Last time: oriented surfaces and their boundaries - Point your head in the direction of the positive unit normal vector n. - Orient ∂S so that S is to your left as you walk along ∂S . **Example:** Consider the surface of the unit cube $[0,1] \times [0,1] \times [0,1]$, oriented outwards. Let S_1 be the bottom and sides of the cube, and let S_2 be the top of the cube, so ∂S_1 and ∂S_2 are oriented curves. - (a) $\partial S_1 = \partial S_2$ - (b) $\partial S_1 = -\partial S_2$ - (c) Neither is true. - (d) I don't know. #### Announcements - Deadline to request a regrade for midterm 3 is this Thursday. - Final exam is next Friday. (!) I will organize some kind of review session next Wednesday/Thursday/Friday. Fill out the survey on the course webpage indicating your availability if you're interested. #### More on Stokes' Theorem and Curl #### Recall: - We assume we have a vector field \mathbf{F} defined on some open region $D \subset \mathbb{R}^3$, with continuous first order partial derivatives on D. - *S* is an oriented surface contained in *D*. We assume *S* is "nice": - *S* is piecewise smooth. - ∂S consists of one or more simple closed paths. #### Theorem (Stokes' Theorem) $$\iint_{S} curl \mathbf{F} \cdot d\mathbf{S} = \int_{\partial S} \mathbf{F} \cdot d\mathbf{r}.$$ #### More on Stokes' Theorem and Curl Let **F** be the velocity field of a fluid flow in \mathbb{R}^3 . Choose a point P in \mathbb{R}^3 , and choose any vector unit vector **n** at P. Let D be a small disk with centre P and unit normal \mathbf{n} , and place a tiny paddle wheel at P with its axis of rotation in direction \mathbf{n} . The counterclockwise force on the wheel is related to the **circulation** of **F** around ∂D : $$\sim \int_{\partial D} \mathbf{F} \cdot d\mathbf{r}.$$ But by Stokes' theorem, this is $$\iint_{D} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} \ dA.$$ The counterclockwise force on the wheel is related to the **circulation** of **F** around ∂D : $$\sim \int_{\partial D} \mathbf{F} \cdot d\mathbf{r} = \iint_{D} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} \ dA.$$ We approximate the function $\operatorname{curl} \mathbf{F} \cdot \mathbf{n}$ over the small disk D by its value at the centre point P. - The wheel rotates counterclockwise if $\operatorname{curl} \mathbf{F} \cdot \mathbf{n} > 0$ at P. - It rotates clockwise if curl F ⋅ n < 0 at P. - It doesn't rotate at all if $\operatorname{curl} \mathbf{F} \cdot \mathbf{n} = 0$. The speed of rotation is related to $|\text{curl} \cdot \mathbf{n}|$. If we want to place a tiny wheel at P oriented so that it will spin as quickly as possible, we should choose the angle/direction \mathbf{n} so that $|\operatorname{curl} \cdot \mathbf{n}|$ is as large as possible. i.e. we should choose ${\bf n}$ to be pointing in the same direction (\pm) as curl. ## Analogy If f is a function, the gradient $\nabla f(P)$ points in the direction we should face if we want to increase as quickly as possible. If **F** is a vector field, the curl $\nabla \times \mathbf{F}(P)$ points in the direction we should stand if we want to be spun around as quickly as possible. # Practice with Stokes' theorem: computing a hard surface integral by changing it into an easy surface integral Let S be the blob drawn on the board, oriented outward, with boundary edges of the square $[0,1]\times[0,1]\times\{1\}$. Let **F** be as before. What is $\iint_S \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$? - (a) -1 - (b) 0 - (c) 1 - (d) Not enough information. - (e) I don't know. #### Practice with Stokes' theorem $$\mathbf{F} = \langle \frac{y}{x^2 + v^2}, \frac{-x}{x^2 + v^2}, e^{z^2} \rangle.$$ This is defined everywhere except the *z*-axis, $\{x = y = 0\}$. **Claim:** curl $$\mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial_x & \partial_y & \partial_z \\ \frac{y}{x^2 + y^2} & \frac{-x}{x^2 + y^2} & e^{z^2} \end{vmatrix} = \mathbf{0}.$$ # ST: Converting a hard line integral to an easy surface integral Let C_1 be the curve parametrized by $\mathbf{r}_1(\theta) = \langle 4\cos\theta - \cos 4\theta, 1, 4\sin\theta - \sin 4\theta \rangle$, $0 \le \theta \le 2\pi$. Let S be the surface we get by filling in the curve in the y=1 plane. Observe that S doesn't intersect the z-axis, so \mathbf{F} is defined on all of S. Orient S so that $\partial S = C_1$. Then Stokes' Theorem says: $$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = 0.$$ ## More practice with Stokes' Theorem Let **F** be as before, but now let C_2 be the curve parametrized by $\mathbf{r}_2(\theta) = \langle 4\cos\theta - \cos 4\theta, 4\sin\theta - \sin 4\theta, 1 \rangle$, $0 \le \theta \le 2\pi$. Does the previous argument work to show that $\int_{C_2} \mathbf{F} \cdot d\mathbf{r} = 0$? Why or why not? - (a) No. - (b) Yes. No: any surface S with boundary C_2 passes through the z-axis, so \mathbf{F} is not defined on all of S.