
Metric Spaces Lecture 13

The completion of a metric space
Our next objective is to show that every metric space can be embedded in a complete

metric space. More precisely, we wish to prove the following theorem.
Theorem. For every metric space (X, d) there is a metric space (X̂, d̂) such that
(1) (X̂, d̂) is complete,
(2) (X, d) is a subspace of (X̂, d̂), and
(3) X is dense in X̂.

As a first step we prove a straightforward lemma that will be used several times.
Lemma. Let (X, d) be a metric space and a, b, a′, b′ ∈ X. Then

|d(a′, b′)− d(a, b)| ≤ d(a, a′) + d(b, b′).

Proof. By the triangle inequality,

d(a′, b′) ≤ d(a′, a) + d(a, b′) ≤ d(a′, a) + d(a, b) + d(b, b′),

and by the same reasoning with a swapped with a′ and b swapped with b′,

d(a, b) ≤ d(a, a′) + d(a′, b′) + d(b′, b).

Since d(a, a′) = d(a′, a) and d(b, b′) = d(b′, b) these two inequalities combine to give

−d(a, a′)− d(b, b′) ≤ d(a′, b′)− d(a, b) ≤ d(a, a′) + d(b, b′),

which gives us the desired conclusion. �

Intuitively, if a Cauchy sequence (xn) in X does not converge, then as n → ∞ the
points xn must be clustering around a “hole” in the space X, and we should be able to
“fill in the hole” by adding to X a new point that will serve as the limit of (xn). If we
do this for all the non-convergent Cauchy sequences then the space we end up with will
be the completion of X.

We shall have to extend the definition of the distance function to include distances
between these new points. Clearly, if (xn) and (yn) are Cauchy sequences then the
distance between the limit of (xn) and the limit of (yn) ought to equal lim

n→∞
d(xn, yn). So

the following lemma, which says that this limit always exists, is important to our cause.
Lemma. Let (xn)∞n=1 and (yn)∞n=1 be Cauchy sequences in a metric space (X, d). Then
lim

n→∞
d(xn, yn) exists.

Proof. Note that (d(xn, yn))∞n=1 is a sequence of real numbers. To prove that it converges
we can use the Cauchy convergence criterion: every Cauchy sequence in R converges.
(That is, R is a complete metric space. We proved this in Lecture 11.)

Let ε > 0. Since (xn) is a Cauchy sequence there exists a number N such that
d(xn, xm) < ε/2 for all n, m > N . Since (yn) is a Cauchy sequence there exists an M
such that d(yn, ym) < ε/2 for all n, m > M . Put K = max(N,M). Then for all n, m > K
we have (using the lemma proved above)

|d(xn, yn)− d(xm, ym)| ≤ d(xn, xm) + d(yn, ym) < ε/2 + ε/2 = ε.

–1–

Metric Spaces
Lectures given at the University of Sydney for the course Maths 3901, based on notes by K. G. Choo. Copyright 1999. Robert Brian Howlett.



Hence (d(xn, yn)) is a Cauchy sequence, as required. �

Let (X, d) be a metric space and define CS(X) to be the set of all Cauchy sequences
in X. To construct the completion, (X̂, d̂), of (X, d) we need to construct a set X̂ ⊇ X
such that

(an) ∈ CS(X) implies that lim
n→∞

an exists in X̂.

That is, there should be a function L: CS(X) → X̂, taking each Cauchy sequence to
its limit. We do not want the set X̂ to be any bigger than necessary; so, preferably,
the function L will be surjective (meaning that all the points in X̂ are limits of Cauchy
sequences in X, just as all real numbers are limits of sequences of rationals). Note,
however, that L probably will not be injective, as it is quite possible for different Cauchy
sequences to have the same limit. Thus if (xn) and (yn) are non-convergent Cauchy
sequences in X such that lim

n→∞
d(xn, yn) = 0 then the new point which we create to be the

limit of (xn) will also serve as the limit of (yn). Thus the new points to be added to X
should correspond not to individual Cauchy sequences, but rather to equivalence classes of
Cauchy sequences, where by definition (xn) and (yn) are equivalent if lim

n→∞
d(xn, yn) = 0.

Definition. If (xn), (yn) ∈ CS(X), write (xn) ∼ (yn) if lim
n→∞

d(xn, yn) = 0. If this holds

we shall say that (xn) and (yn) are equivalent.
Lemma. The relation ∼ defined above is an equivalence relation on CS(X).
Proof. Let α = (xn) ∈ CS(X). Since lim

n→∞
d(xn, xn) = lim

n→∞
0 = 0 it follows that α ∼ α.

Since this holds for all α ∈ CS(X), the relation ∼ is reflexive.
Let α = (xn) and β = (yn) be Cauchy sequences in X such that α ∼ β. By the

definition, lim
n→∞

d(xn, yn) = 0. But since d(yn, xn) = d(xn, yn) for all n it follows that

lim
n→∞

d(yn, xn) = lim
n→∞

d(xn, yn) = 0. So β ∼ α. Hence ∼ is symmetric.

If α = (xn), β = (yn) and γ = (zn) are Cauchy sequnces such that α ∼ β and β ∼ γ,
then we have lim

n→∞
d(xn, yn) = 0 and lim

n→∞
d(yn, zn) = 0. Now

0 ≤ d(xn, zn) ≤ d(xn, yn) + d(yn, zn) → 0 as n →∞,

and thus α ∼ γ. So ∼ is transitive. �

We now make use of the following general fact about equivalence relations:
If ≡ is an equivalence relation on a set S then there is a set Q and a function π:S → Q
such that
(1) π is surjective, and
(2) π(s) = π(t) if and only if s ≡ t (for all s, t ∈ S).
Indeed, we may take Q to be the set of all equivalence classes and π:S → Q the function
which takes each s ∈ S to the ≡-equivalence class in which it lies. This set Q is called the
quotient of S by the equivalence relation ≡, and π is called the natural map, or projection,
of S onto Q.

Applying this to our situation, the fact that ∼ is an equivalence relation on CS(X)
enables us to draw the following conclusion:

There exists a set X̂ and a map L: CS(X) → X̂ such that L is surjective and,
for all Cauchy sequences (xn) and (yn), we have L((xn)) = L((yn)) if and only
if lim

n→∞
d(xn, yn) = 0.
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We now aim to define a metric d̂ on the set X̂, and show that (X̂, d̂) has a subspace
which is a copy of (X, d). This means that we must find a one to one, distance-preserving
correspondence between X and a subset of X̂. That is, we must find an injective function
η:X → X̂ with the property that d̂(η(x), η(y)) = d(x, y) for all x, y ∈ X.†

Let α, β ∈ X̂. Since L is surjective there exist (an), (bn) ∈ CS(X) such that
α = L((an)) and β = L((bn)). We know that lim

n→∞
d(an, bn) exists, and we would like

to define d̂(α, β) to be equal to this limit. But since the sequences (an) and (bn) may
not be uniquely determined by α and β, we need to prove that alternative choices for the
sequences give rise to the same limit. Our next lemma does this.
Lemma. Suppose that (an), (a′n), (bn), (b′n) ∈ CS(X), and suppose that (an) ∼ (a′n) and
(bn) ∼ (b′n). Then lim

n→∞
d(an, bn) = lim

n→∞
d(a′n, b′n).

Proof. By the Lemma from the start of this lecture,

|d(an, bn)− d(a′n, b′n)| < d(an, a′n) + d(bn, b′n) → 0 as n →∞,

whence the result follows. �

This lemma shows that there is a well-defined function d̂: X̂ × X̂ → R such that
d̂(α, β) = lim

n→∞
d(an, bn) whenever (an), (bn) ∈ CS(X) with α = L((an)) and β = L((bn)).

We defer for a moment the proof that d̂ is actually a metric on X̂, and turn to the question
of identifying X with a subset of X̂.

For each x ∈ X let c(x) be the corresponding constant sequence, al of whose terms
are x. That is, c(x) = (xn), where xn = x for all n ∈ Z+. Clearly c(x) is a Cauchy
sequence, since for any ε > 0 we have d(xn, xm) = 0 < ε for all n, m > 0. (Indeed, since
lim

n→∞
d(xn, x) = lim

n→∞
0 = 0, the sequence (xn) is convergent, with limit x. We know that

all convergent sequences are Cauchy sequences.) We can now define a function η:X → X̂
by η(x) = L(c(x)) for all x ∈ X. It is easily seen that η is injective, and therefore defines
a one to one correspondence between X and η(X) ⊆ X̂. For suppose that x, y ∈ X
satisfy η(x) = η(y). Then L(c(x)) = L(c(y)), and by the definition of L this implies that
c(x) ∼ c(y). So lim

n→∞
d(xn, yn) = 0, where xn is the n-th term of c(x) and yn the n-th term

of c(y). But xn = x and yn = y for all n; so d(x, y) = lim
n→∞

d(x, y) = lim
n→∞

d(xn, yn) = 0,

and therefore x = y. Since this holds whenever η(x) = η(y) we have shown that η is
injective, as claimed.

As explained above, we need to check that d̂(η(x), η(y)) = d(x, y) for all x, y ∈ X.
Since η(x) = L(c(x)) = L((xn)) where xn = x for all n, and similarly η(y) = L((yn))
where yn = y for all n, the definition of d̂ gives

d̂(η(x), η(y)) = lim
n→∞

d(xn, yn) = lim
n→∞

d(x, y) = d(x, y),

† In this web version of the lecture notes the proof differs somewhat from the proof
that was actually given in the lecture. There X̂ was defined to be the disjoint union of
X with a set L in one-to-one correspondence with the equivalence classes of sequences in
CS(X) that do not have limits in X; this approach had the advantage that X really is a
subset of X̂, but some of the proofs had to be split into two cases, depending on whether
or not a Cauchy sequence had a limit. Here, though our proofs work more smoothly, X
is not strictly a subspace of X̂, and so we have to argue that it can be identified with a
subset of X̂: in effect, it is as good as a subset of X.
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as required. We conclude that the subspace η(X) of (X̂, d̂) is indeed a copy of the space
(X, d) that we started with.

It is time we proved that d̂ really is a metric. So let α, β, γ ∈ X̂ be arbitrary,
and choose Cauchy sequences (an), (bn) and (cn) with L((an)) = α, L((bn)) = β and
L((cn)) = γ. Since d̂(α, β) = lim

n→∞
d(an, bn), and since d(an, bn) ≥ 0 for all n, it is clear

that d̂(α, β) ≥ 0. Moreover, d̂(α, α) = lim
n→∞

d(an, an) = lim
n→∞

0 = 0. Just as simply,

d̂(α, β) = lim
n→∞

d(an, bn) = lim
n→∞

d(bn, an) = d̂(β, α).

And since d(bn, cn) ≤ d(an, bn) + d(an, cn) for all n,

d̂(β, γ) = lim
n→∞

d(bn, cn) ≤ lim
n→∞

d(an, bn) + lim
n→∞

d(an, cn) = d̂(α, β) + d̂(α, γ),

so that the triangle inequality is satisfied. Now all that remains is to prove that d̂(α, β) = 0
implies α = β. But d̂(α, β) = 0 says that lim

n→∞
d(an, bn) = 0, which means that

(an) ∼ (bn), and thus, by the definition of the function L,

α = L((an)) = L((bn)) = β,

as required. We have now proved that (X̂, d̂) is a metric space and that (X, d) is (as good
as) a subspace of (X̂, d̂).

Assertion (3) of the theorem is that X is a dense subspace of X̂. By the definition of
dense, this means that the closure of X in X̂ is the whole of X̂. Since the closure of a set
consists of all points that are limits of convergent sequences whose terms lie in the set,
our task is to prove that every point of X̂ is the limit of some sequence of points of X.
Here, of course, we must identify each point x ∈ X with the point η(x) ∈ X̂.

Lemma. Let s = (an)∞n=1 ∈ CS(X). Then the sequence (η(an))∞n=1 converges in X̂, and
its limit is L(s).

Proof. If x is any point of X then, by the way d̂ is defined,

d̂(η(x), L(s)) = d̂(L(c(x), L(s)) = lim
n→∞

d(x, an).

Thus, in particular, d̂(η(am), L(s)) = lim
n→∞

d(am, an) for each positive integer m. Now
let ε > 0 be arbitrary. Since (an) is a Cauchy sequence, we may choose a number
N such that d(am, an) < ε/2 for all m, n > N . It follows that if m > N then
lim

n→∞
d(am, an) ≤ ε/2 < ε. So there exists an N such that 0 ≤ d̂(η(am), L(s)) < ε

for all m > N . Thus lim
m→∞

d̂(η(am), L(s)) = 0, and, by the definition of limits in metric
spaces, this means that η(am) → L(s) as m →∞. �

Since every point of X̂ has the form L(s) for some s ∈ CS(X), it follows from the
lemma that every point of X̂ is the limit of some sequence of points η(X). Thus η(X) is
dense in X̂, as required.
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