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1. Let (X, d) be a metric space. Prove that the following statements are equiv-
alent:

(i) X is disconnected;
(ii) there exist two nonempty disjoint open subsets A1, A2 in X such that

X = A1 ∪A2;
(iii) there exist two nonempty disjoint closed subsets A1, A2 in X such that

X = A1 ∪A2;
(iv) there exist a nonempty proper subset of X which is both open and closed

in X.

Solution.

Suppose that X is disconnected. So X is the union of two nonempty sep-
arated sets. That is, there exist nonempty subsets A1, A2 of X such that
X = A1 ∪ A2 and A1 ∩ A2 = ∅ = A1 ∩ A2. Now A1 ∩ A2 = ∅ implies that
A1 ⊆ X \ A2 (the complement of A2), while X = A1 ∪ A2 and A2 ⊆ A2

give X \ A2 ⊆ X \ A2 ⊆ A1 = A1 ∪ A2 \ A2 ⊆ A1. So A1 = X \ A2, and
so A1 is open in X (as it is the complement of the closed set A2). Similarly
A2 = X \ A1 is open in X. And A1 ∩ A2 ⊆ A1 ∩ A2 = ∅. So A1 and A2 are
nonempty disjoint open sets whose union is X. So we have shown that (i)
implies (ii).
Now abandon the assumptions of the previous paragraph and assume instead
that (ii) holds: that is, assume that A1 and A2 are open and nonempty,
X = A1 ∪ A2 and A1 ∩ A2 = ∅. Then A1 is the complement of the open set
A2, and so A1 is closed. Similarly A2 = X \A1 is closed. So X is the disjoint
union of the nonempty closed sets A1 and A2, whence (iii) holds.
Assume that (iii) holds. Since A1 = X \ A2 and A2 is closed, it follows that
A1 is open. Since X2 is nonempty, X \ A2 is a proper subset of X. Thus A1

is a nonempty proper subset which is both open and closed in X. (Of course,
so is A2.) So (iv) holds.
Assume (iv). Let A1 be a nonempty proper subset of X which is both open
and closed in X, and let A2 = X \A1, so that X = A1 ∪A2 and A1 ∩A2 = ∅.
Since A1 is open, its complement, A2 is closed. So A2 = A2, and A1 = A1
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(since A1 is closed). So A1 ∩A2 = A1 ∩A2 = A1 ∩A2 = ∅. So A1 and A2 are
separated, and since X = A1 ∪A2 we have shown that X is disconnected. So
(i) holds.

Hence all the statements are equivalent.

2. Let A be a closed and bounded set in R and let p = supA. Prove that p ∈ A.

Solution.

Note that the assumption that A is bounded guarantees that A has a supre-
mum. (Actually, we only need A to be bounded above.) Now suppose, for a
contradiction, that p /∈ A. Then p ∈ R \ A, which is open since A is closed.
So there exists an ε > 0 such that the open interval (p − ε, p + ε) = B(p, ε)
is contained in X \ A. Now let a ∈ A be arbitrary. Then a ≤ p since p is an
upper bound for A. If a > p− ε then a ∈ (p− ε, p] ⊆ (p− ε, p + ε) ⊆ R \ A,
contradicting a ∈ A. So a ≤ p− ε, and since this holds for all a ∈ A it follows
that p− ε is an upper bound for A. Since p is the least upper bound for A it
follows that p ≤ p− ε, contradicting ε > 0.

3. Provide two examples of disconnected sets A with Ā connected.

Solution.

Let X = R, with the usual topology, and put A = (0, 1) ∪ (1, 2). Then A is
not connected, but A = [0, 2] is.

For another example, let A ⊆ R be the set of all irrational numbers. Then
A1 = A ∩ (0,∞) and A2 = A ∩ (−∞, 0) are open subsets of A. (That is,
they are open as subsets of A—open in the subspace topology on A.) Since
A = A1 ∪A2 we see that A is disconnected. But A = R is connected.

4. Let X be a metric space and (Ai)i∈I a family of connected subsets in X, and
B a connected subset of X such that for each i, Ai ∩ B 6= ∅. Prove that the
union A = B ∪

( ⋃
i Ai

)
is connected.

Solution.

Suppose, for a contradiction, that A = U1∪U2, where U1 and U2 are nonempty
subsets of A that are open in the subspace topology on A. Since B ⊆ A it
follows that B = (B ∩U1)∪ (B ∩U2), the union of two open sets of B. Since
B is connected, either B ∩ U1 = ∅ and B ∩ U2 = B, or B ∩ U2 = ∅ and
B ∩ U1 = B. Renumbering U1 and U2 if need be, we may assume the former
alternative. So B ∩ U2 = B, which means that B ⊆ U2.

Now for each i ∈ I we have Ai ⊆ A = U1∪U2, and so Ai = (A1∩U1)∪(Ai∩U2),
the union of two open sets of Ai. Since ∅ 6= Ai ∩ B ⊆ Ai ∩ U2, and since Ai
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is connected, it follows that Ai ∩ U1 = ∅. This holds for all i ∈ I, and since
also B ∩ U1 = ∅ it follows that

U1 = A ∩ U1 =
(
B ∪

⋃
i

Ai) ∩ U1 = (B ∩ U1) ∪
⋃
i

(Ai ∩ U1) = ∅,

contradicting the original choice of U1 and U2.

5. Let A ⊆ Rn be a disconnected set with disconnection U1 ∪ U2. Let B be a
connected subset of A. Show that either B ⊂ U1 or B ⊂ U2.

Solution.

The same is true for any topological space X, we do not need to assume that
we are dealing with Rn.

Since B ⊆ A and U1 and U2 are open in A, it follows that B ∩U1 and B ∩U2

are open in B. Since B ⊆ U1 ∪ U2 it follows that B = (B ∩ U1) ∪ (B ∩ U2),
and since B is connected one of the sets B ∩ Ui is empty and the other is B.
But B ∩ Ui = B implies B ⊆ Ui; so either B ⊆ U1 or B ⊆ U2.

6. For each of the following pairs of sets X and Y , explain why they are not
homeomorphic.

(i) X = R, Y = (0, 2] (ii) X = [0, 2), Y = [0, 2]

(iii) X = [0, 2], Y = { (x1, x2) ∈ R2 | x1
2 + x2

2 = 4 }

Solution.

(i) Observe that Y \ {2} = (0, 2) is a connected space. If there were a
homeomorphism f :Y → X then X \ {f(2)} would be homeomorphic to
Y \ {2}, and hence connected. But R \ {a} is disconnected for all a ∈ R;
so no such homeomorphism exists.

(ii) Observe that Y \{0, 2} = (0, 2) is connected; so if X and Y were homeo-
morphic there would exist two (distinct) points a, b ∈ X with X \ {a, b}
connected. Without loss of generality, suppose that a < b. Then since
a, b ∈ (0, 2] we have 0 < a < b ≤ 2, and then X \ {a, b} is either
(0, a) ∪ (a, b) ∪ (b, 2] (if b 6= 2) or (0, a) ∪ (a, 2) (if b = 2). In both cases
it is disconnected.

(iii) Again, removal of 0 and 2 from X leaves a connected set, but the removal
of any two distinct points from the circle Y will leave a disconnected set.
So X and Y are not homeomorphic.
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7. Let f : R → R be a continuous function such that (f(t))2 = 4 for all t ∈ R.
Prove that either f(t) = 2 for all t ∈ R or f(t) = −2 for all t ∈ R.

Solution.

Let U1 = f−1(2) = { t | f(t) = 2 }, and U2 = f−1(−2). Since {2} and {−2}
are both closed in R, and continuous preimages of closed sets are closed (by
the definition of continuity), it follows that U1 and U2 are both closed. They
are obviously disjoint, and since for all t ∈ R we have (f(t))2 = 4, giving
f(t) = ±2, either t ∈ U1 or t ∈ U2. So R = U1 ∪ U2. But R is connected, and
so cannot be the disjoint union of two nonempty closed sets. So either U1 = ∅
and U2 = R or vice versa, whence either f(t) = 2 for all t ∈ R or f(t) = −2
for all t ∈ R.

Supplementary questions

8. Use Question 4 and results from lectures to show that the unit square in R2,
given by S = { (x, y) ∈ R2 | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 }, is a connected subset
of R2.

Solution.

For each y ∈ [0, 1] define Ay = { (x, y) ∈ R2 | 0 ≤ x ≤ 1}. It is clear that
x 7→ (x, y) is a continuous map from [0, 1] to Ay, and since [0, 1] is connected
(as proved in lectures) it follows that Ay is connected. Similarly, the set
B = { (0, y) ∈ R2 | 0 ≤ y ≤ 1} is connected. Moreover, B∩Ay 6= ∅ for each y,
since (0, y) ∈ B ∩Ay. By Question 4, B ∪

⋃
y∈[0,1] Ay is connected; that is, S

is connected.

9. Use the previous exercise to show that E = { (x, y) ∈ R2 | 2x2 + 3y2 ≤ 1 } is
connected.

Solution.

The function (x, y) 7→ ( 1√
2
x cos(πy), 1√

3
x sin(πy)) is continuous since its com-

ponent functions are differentiable, and it maps the square S onto the el-
lipse E. Since continuous images of connected sets are connected it follows
that E is connected.


