
Last time: oriented surfaces and their
boundaries

∙ Point your head in the direction of the positive unit normal
vector n.

∙ Orient 𝜕S so that S is to your left as you walk along 𝜕S .

Example: Consider the surface of the unit cube
[0, 1]× [0, 1]× [0, 1], oriented outwards.

Let S1 be the bottom and sides of the cube, and let S2 be the top
of the cube, so 𝜕S1 and 𝜕S2 are oriented curves.

(a) 𝜕S1 = 𝜕S2

(b) 𝜕S1 = −𝜕S2

(c) Neither is true.

(d) I don’t know.



Announcements

∙ Deadline to request a regrade for midterm 3 is this Thursday.

∙ Final exam is next Friday. (!) I will organize some kind of
review session next Wednesday/Thursday/Friday. Fill out the
survey on the course webpage indicating your availability if
you’re interested.



More on Stokes’ Theorem and Curl

Recall:

∙ We assume we have a vector field F defined on some open
region D ⊂ R3, with continuous first order partial derivatives
on D.

∙ S is an oriented surface contained in D. We assume S is
“nice”:

∙ S is piecewise smooth.
∙ 𝜕S consists of one or more simple closed paths.

Theorem (Stokes’ Theorem)

∫︁∫︁
S
curl F · dS =

∫︁
𝜕S

F · dr.



More on Stokes’ Theorem and Curl

Let F be the velocity field of a fluid flow in R3. Choose a point P
in R3, and choose any vector unit vector n at P.

Let D be a small disk with centre P and unit normal n, and place
a tiny paddle wheel at P with its axis of rotation in direction n.

The counterclockwise force on the wheel is related to the
circulation of F around 𝜕D:

∼
∫︁
𝜕D

F · dr.

But by Stokes’ theorem, this is∫︁∫︁
D
curlF · n dA.



The counterclockwise force on the wheel is related to the
circulation of F around 𝜕D:

∼
∫︁
𝜕D

F · dr =
∫︁∫︁

D
curlF · n dA.

We approximate the function curlF · n over the small disk D by its
value at the centre point P.

∙ The wheel rotates counterclockwise if curlF · n > 0 at P.

∙ It rotates clockwise if curlF · n < 0 at P.

∙ It doesn’t rotate at all if curlF · n = 0.

The speed of rotation is related to |curl · n|.

If we want to place a tiny wheel at P oriented so that it will spin
as quickly as possible, we should choose the angle/direction n so
that |curl · n| is as large as possible.

i.e. we should choose n to be pointing in the same direction (±)
as curl.



Analogy

If f is a function, the gradient ∇f (P) points in the direction we
should face if we want to increase as quickly as possible.

If F is a vector field, the curl ∇× F(P) points in the direction we
should stand if we want to be spun around as quickly as possible.



Practice with Stokes’ theorem: computing
a hard surface integral by changing it into

an easy surface integral

Let S be the blob drawn on the board, oriented outward, with
boundary edges of the square [0, 1]× [0, 1]× {1}.
Let F be as before.
What is

∫︀∫︀
S curlF · dS?

(a) -1

(b) 0

(c) 1

(d) Not enough information.

(e) I don’t know.



Practice with Stokes’ theorem
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This is defined everywhere except the z-axis, {x = y = 0}.
Claim:
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ST: Converting a hard line integral to an
easy surface integral

Let C1 be the curve parametrized by
r1(𝜃) = ⟨4 cos 𝜃 − cos 4𝜃, 1, 4 sin 𝜃 − sin 4𝜃⟩, 0 ≤ 𝜃 ≤ 2𝜋.

Let S be the surface we get by filling in
the curve in the y = 1 plane. Observe
that S doesn’t intersect the z-axis, so F
is defined on all of S .

Orient S so that 𝜕S = C1. Then
Stokes’ Theorem says:∫︁

C1

F · dr =
∫︁∫︁

S
curlF · dS = 0.



More practice with Stokes’ Theorem

Let F be as before, but now let C2 be the curve parametrized by
r2(𝜃) = ⟨4 cos 𝜃 − cos 4𝜃, 4 sin 𝜃 − sin 4𝜃, 1⟩, 0 ≤ 𝜃 ≤ 2𝜋.

Does the previous argument work
to show that

∫︀
C2

F · dr = 0? Why
or why not?

(a) No.

(b) Yes.

No: any surface S with boundary
C2 passes through the z-axis, so
F is not defined on all of S .


