f is a contraction.

Let f:]a,b] — [a,b] be differentiable over [a,b]. Show that f is a contraction
mapping if and only if there exists a number K < 1 such that |f/(z)| < Kfor
all z € (a,b).

Solution.

Suppose first of all that f is a contraction mapping. Then there exists K < 1
such that |f(z) — f(y)] < K|z —y| for all z,y € [a,b]. So if z € (a,b) is
arbitrary, then

f'(z) = lim fz) - fy) < lim K = K.

y—r T —Y y—x

Conversely, suppose that K < 1 and |f'(z)] < K for all z € (a,b). Then
for arbitrary z, y € [a,b] we have that f(z) — f(y) = f'(t)(x — y) for some
t € (z,y) C (a,b) (by the Mean Value Theorem). This gives

[f(@) = fW) = 1f' Oz -yl < K|z —y],
as required.

Let C be the set of continuous functions [0,1] — R, and let d be given by

d(f7g) = SUPgeo, 1] |f($) - g(l’)| Define F:C — C by Ff fo
(for all f € C). Show that for all f, g € X and all z € [0, 1],

(i) (Ff)(@)— (Fg)(z) < zd(f,g), and
(ii) (F@f)(z) — (FPg)(z) < £d(f.9g),

and deduce that F(?) is a contraction mapping. Show, however, that F' is not
a contraction mapping.

Solution.

(1)  (Ff)(z) - =y (f t)dt < [y d(f,g)dt <z d(f,g).
(i) (F(Q)f)(w)—(F(z)g)(w)=/((Ff)(t)—(Fg)(t))dt

0

g/o td(f,g)dt = £ d(f,g).

Thus d(F'f, Fg) = sup [(Ff)(z) = (Fg)(z)| < sup zd(f,g) <d(f,g), and
z€[0, 1] z€[0,1]

therefore

d(FP) f,F®g) = sup |(F®) f)(w) = (FPg)(x)| < sup £d(f,9) < 3d(f.g).

z€[0,1] z€[0,1]

Hence F® is a contraction mapping. But F is not, since by taking f = 1
and g = 0, we have d(Ff, F'g) = sup,¢jo )7 = 1 = d(f, ).

(Square sum criterion) Show that if the n x n matrix C' (over R) satisfies
Z?Zl Y ory c?k < 1, then for any b € R™ the linear system z = Cx + b has a
unique solution. (Imitate the proof of Theorem 2.1 of Choo’s notes, using the
Euclidean metric (d(z,y) = />, (z; — y;)?) instead of the one used there.)

Solution.

Define f:R™ — R™ by f(z) = Cx +b. Let 2,y € R™ and put z = f(z)
and w = f(y). Then z —w = C(z — y), and so 2; —w; = > i, cij(x; — ;)
for each 7. Apply the Cauchy-Schwarz inequality (which says that the dot
product of two vectors in R™ is at most the product of their lengths—here
the two vectors in question are the i-th row of C and =z — y). We de-

duce that |z; —w;| < \/Z?=1 c \/Z? 1(z; —y;)%. Squaring and summing

on i gives Y1 (zi —wi)? < (30, X0, ”)(ZJ (z; —y;)?). That is,
d(f(z), f(y)) < Kd(z,y), where K = >, Z;:1 7 < 1. Thus f is a con-
traction mapping, and so has a unique fixed point.



