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(For all subspaces of R, use the usual (Euclidean) metric.)

1. Let X = (0, 1/4) and let f :X → X be given by f(x) = x2. Prove that f
is a contraction mapping with no fixed point in X. Reconcile this with the
Contraction Mapping Theorem.

Solution.

A closed subset of a complete space is a complete space, but (0, 1/4) is not
closed in R. And indeed it is not complete, since (for example) the sequence
(1/n)∞n=1 is a Cauchy sequence in (0, 1/4) which has no limit in (0, 1/4).
Completeness of the space is an important hypothesis of the Contraction
Mapping Theorem; since the hypotheses are not all satisfied here, the theorem
cannot be applied.
If 0 < x < 1/4 then 0 < x2 < 1/16 < 1/4; hence f(x) = x2 does define a map
from (0, 1/4) to (0, 1/4). The only solutions in R of x2 = x are x = 0 and
x = 1, neither of which lie in (0, 1/4). So f has no fixed points. Finally, if
x, y ∈ (0, 1/4) then

|x2 − y2| = |x− y| |x + y| ≤ |x− y|(|x|+ |y|) ≤ |x− y|( 1
4 + 1

4 );

that is, d(f(x), f(y)) ≤ 1
2d(x, y), which shows that f is a contraction mapping.

2. Let X = {x ∈ Q | x ≥ 1 } and let f :X → X be defined by f(x) = x
2 + 1

x .
Show that f is a contraction mapping and that f has no fixed point in X.

Solution.

The question asserts that given formula for f defines a mapping X → X;
let us check that it is true. If x ∈ Q then x/2 ∈ Q and 1/x ∈ Q; so
(x/2) + (1/x) ∈ Q. If 1 ≤ x ≤ 2 then 1/2 ≤ 1/x ≤ 1 and 1/2 ≤ x/2 ≤ 1; so
(x/2) + (1/x) ≥ (1/2) + (1/2) = 1. If x > 2 then (x/2) + (1/x) > x/2 > 1.
So if x ∈ Q and x ≥ 1 then (x/2) + (1/x) ≥ 1, as required.
If f(x) = x then (x/2) + (1/x) = x, which gives 1/x = x/2, and x = ±

√
2.

So f(x) = x has no solution in X. And if x, y ∈ X then

d(f(x), f(y)) = |(x− y)( 1
2 −

1
xy )| ≤ 1

2d(x, y)

since x, y ≥ 1 gives − 1
2 ≤

1
2 −

1
xy < 1

2 . So f is a contraction mapping. (Again
the space X is not complete.)
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3. Let X = [1,∞) and let f :X → X be given by f(x) = x + 1/x. Show that
d(f(x), f(y)) < d(x, y) for all x, y ∈ X with x 6= y, and show that f has no
fixed point in X.

Solution.

This time the Contraction Mapping Theorem will not apply since it is not in
fact true that there is an α < 1 with d(f(x), f(y)) ≤ αd(x, y) for all x, y ∈ X.
(So f is not a contraction mapping in the sense of the theorem.) It is clear
that x + (1/x) ≥ 1 whenever x ≥ 1 (since 1/x > 0), and so the formula does
define a function X → X. There is no fixed point, since x + (1/x) = x gives
1/x = 0, and hence 1 = 0. Now for x, y ≥ 1,

d(f(x), f(y)) = |(x− y)(1− 1
xy )| = d(x, y)(1− 1

xy ) < d(x, y),

as claimed.

4. Let X = [1,∞) and let f :X → X be given by f(x) = 25
26 (x+1/x). Show that

d(f(x), f(y)) ≤ 25
26d(x, y) (whence f is a contraction mapping). By solving

the equation algebraically, show that 5 is the unique fixed point of f .

Solution.

d(f(x), f(y)) = 25
26d(x, y)(1+ 1

xy ) ≤ 25
26d(x, y) (cf. Question 3). It is important

that the given formula does define a map X → X; so let us check that x ≥ 1
implies 25

26 (x + (1/x)) ≥ 1. If x ≥ 26
25 then 25

26 (x + (1/x)) > 25
26x ≥ 1. If

1 ≤ x ≤ 26
25 then 25

26 ≤
1
x ≤ 1 and 1+ 25

26 ≤ x+ 1
x , giving 25

26 (x+ 1
x ) ≥ 1275

676 > 1.
Note that X is a complete metric space, being a closed subset of the complete
space R. So the Contraction Mapping Theorem guarantees that there is a
unique x ∈ X with f(x) = x. In this case we can easily confirm this by just
solving the equation. If f(x) = x then 26

25x = x + 1
x , giving x2 = 25, so that

x = 5 is the only possible solution in X. (And f(5) = 5 is easily checked.)

5. Let X = [0, 1] and let f :X → X be given by f(x) = 1
7 (x3 + x2 + 1). Show

that d(f(x), f(y)) ≤ 5
7d(x, y). Calculate f(0), f (2)(0), f (3)(0), . . . , and hence

find, to three decimal places, the fixed point of f .

Solution.

If 0 ≤ x ≤ 1 then 0 ≤ x3 + x2 + 1 ≤ 3, and so 0 ≤ 1
7 (x3 + x2 + 1) ≤ 3

7 < 1.
So again the question has not lied: we do have a function X → X. Now

d(f(x), f(y)) = 1
7 |(x

3−y3)+(x2−y2)| = 1
7d(x, y)|x2+xy+y2+x+y| ≤ 5

7d(x, y)

whenever x, y ∈ [0, 1] (since x2, xy etc. are all in [0, 1]). Again X is a
complete space, being a closed subset of R. According to my calculator:
f(0)≈ 0.142857, f (2)(0)≈ 0.146189, f (3)(0)≈ 0.1463565, f (4)(0)≈ 0.1463650,
. . . —but this is not a course in numerical analysis.
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6. Let X = [1, 2] ∩ Q and let f :X → X be defined by f(x) = − 1
4 (x2 − 2) + x.

Prove that f is a contraction mapping and that f has no fixed point in X.

Solution.

The space is not complete, of course. If X were defined simply to be [1, 2]
then the Contraction Mapping Theorem would apply; however, the solution
of f(x) = x in [1, 2] turns out to be irrational, and so not in the set X as
actually defined. Indeed, f(x) = x if and only if x2 − 2 = 0, and this has no
solution in Q. The quadratic − 1

4 (x2−2)+x has its turning point at 2, where
the function value is 3

2 . So f(1) = 5
4 ≤ f(x) ≤ f(2) = 3

2 for all x ∈ [1, 2].
This confirms that f(x) ∈ [1, 2], as the question asserts. And it is also clear
that x ∈ Q implies − 1

4 (x2 − 2) + x ∈ Q. For all x, y ∈ [1, 2],

d(f(x), f(y)) = |x− y| |1− 1
4 (x + y)| ≤ 1

2d(x, y)

(since − 1
4 ≤ 1− 1

4 (x + y) ≤ 1
2 ); so f is a contraction.

7. Let f : [a, b] → [a, b] be differentiable over [a, b]. Show that f is a contraction
mapping if and only if there exists a number K < 1 such that |f ′(x)| ≤ Kfor
all x ∈ (a, b).

Solution.

Suppose first of all that f is a contraction mapping. Then there exists K < 1
such that |f(x) − f(y)| ≤ K|x − y| for all x, y ∈ [a, b]. So if x ∈ (a, b) is
arbitrary, then

f ′(x) = lim
y→x

f(x)− f(y)
x− y

≤ lim
y→x

K = K.

Conversely, suppose that K < 1 and |f ′(x)| ≤ K for all x ∈ (a, b). Then
for arbitrary x, y ∈ [a, b] we have that f(x) − f(y) = f ′(t)(x − y) for some
t ∈ (x, y) ⊆ (a, b) (by the Mean Value Theorem). This gives

|f(x)− f(y)| = |f ′(t)| |x− y| ≤ K|x− y|,

as required.

8. Let C be the set of continuous functions [0, 1] → R, and let d be given by
d(f, g) = supx∈[0, 1] |f(x) − g(x)|. Define F : C → C by (Ff)(x) =

∫ x

0
f(t) dt

(for all f ∈ C). Show that for all f, g ∈ X and all x ∈ [0, 1],

(i) (Ff)(x)− (Fg)(x) ≤ x d(f, g), and

(ii) (F (2)f)(x)− (F (2)g)(x) ≤ x2

2 d(f, g),

and deduce that F (2) is a contraction mapping. Show, however, that F is not
a contraction mapping.
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Solution.

(i) (Ff)(x)− (Fg)(x) =
∫ x

0
(f(t)− g(t)) dt ≤

∫ x

0
d(f, g) dt ≤ x d(f, g).

(ii) (F (2)f)(x)− (F (2)g)(x) =
∫ x

0

((Ff)(t)− (Fg)(t)) dt

≤
∫ x

0

td(f, g) dt = x2

2 d(f, g).

Thus d(Ff, Fg) = sup
x∈[0, 1]

|(Ff)(x)− (Fg)(x)| ≤ sup
x∈[0,1]

x d(f, g) ≤ d(f, g), and

therefore

d(F (2)f, F (2)g) = sup
x∈[0,1]

|(F (2)f)(x)− (F (2)g)(x)| ≤ sup
x∈[0,1]

x2

2 d(f, g) ≤ 1
2d(f, g).

Hence F (2) is a contraction mapping. But F is not, since by taking f = 1
and g = 0, we have d(Ff, Fg) = supx∈[0,1] x = 1 = d(f, g).

9. (Square sum criterion) Show that if the n × n matrix C (over R) satisfies∑n
j=1

∑n
k=1 c2

jk < 1, then for any b ∈ Rn the linear system x = Cx + b has a
unique solution. (Imitate the proof of Theorem 2.1 of Choo’s notes, using the
Euclidean metric (d(x, y) =

√∑n
i=1(xi − yi)2) instead of the one used there.)

Solution.

Define f : Rn → Rn by f(x) = Cx + b. Let x, y ∈ Rn and put z = f(x)
and w = f(y). Then z − w = C(x − y), and so zi − wi =

∑n
j=1 cij(xj − yj)

for each i. Apply the Cauchy-Schwarz inequality (which says that the dot
product of two vectors in Rn is at most the product of their lengths—here
the two vectors in question are the i-th row of C and x − y). We de-
duce that |zi − wi| ≤

√∑n
j=1 c2

ij

√∑n
j=1(xj − yj)2. Squaring and summing

on i gives
∑n

i=1(zi − wi)2 ≤
(∑n

i=1

∑n
j=1 c2

ij

)(∑n
j=1(xj − yj)2

)
. That is,

d(f(x), f(y)) ≤ Kd(x, y), where K =
∑n

i=1

∑n
j=1 c2

ij < 1. Thus f is a con-
traction mapping, and so has a unique fixed point.


