Metric Spaces Lecture 25

Definition. A subset S of a metric space X is said to be sequentially compact if every
infinite sequence in S has a subsequence converging to a point of S.

In Lecture 24 we proved—or claimed to prove—that a compact subset of a metric
space is necessarily sequentially compact. Since there were some minor flaws in the proof
given there, we start this time by presenting a suitably modified version of this proof.
Proposition. Let C' be a compact subset of a metric space (X,d). Every infinite sequence
(an)5%y in C has a subsequence that converges to a point of C.

Proof. Let A = {a, | n € Z*}, the set of points of C' that occur as terms of the
sequence. The sequence is infinite, but it is possible that the set A is finite; if so, there
must be at least one a € A such that a, = a for infinitely many values of n. That is,
in this case there exists an infinite sequence of positive integers n; < no < --- such that
an, = a for all i. Clearly, the subsequence (a,,)°; of (a,) is then convergent, its limit
being a (which is an element of C').

We are left with the case that the set A is infinite. The proposition then guarantees
the existence of a point ¢ € C that is an accumulation point of A. Every open neighbour-
hood of ¢ then contains a point of A different from ¢. Thus for every € > 0 there exists
a positive integer n such that 0 < d(c,a,) < e. Let e; = 1, and choose n; € ZT such
that 0 < d(an,,c) < €1. (Note that in Lecture 24 we simply chose n; = 1. But it can
easily be seen that for the proof to work it is necessary that d(c,a,,) > 0, and there is
no guarantee that a; # c¢.) Now define ¢; and n; recursively for each i > 1 as follows: let
€ = %min{ d(c,an) | 1 <n<n;_q and a, # c}, and choose n; so that 0 < d(c,an,) < &;.
Since it is clear that ¢; > 0, such an n; must exist. Furthermore, since d(c, a,,;) < d(c, a,,)
for all n < n;_; such that a, # c, it follows that either a,, = ¢ or n; > n,_;. But
since also d(a,,,c) > 0 we conclude that n; > n;_;. Thus (n1,n2,n3,...) is an infinite
increasing sequence of positive integers, and so (an,,)$2; is a subsequence of (a,). (In
Lecture 24 we essentially defined ¢; = %d(c, ap,;_,); the problem with this is that it does
not guarantee that n; > ni_l.)

A straightforward induction shows that d(c, a,,) < 2~¢~1d(c, a1) for all i, and hence
d(c,an;) — 0 as i — oo. That is, the subsequence (ay,;)2; of (a,) converges to the
point ¢ € C. O

The above proposition has shown that, in metric spaces, compact implies sequentially
compact. We now set about proving the converse.

Let C be a sequentially compact set and let € > 0. Obviously the collection of open
balls of radius € and centre in C forms an open covering of C', since each point ¢ is in the
open ball ball centered at that point. Our first lemma says that this open covering of C
has a finite subcovering.

Lemma 1. Suppose that C is a sequentially compact subset of the metric space X, and
let € be any positive number. Then there exists a finite set of points x1, x2, ..., xn of C
such that C' C |J:—, B(z;,¢).

Proof. Suppose that no such set of points exists. We define an infinite sequence of points
xy, € C recursively as follows: for each k € ZT, let x, be any point of C'\ Uf:_ll B(x;,€).
The set C'\ U;:ll B(z;,€) is guaranteed to be nonempty (for each k) by our assumption
that no finite set of points z; € C exists with C' C |J;_; B(«x;,¢). Choosing the points in
this way ensures that for all k € Z* and all i € {1,2,...,k — 1}, the point z} is not in
B(x;,€), and therefore d(z;,zx) > e.
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By the assumption that C is sequentially compact, the sequence ()52, in C has a
convergent subsequence. That is, there exists an infinite increasing sequence of positive
integers i1 < ia < i3--- and a point z such that z; — = as r — oo. It follows that there
exists an integer N such that d(x; ,z) < £/2 whenever r > N. Now let i = i, and k = i,
where r, s € ZT are chosen so that N < r < s. Then

d(zi, o) < d(zg,x) + d(x,x1) < g + % —e,

contrary to the fact, explained above, that d(z;,zy) > ¢ for all 4,k € Z* with i < k. So

our assumption was false, and the lemma is proved. O
Definition. A set of points z1, za, ..., z, € C with the property that the open balls
B(x1,¢), B(xa,€), ..., B(xp,e) cover C is called an e-net for C.

Lemma 1 has shown that a sequentially compact set has a e-net, for every € > 0.

Lemma 2. Let (U;)ier be an open covering of a sequentially compact set C. Then there
exists an € > 0 such that for every x € C there is an i € I for which B(x,e) C U;.

Proof. Suppose, for a contradiction, that for every € > 0 there is an « € C such that
B(z,¢) is not contained in any U;. Then, in particular, for each k € Z™* there exists an
xr € C such that B(z,1/k) is not contained in any U;. Now because C is sequentially
compact there is an € C and an infinite increasing sequence of integers k1 < ko < k3 - - -
such that x, — x as n — oo. Since the U;’s cover C there is an ¢ € I such that x € U;,
and since U; is open there exists a € > 0 such that B(x,e) C U;.

Since 1/k,, — 0 as n — oo and d(xy, ,x) — 0 as n — oo, there exists an n € Z* such
that 1/k, < ¢/2 and d(z,,z) < €/2. Now, writing k = k,, for all y € B(xx, 1/k) we
have

1
d(l’,y) S d(-r,xk) +d(.’1)k7y) < E + - < £,

2k
and so y € B(z,e) C U;. As this holds for all y € B(xy, 1/k) it follows that B(zk, 1/k) is
contained in U;. This contradicts the way the xj were chosen. O

We are now able to complete the proof of the folowing theorem.
Theorem. Let C' be a sequentially compact metric space. Then C is compact.

Proof. Assume that C is sequentially compact, and let (U;);c; be an arbitrary open
covering of C. Choose ¢ as guaranteed by Lemma 2: then for all z € C there exists an
i € I with B(x,e) C U;. By Lemma 1 there exist n € Z* and points 1, x2, ..., x, € C
forming an e-net for C'; thus we have

C C B(x1,e) U B(x2,e)U--- U B(y,&). (1)

By the choice of ¢ we know that for each k € {1,2,...,n} there is an i, € I such that
B(zy,e) CU;,. By Eq. (1) it follows that

CCU,UlU,U---UU,,.

So in the arbitrarily chosen open covering (U;);c; we have found the finite subcovering
(Ui, )3—,- Hence C' is compact. O



To close, we prove a generalization, to the metric space context, of the result that
a continuous real-valued function on a closed and bounded interval in R is necessarily
uniformly continuous.f

Proposition. Let X and S be metric spaces, and suppose that X is compact. Then every
continuous function f: X — S is uniformly continuous.

Proof. Let € > 0. For each x € X there is a §, > 0 such that the following holds: for all
y € X, if d(x,y) < 0, then d(f(x), f(y)) < /2. Since each z € X is an element of the
open ball B(z,d,/2), it follows that the family of open balls (B(z,0,/2)).cx is an open
covering of X. Since X is compact, there is a finite subcovering, which we may write as
(B(x,05/2))zcq, the set @ being a finite subset of X.

Put § = mingeq(d;/2). Then § > 0 (as the minimum of a finite set of positive
numbers is finite), and § < §,/2 for all z € Q. Now let y, z € X with d(y,z) < J. Since
(B(x,04/2))zeq is a covering of X, there exists an x € @ such that y € B(z,d,/2). Thus
d(y,z) < 0,/2, and it follows that

X 61‘ x
d(z,7) < d(z,y) + d(y, z) <5+%< 5+%=5x.

So d(f(z), f(z)) < €/2. Since also d(y,x) < 0,/2 < §, we also have d(f(z), f(z)) < €/2,
and therefore

d(f(y), f(2)) < d(f(y), [(2)) +d(f(z), [(2)) <e/2+e/2 =«

This holds whenever d(y,z) < §, and since § depends only on ¢ it follows that f is
uniformly continuous, as required. O

1 This was not in fact done in the lecture; so its proof will not be considered as part
of the course for examination purposes. Nevertheless, the proof provides another good
example of a compactness argument.
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