
Metric Spaces Lecture 11

Every set of real numbers which has an upper bound has a supremum (least upper
bound), and every set of real numbers which has a lower bound has an infimum (greatest
lower bound). Some books use the convention that if A ⊆ R does not have an upper
bound then sup(A) = ∞; then to say that sup(A) < ∞ is equivalent to saying that A is
bounded above.

If A and B are bounded subsets of R with A ⊆ B then every upper bound for B is
an upper bound for A; so sup(B) is an upper bound for A, and so sup(A), the least upper
bound for A, is less than or equal to sup(B). Similarly, inf(B) is a lower bound for B,
and hence a lower bound for A, and therefore less than or equal to inf(A), the greatest
lower bound for A. We have proved the following statement:

If A ⊆ B ⊂ R are bounded then sup(A) ≤ sup(B) and inf(A) ≥ inf(B).
Now let (an)∞n=1 be a bounded sequence in R. (That is, the set { an | n ∈ Z+ }

is bounded above and below.) For each k ∈ Z+, define Ak = { an | n ≥ k }; ob-
serve that these sets form a decreasing chain (A1 ⊇ A2 ⊇ A3 ⊇ · · · ). By the principle
enunciated above, their supremums decrease and their infimums increase as k increases.
So, defining Mk = sup(Ak) and mk = inf(Ak), we have m1 ≤ m2 ≤ m3 ≤ · · · and
M1 ≥ M2 ≥ M3 ≥ · · · . Note also that for all i, j ∈ Z+,

mi ≤ xn for all n ≥ i,
Mj ≥ xn for all n ≥ j.

This is because if n ≥ i then xn ∈ Ai, and therefore xn ≥ inf(Ai) = mi, and similarly
if n ≥ j then xn ∈ Aj , whence xn ≤ sup(Aj) = Mj . Now if we put n = max{i, j} then
n ≥ i and n ≥ j both hold, and so mi ≤ xn and xn ≤ Mj also both hold. It follows that
mi ≤ Mj . Note that i and j here are arbitrary positive integers.

The above reasoning has shown that the mi form an increasing sequence, and every
Mj is an upper bound for this sequence. And the Mj form a decreasing sequence, for
which every mi is a lower bound. Since the sequence (mi) is increasing and bounded
above it converges, with limit m = sup{mi | i ∈ Z+ }. Observe that m ≤ Mj for each j
(since each Mj is an upper bound, and m the least upper bound, of {mi | i ∈ Z+ }).
Now the sequence (Mj) is decreasing and bounded below; so it converges, with limit
M = inf{Mj | j ∈ Z+ }. And m ≤ M , since m is a lower bound, and M the greatest
lower bound, of {Mj | j ∈ Z+ }. We have thus established the following inequalities:

m1 ≤ m2 ≤ m3 ≤ · · · ≤ m ≤ M ≤ · · · ≤ M3 ≤ M2 ≤ M1.

The number m is called the lower limit (or limit inferior) of the sequence (an), and we
write m = lim inf

n→∞
an. Similarly, M is called the upper limit (or limit superior) of (an), and

we write M = lim sup
n→∞

an. The lower limit is characterized by the following two properties:

(L1) for every ε > 0 there exists an N ∈ Z such that an > m− ε for all n > N ;
(L2) for every ε > 0 and every N ∈ Z there exists an n > N such that an < m + ε.

Similarly, the upper limit is characterized by the following properties:
(U1) for every ε > 0 there exists an N ∈ Z such that an < M + ε for all n > N ;
(U2) for every ε > 0 and every N ∈ Z there exists an n > N such that an > M − ε.

We shall not bother with the proofs of these characterizations, although they follow in a
straightforward fashion from the discussion above. Instead, let us return to the study of
metric spaces!
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Let (X, d) be a metric space.
Definition. A subset A of X is said to be bounded if { d(x, y) | x, y ∈ A } is a bounded
subset of R. When A is bounded, the number sup{ d(x, y) | x, y ∈ A } is called the
diameter of A.

A sequence (xn) in X is said to be bounded if the set {xn | n ∈ Z+ } is bounded.
(Recall that a sequence is a family indexed by Z+, which is the same thing as a function
with domain Z+. We say that the function is bounded if its image is a bounded set.)

Recall that (xn) is a Cauchy sequence if for all ε > 0 there exists N ∈ Z such that
d(xn, xm) < ε for all n, m > N , and that the metric space X is complete if every Cauchy
sequence in X has a limit in X.
Lemma. Every Cauchy sequence in a metric space is bounded.
Proof. Let (xn) be a Cauchy sequence. Choose N ∈ Z+ such that d(xn, xm) < 1 for
all n, m ≥ N . Put C = max{d(x1, xN ), d(x2, xN ), . . . , d(xN−1, xN ), 1}. Then certainly
d(xn, xN ) ≤ C when 1 ≤ n < N , since d(xn, xN ) is one of the numbers of which C is
the maximum. And if n ≥ N then (by the choice of N), d(xn, xN ) < 1 ≤ C. Thus
d(xn, xN ) < C for all n ∈ Z+. It follows that for all r, s ∈ Z+,

d(xr, xs) ≤ d(xr, xN ) + d(xs, xN ) ≤ 2A.

Hence the set {xn | n ∈ Z+ } is bounded (with diameter at most 2C), as required. �

It is a fact, known as Cauchy’s Principle of Convergence, that every Cauchy sequence
in R converges. In other words, R is a complete metric space (under the usual metric).
Proposition. The set R, with the usual metric, is a complete metric space.
Proof. Let (xn) be a Cauchy sequence in R. By the Lemma there exists a C ∈ R such
that |xn − xm| < C for all n, m ∈ Z+, and so it follows that x1 − C < xn < x1 + C for
all n ∈ Z+. Thus the sequence (xn) possesses a lower limit and an upper limit.

Put mk = infn≥k xn and Mk = supn≥k xn. Then mk ≤ xk ≤ Mk for all k. Further-
more, mk → m = lim infn→∞ xn and Mk → M = lim supn→∞ xn as k →∞.

Let ε > 0. Since (xn) is a Cauchy sequence we may choose N ∈ Z+ such that
|xn−xm| < ε for all n, m ≥ N . Then it follows that xN − ε < xn < xN + ε for all n ≥ N .
Hence

MN = sup
n≥N

xn ≤ xN + ε,

mN = inf
n≥N

xn ≥ xN − ε.

So MN − mN ≤ 2ε, and since mN ≤ m ≤ M ≤ MN , it follows that 0 ≤ M − m ≤ 2ε.
But ε was an arbitrary positive number; so it follows that M − m = 0. Now because
mk ≤ xk ≤ Mk for all k, and Mk and mk both approach M = m as k → ∞, it follows
that xk also approaches this same limit as k → ∞. We have shown that an arbitrary
Cauchy sequence in R has a limit, as required. �

Let (x(k))∞k=1 be a sequence in Rn, and let x(k) = (x(k)
1 , x

(k)
2 , . . . , x

(k)
n ) (for each k ∈ Z+).

We have already seen that (x(k)) converges in Rn relative to the usual metric (or indeed
any of the metrics dp for 1 ≤ p ≤ ∞) if and only if each sequence (x(k)

i ) (for 1 ≤ i ≤ n)
converges in R. It is straightforward to show also that (x(k)) is a Cauchy sequence in
Rn if and only if each (x(k)

i ) is a Cauchy sequence in R. These facts combined with the
completeness of R show that Rn is complete also.
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