THE UNIVERSITY OF SYDNEY
PURE MATHEMATICS 3901

Metric Spaces 2000

Assignment 2

Let (X, d) and (Y, d’) be metric spaces, and f: X — Y a function. Prove that
f is continuous at the point a € X if and only if for all sequences (z,)5,
in X, if lim z, =a then lim f(z,)= f(a).

n—oo

Solution.

Suppose that f is continuous at a. Let € > 0 be arbitrary. By continu-
ity of f at a, there exists a § > 0 such that d'(f(z), f(a)) < & whenever
d(x,a) < 6. Since x, — a and n — o0, there exists a positive integer
N such that d(z,,a) < § whenever n > N. Now whenever n > N we
have d(z,,a) < ¢, and hence d'(f(zy), f(a)) < e. Since € was arbitrary,
we have shown, as required, that for all € > 0 there exists an N such that
d'(f(zy), f(a)) < € whenever n > N.

Conversely, suppose that f is not continuous at a. Then we may choose
an € > 0 such that for all 6 > 0 there exists z € X with d(z,a) < §
and d'(f(x), f(a)) > . Applying this with § = 1/n, we conclude that for
each positive integer n we may choose z, € X with d(z,,a) < 1/n and
d'(f(zn), f(a)) > e. Since 0 < d(xn,a) < 1/n — 0 as n — oo, we have that
Z, — a as n — o0; however, it is not true that f(x,) — f(a) as n — oo, since
there is no value of n such that d'(f(z,), f(a)) < €.

Let X and Y be topological spaces and f: X — Y a function. Show that the
following two conditions are equivalent:

(a) Forall AC X, if Aisopen in X then f(A) is open in Y.

(b) For all A C X the inclusion f(Int A) C Int(f(A)) holds.

Solution.

Suppose that (a) holds, and let A C X be arbitrary. Then Int A is an open
subset of X, and so by (a) it follows that f(Int A) is open in Y. Furthermore,
Int A C A, and so f(Int A) C f(A). Thus f(Int A) is an open set contained
in the subset f(A) of Y. Hence

f(Int A) € [ J{U | U is open and U € f(A)} = Int(f(A)),

and since A was an arbitrary subset of X this shows that (b) holds.

Conversely, suppose that (b) holds, and let A be an arbitrary open subset
of X. Then A =Int A, and so by (b),

f(A) = f(Int 4) C Int f(A).
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The reverse inclusion, Int f(A4) C A, is immediate from the definition of the
interior of a set. So f(A) = Int f(A), and so f(A) is open. Since A was an
arbitrary open subset of X this shows that (a) holds.

Show that the function cos: R — R is not a contraction mapping, but its two-
fold composite cos(?) is. (The metric is understood to be the usual metric
on R.) Use a calculator to find a solution of x = cosz correct to 4 decimals.
(No proof required for this last bit, and not many marks awarded either!)

Solution.

Suppose that cos is a contraction mapping. Then there is a K < 1 such that
|cosx — cosy| < K|z —y| for all z, y € R, and so

COST — COSY
r—y

‘§K<1

whenever x # y. But if we keep y fixed and let x approach y then the ratio
(cosx —cosy)/(x —y) approaches — siny, the derivative of cos at the point y.
So the above inequality gives |siny| < K < 1, which is false for some values
of y. So cos is not a contraction mapping.

Since - (cos(cosz)) = (sin(cosz))sinz, the Mean Value Theorem tells us
that for all a, b € R there is a ¢ € [a, b] (or [b,a] if b < a) such that

cos® q — cos® b = (a — b)(sin(cos c)) sin c.

Now |cosc| < 1, and since sin is increasing on the interval [—1,1] (since
1 < 7/2) we deduce that |sin(cosc)| < sinl, and so

| sin(cos¢)sine| < (sinl)|sinc| < sinl,
irrespective of the values of ¢ and b. So for all a, b € R,
|cos® a — cos® b| < (sin1)]a — b,

which shows that cos(® is a contraction mapping, since sin1 < 1.

Since cosx takes the value 1 at x = 0 and 0 at © = 7/2, it seems that the
graphs of y = x and y = cosz must cross reasonably near to z = 0.7. Putting
xo = 0.7 and z; = cos(z;—1) for all positive integers i, we find after a few
iterations that 0.7391 is a good approximation to the fixed point.

Find metric spaces (X, dx) and (Y, dy) and a function f: X — Y such that f
is uniformly continuous and bijective, (X, dx) is complete and (Y, dy) is not
complete. (Modify an example from one of the the tutorial sheets.)

Solution.

Let X =R and Y = (—7/2,7/2), a subspace of R. (The metrics dx and dy
are the usual ones.) The function arctan is a uniformly continuous bijection
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from R to (—m/2,7/2). Indeed, since the derivative of arctanz is 1/(1 + z2),
the Mean Value Theorem tells us that for all z, y € R there is a ¢ € R such
that

arctanz — arctany = (z —y)(1 +¢?)~ !,

and it follows that for all € > 0 if |z — y| < € then |arctanz — arctany| < €.
(So the definition of uniform continuity holds with ¢ chosen to equal €.) Since
arctan is strictly increasing it is injective, and since it is continuous and ap-
proaches 7/2 as x — oo and —7/2 as ¥ — —oo, it maps R to (—x/2,7/2)
surjectively. We know from lectures that X = R is complete, whereas Y is
not, since (—7n/2,7/2) is not closed as a subset of R.

Let (X,d) be a complete metric space and f: X — X a function. Suppose
that for some positive integer r the r-fold composite function f(") (defined
by £ (x) = f(f(f(...f(x)...))), where there are r f’s on the right-hand side)
is a contraction mapping. Let x be any point of X, and let (x,)%2; be the
sequence defined by z¢g = x and z; = f(x;_1) for all positive integers i. Prove
that (x,)52; converges in X. (You may use the fact, proved in lectures,
that this is true in the case r = 1, or use the » = 1 proof as a guide to the
construction of a general proof.)

Solution.

There exists a positive number K < 1 such that d(f)(z), f) (y)) < Kd(z,v)
for all z, y € X. Since f(")(x;) = x,4; (for each nonnegative integer i) it
follows that

d(xnrJri» x(n+1)r+i) = d(f(T) (z(n—l)r-&-i)v f(r) (xnr+i) S Kd(x(n—l)r+i7 xnr+i)7

and iterating this yields

d(Znr, x(n+1)r+1ﬁ) < Kd(x(n—l)r+ia Tprti)

< KQd(x(n—2)r+i7 x(n—l)r-‘ri)

< K"d(x4, Tpyi)s

where n is any positive integer. Now if s,t € Z* with s < ¢, and if
i€{0,1,... ,r — 1}, then, by the triangle inequality,

t—s—1
d(Tsrti, Tirgs) < Z A(Z (s45)r+i> T(stj+1)r+i)
§=0
t—s
<> K Hd(wi,x,)
j=1
K3 KM

=——d i;rig )
e r) S T

4

where M = max{d(xo, z,),d(x1,Tri1),d(X2, Try2), ... ,d(Tr_1,T2r—1)}. We
also have, for all nonnegative integers p, ¢,

d(Tr1p, Triq) = d(f(r)(xp), f(r)(xq)) < Kd(wp, q),

and so it follows that for all 4, j € {0,1,... ,r —1} and all positive integers s,

ATsrtis Tsr+j) < Kd(T(s—1)r4i T(s—1)r4) <0
o < KNy, w0y g) < KPd(wg,15) < KSP

where P = max{d(z;,z;) | ¢, j €{0,1,...,r—1} }.

Given € > 0, choose s large enough so that K*M/(1 — K) and K*P are
both less than ¢/3, and put N = sr. Let n, m > N be arbitrary. Let
1,7 €40,1,...,r — 1} be the remainders obtained on dividing m, n by r, so
that m = ¢r + ¢ and n = ur + j for some integers ¢, u > s. Then

d(xma mn) < d($tr+ia xsr—O—i) + d(x3r+ia xsr—&-j) =+ d(xsr+j, mur+j)
KM KM
< K*P
—“1-K + + 1-K

<e/3+4+¢/3+¢c/3=¢

Hence (x,)52; is a Cauchy sequence, and hence convergent since X is com-
plete.

Alternatively, since f(” is a contraction mapping, the proof given in lec-
tures shows that, for each i € {0,1,...,r — 1}, the sequence (Zpn,r4+:)52
converges in X, the limit 2 being the unique fixed point of the function f().
So, given £ > 0, there exists an integer n; such that d(x,.4, %) < € for all
n > n;. Now put N = max{n;r +¢ | 0 <4 < r}. Let n be any integer
greater than N. Choosing i € {0,1,... ,r — 1} such that n — ¢ is a multi-
ple of r, we have n = mr + i for some m, and m > n; since n > N. So
d(xp, ) = d(Tmrti,x) < e. Hence limy, o0 2,, = .



