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1. Let (X, d) and (Y, d′) be metric spaces, and f :X → Y a function. Prove that
f is continuous at the point a ∈ X if and only if for all sequences (xn)∞n=0

in X, if lim
n→∞

xn = a then lim
n→∞

f(xn) = f(a).

Solution.

Suppose that f is continuous at a. Let ε > 0 be arbitrary. By continu-
ity of f at a, there exists a δ > 0 such that d′(f(x), f(a)) < ε whenever
d(x, a) < δ. Since xn → a and n → ∞, there exists a positive integer
N such that d(xn, a) < δ whenever n > N . Now whenever n > N we
have d(xn, a) < δ, and hence d′(f(xn), f(a)) < ε. Since ε was arbitrary,
we have shown, as required, that for all ε > 0 there exists an N such that
d′(f(xn), f(a)) < ε whenever n > N .
Conversely, suppose that f is not continuous at a. Then we may choose
an ε > 0 such that for all δ > 0 there exists x ∈ X with d(x, a) < δ
and d′(f(x), f(a)) ≥ ε. Applying this with δ = 1/n, we conclude that for
each positive integer n we may choose xn ∈ X with d(xn, a) < 1/n and
d′(f(xn), f(a)) ≥ ε. Since 0 ≤ d(xn, a) < 1/n → 0 as n → ∞, we have that
xn → a as n →∞; however, it is not true that f(xn) → f(a) as n →∞, since
there is no value of n such that d′(f(xn), f(a)) < ε.

2. Let X and Y be topological spaces and f :X → Y a function. Show that the
following two conditions are equivalent:

(a) For all A ⊆ X, if A is open in X then f(A) is open in Y .
(b) For all A ⊆ X the inclusion f(IntA) ⊆ Int(f(A)) holds.

Solution.

Suppose that (a) holds, and let A ⊆ X be arbitrary. Then IntA is an open
subset of X, and so by (a) it follows that f(IntA) is open in Y . Furthermore,
IntA ⊆ A, and so f(IntA) ⊆ f(A). Thus f(IntA) is an open set contained
in the subset f(A) of Y . Hence

f(IntA) ⊆
⋃
{U | U is open and U ⊆ f(A)} = Int(f(A)),

and since A was an arbitrary subset of X this shows that (b) holds.
Conversely, suppose that (b) holds, and let A be an arbitrary open subset
of X. Then A = Int A, and so by (b),

f(A) = f(IntA) ⊆ Int f(A).
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The reverse inclusion, Int f(A) ⊆ A, is immediate from the definition of the
interior of a set. So f(A) = Int f(A), and so f(A) is open. Since A was an
arbitrary open subset of X this shows that (a) holds.

3. Show that the function cos: R → R is not a contraction mapping, but its two-
fold composite cos(2) is. (The metric is understood to be the usual metric
on R.) Use a calculator to find a solution of x = cos x correct to 4 decimals.
(No proof required for this last bit, and not many marks awarded either!)

Solution.

Suppose that cos is a contraction mapping. Then there is a K < 1 such that
| cos x− cos y| ≤ K|x− y| for all x, y ∈ R, and so∣∣∣∣cos x− cos y

x− y

∣∣∣∣ ≤ K < 1

whenever x 6= y. But if we keep y fixed and let x approach y then the ratio
(cos x− cos y)/(x− y) approaches − sin y, the derivative of cos at the point y.
So the above inequality gives | sin y| ≤ K < 1, which is false for some values
of y. So cos is not a contraction mapping.
Since d

dx (cos(cos x)) = (sin(cos x)) sinx, the Mean Value Theorem tells us
that for all a, b ∈ R there is a c ∈ [a, b] (or [b, a] if b < a) such that

cos(2) a− cos(2) b = (a− b)(sin(cos c)) sin c.

Now | cos c| ≤ 1, and since sin is increasing on the interval [−1, 1] (since
1 < π/2) we deduce that | sin(cos c)| ≤ sin 1, and so

| sin(cos c) sin c| ≤ (sin 1)| sin c| ≤ sin 1,

irrespective of the values of a and b. So for all a, b ∈ R,

| cos(2) a− cos(2) b| ≤ (sin 1)|a− b|,

which shows that cos(2) is a contraction mapping, since sin 1 < 1.
Since cos x takes the value 1 at x = 0 and 0 at x = π/2, it seems that the
graphs of y = x and y = cos x must cross reasonably near to x = 0.7. Putting
x0 = 0.7 and xi = cos(xi−1) for all positive integers i, we find after a few
iterations that 0.7391 is a good approximation to the fixed point.

4. Find metric spaces (X, dX) and (Y, dY ) and a function f :X → Y such that f
is uniformly continuous and bijective, (X, dX) is complete and (Y, dY ) is not
complete. (Modify an example from one of the the tutorial sheets.)

Solution.

Let X = R and Y = (−π/2, π/2), a subspace of R. (The metrics dX and dY

are the usual ones.) The function arctan is a uniformly continuous bijection
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from R to (−π/2, π/2). Indeed, since the derivative of arctanx is 1/(1 + x2),
the Mean Value Theorem tells us that for all x, y ∈ R there is a c ∈ R such
that

arctanx− arctan y = (x− y)(1 + c2)−1,

and it follows that for all ε > 0 if |x − y| < ε then | arctanx − arctan y| < ε.
(So the definition of uniform continuity holds with δ chosen to equal ε.) Since
arctan is strictly increasing it is injective, and since it is continuous and ap-
proaches π/2 as x → ∞ and −π/2 as x → −∞, it maps R to (−π/2, π/2)
surjectively. We know from lectures that X = R is complete, whereas Y is
not, since (−π/2, π/2) is not closed as a subset of R.

5. Let (X, d) be a complete metric space and f :X → X a function. Suppose
that for some positive integer r the r-fold composite function f (r) (defined
by f (r)(x) = f(f(f(...f(x)...))), where there are r f ’s on the right-hand side)
is a contraction mapping. Let x be any point of X, and let (xn)∞n=1 be the
sequence defined by x0 = x and xi = f(xi−1) for all positive integers i. Prove
that (xn)∞n=1 converges in X. (You may use the fact, proved in lectures,
that this is true in the case r = 1, or use the r = 1 proof as a guide to the
construction of a general proof.)

Solution.

There exists a positive number K < 1 such that d(f (r)(x), f (r)(y)) ≤ Kd(x, y)
for all x, y ∈ X. Since f (r)(xi) = xr+i (for each nonnegative integer i) it
follows that

d(xnr+i, x(n+1)r+i) = d(f (r)(x(n−1)r+i), f (r)(xnr+i) ≤ Kd(x(n−1)r+i, xnr+i),

and iterating this yields

d(xnr+i, x(n+1)r+i) ≤ Kd(x(n−1)r+i, xnr+i)

≤ K2d(x(n−2)r+i, x(n−1)r+i)
...
≤ Knd(xi, xr+i),

where n is any positive integer. Now if s, t ∈ Z+ with s < t, and if
i ∈ {0, 1, . . . , r − 1}, then, by the triangle inequality,

d(xsr+i, xtr+i) ≤
t−s−1∑

j=0

d(x(s+j)r+i, x(s+j+1)r+i)

≤
t−s∑
j=1

Ks+jd(xi, xr+i)

=
Ks

1−K
d(xi, xr+i) ≤

KsM

1−K
,
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where M = max{d(x0, xr), d(x1, xr+1), d(x2, xr+2), . . . , d(xr−1, x2r−1)}. We
also have, for all nonnegative integers p, q,

d(xr+p, xr+q) = d(f (r)(xp), f (r)(xq)) ≤ Kd(xp, xq),

and so it follows that for all i, j ∈ {0, 1, . . . , r− 1} and all positive integers s,

d(xsr+i, xsr+j) ≤ Kd(x(s−1)r+i, x(s−1)r+j) ≤ · · ·
· · · ≤ Ks−1d(xr+i, xr+j) ≤ Ksd(xi, xj) ≤ KsP

where P = max{ d(xi, xj) | i, j ∈ {0, 1, . . . , r − 1} }.
Given ε > 0, choose s large enough so that KsM/(1 − K) and KsP are
both less than ε/3, and put N = sr. Let n, m > N be arbitrary. Let
i, j ∈ {0, 1, . . . , r − 1} be the remainders obtained on dividing m, n by r, so
that m = tr + i and n = ur + j for some integers t, u ≥ s. Then

d(xm, xn) ≤ d(xtr+i, xsr+i) + d(xsr+i, xsr+j) + d(xsr+j , xur+j)

≤ KsM

1−K
+ KsP +

KsM

1−K

≤ ε/3 + ε/3 + ε/3 = ε

Hence (xn)∞n=1 is a Cauchy sequence, and hence convergent since X is com-
plete.

Alternatively, since f (r) is a contraction mapping, the proof given in lec-
tures shows that, for each i ∈ {0, 1, . . . , r − 1}, the sequence (xnr+i)∞n=1

converges in X, the limit x being the unique fixed point of the function f (r).
So, given ε > 0, there exists an integer ni such that d(xnr+i, x) < ε for all
n > ni. Now put N = max{nir + i | 0 ≤ i < r }. Let n be any integer
greater than N . Choosing i ∈ {0, 1, . . . , r − 1} such that n − i is a multi-
ple of r, we have n = mr + i for some m, and m > ni since n > N . So
d(xn, x) = d(xmr+i, x) < ε. Hence limn→∞ xn = x.


