Metric Spaces Lecture 11

Every set of real numbers which has an upper bound has a supremum (least upper
bound), and every set of real numbers which has a lower bound has an infimum (greatest
lower bound). Some books use the convention that if A C R does not have an upper
bound then sup(A) = oo; then to say that sup(A4) < oo is equivalent to saying that A is
bounded above.

If A and B are bounded subsets of R with A C B then every upper bound for B is
an upper bound for A; so sup(B) is an upper bound for A, and so sup(A), the least upper
bound for A, is less than or equal to sup(B). Similarly, inf(B) is a lower bound for B,
and hence a lower bound for A, and therefore less than or equal to inf(A), the greatest
lower bound for A. We have proved the following statement:

If AC B C R are bounded then sup(A) < sup(B) and inf(A) > inf(B).

Now let (a,)%; be a bounded sequence in R. (That is, the set {a, | n € Z*}
is bounded above and below.) For each k € Z*, define Ay = {a, | n > k}; ob-
serve that these sets form a decreasing chain (4; O As O Az O ---). By the principle
enunciated above, their supremums decrease and their infimums increase as k increases.
So, defining M}, = sup(Ax) and my = inf(Ag), we have m; < mg < mgz < --- and
M, > My > M3 > ---. Note also that for all i, j € ZT,

m; < Tp, for all n > 1,
M; > x, for all n > j.

This is because if n > i then z,, € A;, and therefore x,, > inf(A;) = m;, and similarly
if n > j then z,, € A;, whence z,, < sup(4,) = M;. Now if we put n = max{i,j} then
n >4 and n > j both hold, and so m; < z, and z,, < M; also both hold. It follows that
m; < M;. Note that ¢ and j here are arbitrary positive integers.

The above reasoning has shown that the m,; form an increasing sequence, and every
M; is an upper bound for this sequence. And the M, form a decreasing sequence, for
which every m; is a lower bound. Since the sequence (m;) is increasing and bounded
above it converges, with limit m = sup{m; | i € Z* }. Observe that m < M; for each j
(since each M; is an upper bound, and m the least upper bound, of {m; | i € Z* }).
Now the sequence (M;) is decreasing and bounded below; so it converges, with limit
M =inf{M, | j € ZT}. And m < M, since m is a lower bound, and M the greatest
lower bound, of { M, | j € Z" }. We have thus established the following inequalities:

m;p<mzg<mzg<-- <m<M< < M3z < My < M.

The number m is called the lower limit (or limit inferior) of the sequence (a,), and we
write m = liminf a,,. Similarly, M is called the upper limit (or limit superior) of (a,,), and

n—oo
we write M = lim sup a,,. The lower limit is characterized by the following two properties:
n—oo

(L1) for every € > 0 there exists an N € Z such that a,, > m — ¢ for all n > N;

(L2) for every € > 0 and every N € Z there exists an n > N such that a, < m +e¢.
Similarly, the upper limit is characterized by the following properties:

(U1) for every € > 0 there exists an N € Z such that a,, < M + ¢ for all n > Nj;

(U2) for every € > 0 and every N € Z there exists an n > N such that a,, > M —e.
We shall not bother with the proofs of these characterizations, although they follow in a
straightforward fashion from the discussion above. Instead, let us return to the study of
metric spaces!
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Let (X, d) be a metric space.

Definition. A subset A of X is said to be bounded if {d(x,y) | x, y € A} is a bounded
subset of R. When A is bounded, the number sup{d(z,y) | z,y € A} is called the
diameter of A.

A sequence (z,,) in X is said to be bounded if the set {x, | n € ZT } is bounded.
(Recall that a sequence is a family indexed by Z*, which is the same thing as a function
with domain Z*. We say that the function is bounded if its image is a bounded set.)

Recall that (x,,) is a Cauchy sequence if for all € > 0 there exists N € Z such that
d(xp, xy) < € for all n, m > N, and that the metric space X is complete if every Cauchy
sequence in X has a limit in X.

Lemma. FEvery Cauchy sequence in a metric space is bounded.

Proof. Let (z,) be a Cauchy sequence. Choose N € Z* such that d(z,,z,,) < 1 for
all n, m > N. Put C = max{d(z1,zn),d(z2,2N),...,d(xN_1,2N),1}. Then certainly
d(xn,zy) < C when 1 < n < N, since d(z,,xn) is one of the numbers of which C is
the maximum. And if n > N then (by the choice of N), d(z,,zny) < 1 < C. Thus
d(zp,rn) < C for all n € Z*. Tt follows that for all 7, s € Z™,

d(z,,zs) < d(xp, zn) + d(zs, xn) < 2A.

Hence the set {x,, | n € Z* } is bounded (with diameter at most 2C), as required. O

It is a fact, known as Cauchy’s Principle of Convergence, that every Cauchy sequence
in R converges. In other words, R is a complete metric space (under the usual metric).

Proposition. The set R, with the usual metric, is a complete metric space.

Proof. Let (x,) be a Cauchy sequence in R. By the Lemma there exists a C' € R such
that |x,, — x,,| < C for all n, m € Z*, and so it follows that z; — C < x,, < x1 + C for
all n € Z*. Thus the sequence (z,) possesses a lower limit and an upper limit.

Put my, = inf, > z,, and M}, = sup,,>;, ©,. Then my <z, < M, for all k. Further-
more, my, — m = liminf,,_ =, and M — M = lim SUD,, o0 Tn a8 k — 00.

Let e > 0. Since (z,) is a Cauchy sequence we may choose N € ZT such that
|€y, — | < € for all n, m > N. Then it follows that xy —e < z, < zny +¢ for alln > N.

Hence
My = sup ¢, < zny + ¢,
n>N

my = inf x, > xny — €.
n>N

So My — my < 2¢, and since my < m < M < My, it follows that 0 < M —m < 2e.
But € was an arbitrary positive number; so it follows that M —m = 0. Now because
my < x < My, for all k, and M} and my both approach M = m as k — oo, it follows
that zj also approaches this same limit as & — co. We have shown that an arbitrary
Cauchy sequence in R has a limit, as required. O

Let (z(®)2° | be a sequence in R", and let z(*) = (:ng), xgk), . ,xgﬂ)) (foreach k € Z7).
We have already seen that (z(*)) converges in R” relative to the usual metric (or indeed
any of the metrics d, for 1 < p < 00) if and only if each sequence (x(k)) (for 1 < i <n)

(]
converges in R. It is straightforward to show also that (x(k)) is a Cauchy sequence in

R"™ if and only if each (xgk)) is a Cauchy sequence in R. These facts combined with the
completeness of R show that R™ is complete also.
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