
Metric Spaces Lecture 19

Picard’s Theorem

Our major application of the theory we have been investigating is the proof of a key
basic theorem in the theory of ordinary differential equations. We investigate the following
problem (known as an initial value problem): find a real-valued function x defined on some
interval [t0 − β, t0 + β], satisfying the differential equation

x′(t) = f(t, x(t)) (1)
and the initial condition

x(t0) = x0 (2)

where f(t, x) is some given expression in t and x.
Intuition dictates that there should be a unique function x satisfying this. The graph

of x has to pass through the point (t0, x0), and the differential equation determines the
slope of the graph at any given point. If one imagines a particle whose position at time t
is (t, x(t)) then the differential equation is steering the particle, so to speak: it determines
the direction of travel at any point. Given that the starting point is specified, the entire
path the particle follows must surely be uniquely determined.

Although the above reasoning may be plausible, it is not precise enough to be ac-
cepted as a mathematical proof. The main problem is that it is not clear what precise
mathematical conditions are implicitly assumed by the intuitive identification of a func-
tion with a graph that one could draw, with the slope of the graph corresponding to the
derivative. For example, if the function f appearing on the right hand side of Eq. (1)
is discontinuous everywhere, then the solution function x would have to be differentiable
with a derivative that is everywhere discontinuous. Our intuition does not usually deal
with graphs like that. So it will be no surprise if we have to assume at least that f is
continuous before we can give a rigorous proof.

The precise theorem that we are able to prove is as follows.
Theorem. Let S = [t0 − a, t0 + a] × [x0 − b, x0 + b], a rectangle in R2, and let f be a
continous real-valued function on S satisfying
(i) |f(t, x)| ≤ c for all (t, x) ∈ S,
(ii) |f(t, x)− f(t, y)| ≤ k|x− y| for all t ∈ [t0 − a, t0 + a] and x, y ∈ [x0 − b, x0 + b],
where c and k are (positive) constants. Let β ∈ R satisfy β ≤ a and β ≤ b/c. Then there
exists a unique function x: [t0 − β, t0 + β] → R such that x(t0) = x0 and x′(t) = f(t, x(t))
for all t ∈ [t0 − β, t0 + β].
Comments

a) Condition (i) is automatically satisfied for some constant c, given that f is continuous:
there is a theorem which says that a continuous real valued function on a closed
and bounded subset of Rn (such as the set S) must be bounded. Condition (ii) is
automatically satisfied for some constant k if the partial derivative ∂f/∂x exists and
is continuous on S; this is explained below.

b) A real-valued function g defined on an interval [p, q] in R is said to satisfy a Lipschitz
condition on [p, q] if there exists a constant k (the Lipschitz constant) such that
|g(x)− g(y)| ≤ k|x− y| for all x, y ∈ [p, q]. So condition (ii) can be reformulated as
follows: f satisfies a Lipschitz condition with respect to its second argument.
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c) For the sake of simplifying the notation, we shall assume that x0 = 0 and t0 = 0.
There is clearly no loss of generality involved in this; it just amounts to making
a translation of the coordinate system, so that the new origin is the former point
(t0, x0). In the new coordinates the rectangle S is [−a, a] × [−b, b], and the initial
condition is x(0) = 0. So we are saved the trouble of writing a lot of x0’s and t0’s.

d) Although the Lipschitz condition made no explicit appearance in our intuitive ex-
planation of why an initial value problem should have a solution, we need do it at a
crucial point in our proof. Although it is conceivable that a more cunning proof than
the one we shall give could replace condition (ii) with some weaker assumption, it
is probably the case that intuition only deals with functions that satisfy a Lipschitz
condition. For example, perhaps we are accustomed to thinking only of functions
whose partial derivatives are continuous; this is a more restrictive assumption than
the Lipschitz condition. Thus, suppose that ∂f/∂x exists and is continuous on S.
Then ∂f/∂x is bounded on S (just as continuity of f implies that f is bounded). Let
k be an upper bound, and for arbitrary t ∈ [−a, a] and x, y ∈ [−b, b], apply the Mean
Value Theorem to the function φ: z 7→ f(t, z) on the interval [x, y]. The conclusion
is that

f(t, x)− f(t, y) = φ(x)− φ(y) = φ′(z0)(x− y)

for some z0 ∈ (x, y). But since φ′ = ∂f/∂x we have that |φ′(z0)| ≤ k, and thus
|f(t, x)− f(t, y)| = |φ′(z0)| |x− y| ≤ k|x− y|, as required.

e) The theorem says that a solution x(t) exists on [−β, β] provided that β satisfies the
conditions β ≤ a and β ≤ b/c. These requirements are both quite natural. Since
the differential equation (1) only makes sense when (t, x(t)) is in the domain of the
function f , which is the rectangle S, we cannot hope to prove anything about x(t)
for |t| > a. Hence we get the condition β ≤ a. The restriction β ≤ b/c is perhaps
less clear at first, but it comes about for the same kind of reason. Since |f(x, t)| is
bounded by c, the differential equation implies that |x′(t)| ≤ c. In an extreme case
we could have x′(t) = c, making the graph of x a straight line of slope c through the
origin (0, 0) (since x(0) = 0 is assumed). If b/c < a then this line exits the rectangle
[−a, a] × [−b, b] at the point (b/c, b); so in this case the point (t, x(t)) is outside the
domain of f when t > b/c. So, in general, unless β ≤ b/c we cannot be sure that
(t, x(t)) will remain in S.

t = b/ct = −b/c
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x = −ct
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In the diagrams above, illustrating the two cases a > b/c and a < b/c, the shaded
region is the part of the (x, t)-plane defined by −β ≤ t ≤ β and |x| ≤ c|t|. Since the
graph of x(t) must pass through (0, 0) and have slope between −c and c, it must lie
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in this shaded region. (Note that S is the rectangle with corners at (±a,±b).)
Before proving Picard’s Theorem, we recall a concept that was introduced in Lec-

ture 14. (See also Exercise 4 of Tutorial 5 and Exercise 2 of Tutorial 8.)
Definition. An isometry from a metric space (X, dX) to a metric space (Y, dY ) is a
function φ:X → Y such that dY (φ(x1), φ(x2)) = dX(x1, x2).

It is easily seen that an isometry has to be injective. For, suppose that φ is an
isometry, and suppose that x1, x2 ∈ X with φ(x1) = φ(x2). Then dY (φ(x1), φ(x2)) = 0,
and since φ is an isometry it follows that dX(x1, x2) = 0, and so x1 = x2. So we have
shown, as required, that if x1, x2 ∈ X with φ(x1) = φ(x2) then x1 = x2. Furthermore,
note that, as we saw in Question 4 of Tutorial 5, whenever φ is an injective function from
an arbitrary set X to a set Y that is equipped with a metric dY , it is possible to define a
metric dX on X by means of the formula dX(x1, x2) = dY (φ(x1), φ(x2)). In other words,
we define dX in such a way that φ becomes an isometry.

Metric spaces X and Y are said to be isometric if there is an isometry X → Y that
is bijective. Isometric spaces can be regarded as copies of the same abstract space: as
far as the metric structure is concerned, they are the same as each other. Properties of
either space that can be formulated in terms of the distance function will be mirrored
in the other space. For example, the concept of convergence of sequences is defined in
terms of distance; so a sequence in one of the spaces will be convergent if and only if the
corresponding sequence in the other space is convergent. Similarly, a sequence of points
in one of the spaces will be a Cauchy sequence if and only if the corresponding sequence
of points in the other space is a Cauchy sequence. And it follows that if X and Y are
isometric spaces then X is complete if and only if Y is complete. All the concepts involved
in the definition of completeness are ultimately expressible just in terms of the distance
function; an isometric correspondence necessarily preserves such properties.

Returning now to Picard’s Theorem, define C to be the set of all continuous real-
valued functions on the interval [−β, β], and define

C∗ = {x ∈ C
∣∣ |x(t)| ≤ cβ for all t ∈ [−β, β] }.

The relevance of C∗ derives in part from the following lemma.
Lemma. If x is a solution of the initial value problem given by Eqs (1) and (2) above,
then x ∈ C∗.
Proof. Since x is differentiable, it is certainly continuous on [−β, β]. Moreover, since f
is bounded by c, and x′(t) = f(t, x(t)), it follows that for all t ∈ [−β, β],

|x(t)| = |x(t)− x(0)| =
∣∣∣ ∫ t

0

x′(s) ds
∣∣∣ ≤ ∫ t

0

|x′(s)| ds =
∫ t

0

|f(s, x(s))| ds ≤
∫ β

0

c ds = cβ,

and therefore x ∈ C∗. �

Observe that if x ∈ C∗ and s ∈ [−β, β] then −a ≤ s ≤ a (since β ≤ a) and
−b ≤ x(s) ≤ b (since |x(s)| ≤ cβ ≤ b). So (s, x(s)) ∈ S, the domain of f , and it
follows that we can define a function Tx: [−β, β] → R by the formula

(Tx)(t) =
∫ t

0

f(s, x(s)) ds (for all t ∈ [−β, β]).
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The following simple observation is crucial for our strategy.

Lemma. A function x ∈ C∗ is a solution of the initial value problem if and only if it
satisfies Tx = x.

Proof. Assume first that x is a solution of Eqs (1) and (2). Integrating (1) gives

x(t) =
∫ t

0

f(s, x(s)) ds + C

for some constant C. The initial condition (2) forces C = 0, and so

x(t) =
∫ t

0

f(s, x(s)) ds (for all t ∈ [−β, β]); (3)

That is, Tx = x.
Conversely, if we assume that Tx = x then Eq. (3) above holds, and it follows from

the Fundamental Theorem of Calculus that x′(t) = f(t, x(t)). So x satisfies the differential
equation (1). Moreover, Eq. (3) also gives

x(0) =
∫ 0

0

f(s, x(s)) ds = 0,

so that the initial condition (2) is also satisfied. �

The next lemma shows that x 7→ Tx defines a function from the set C∗ to itself.

Lemma. If x ∈ C∗ then Tx ∈ C∗.
Proof. Given that x ∈ C∗, we have, for all t ∈ [−β, β],

|(Tx)(t)| =
∣∣∣ ∫ t

0

f(s, x(s)) ds
∣∣∣

≤
∫ t

0

c ds (since |f(s, x(s))| ≤ c for all s)

= c|t|
≤ cβ.

To complete the proof that Tx ∈ C∗ it remains to show that Tx is continuous on [−β, β].
In fact it follows from the Fundamental Theorem of Calculus Tx is differentiable on
[−β, β], with (Tx)′(t) = f(t, x(t)). So Tx is certainly continuous, as required. �

It is, of course, our intention to apply the Banach Fixed Point Theorem, and to do
this we shall show that, relative to a suitable metric, C∗ is a complete metric space, and
T a contraction mapping on C∗.

We proved in Lecture 12 that the continuous real-valued functions on a closed interval
form a complete metric space relative to the uniform metric d. So C is a complete metric
space relative to d (which is defined by d(x, y) = supt∈[−β,β] |x(t)− y(t)| for all x, y ∈ C).
The set C∗ is a subset of C, but rather than regarding C∗ as a subspace of C we shall define
another metric on C∗.
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The hypotheses of Picard’s Theorem involve a certain constant k (appearing in the
Lipschitz condition that f is assumed to satisfy). Using this k, for each x ∈ C∗ let ηx be
the function [−β, β] → R defined by

(ηx)(t) = e−k|t|x(t) (for all t ∈ [−β, β]).

Since the product of two continuous functions is continuous we see that ηx ∈ C for all
x ∈ C∗, and so we may define a function η: C∗ → C by x 7→ ηx (for all x ∈ C∗). This
function is clearly injective, since e−k|t| 6= 0 for all t. So, as explained in our discussion of
isometries above, there is a metric D on C∗ given by the formula

D(x, y) = d(ηx, ηy) = sup
t∈[−β,β]

∣∣e−k|t|x(t)− e−k|t|y(t)
∣∣.

Since the condition

x(t) ≤ cβ (for all t ∈ [−β, β])

is satisfied if and only if

e−k|t|x(t) ≤ e−k|t|cβ (for all t ∈ [−β, β])

it follows that the image of η is the subspace Ĉ of C given as follows:

Ĉ = { y ∈ C | y(t) ≤ e−k|t|cβ for all t ∈ [−β, β] }.

In order to deduce that (C∗, D) is complete we need to know that (Ĉ, d) is complete; this
is a consequence of the following lemma.

Lemma. The set Ĉ is a closed subset of C.

Proof. By a proposition proved in Lecture 8, it suffices to show that if (yn)∞n=1 is a
convergent sequence in C with yn ∈ Ĉ then the limit y is also in Ĉ. But yn ∈ Ĉ gives
yn(t) ≤ e−k|t|cβ for all t, and it follows that y(t) = lim

n→∞
yn(t) ≤ e−k|t|cβ, whence y ∈ Ĉ,

as required. �

Being a closed subspace of a complete space, Ĉ must also be complete. And since
(C∗, D) is isometric to the complete space (Ĉ, d) it follows that (C∗, D) is also a complete
space. Now we at last come to the final ingredient of the proof of Picard’s Theorem: we
show that T is a contraction mapping on (C∗, D).

Completion of the proof. Let x, y ∈ C∗, and let t ∈ [−β, β]. We need to treat the cases
t ≥ 0 and t ≤ 0 separately, although they are nearly identical. In fact, we shall only do
the case t ≤ 0, leaving the (easier) case t ≥ 0 as an exercise for the reader. Note that the
definition of D yields that

e−k|s||x(s)− y(s)| ≤ D(x, y) for all s ∈ [−β, β], (1)

–5–



and thus we find that

|(Tx)(t)− (Ty)(t)| =
∣∣∣ ∫ t

0

f(s, x(s))− f(s, y(s)) ds
∣∣∣

≤
∫ 0

t

|f(s, x(s))− f(s, y(s))| ds (since t ≤ 0)

≤
∫ 0

t

k|x(s)− y(s)| ds (by the Lipschitz condition f satisfies)

≤
∫ 0

t

ke−ksD(x, y) ds (by Eq. (1), since |s| = −s on [t, 0])

= −ke−ksD(x, y)
]s=0

s=t

= (−1 + e−kt)D(x, y)

= (ek|t| − 1)D(x, y).

The same formula holds for t ≥ 0. Thus

D(Tx, Ty) = sup
t∈[−β,β]

e−k|t||(Tx)(t)− (Ty)(t)|

≤ sup
t

e−k|t|(ek|t| − 1)D(x, y)

= αD(x, y)

where α = supt∈[−β,β](1 − e−k|t|) = 1 − e−kβ . As e−kβ > 0, it follows that α < 1, and
therefore T is a contraction mapping. By the Banach Fixed Point Theorem it follows that
there is a unique x ∈ C∗ such that Tx = x. But we have shown that any solution of the
initial value problem must be an element of C∗ and a fixed point of T , and conversely that
every fixed point of T is a solution of the initial value problem. Thus the initial value
problem has a unique solution on [−β, β], as claimed.
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