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Abstract We propose a conceptual model which generates abrupt climate changes7

akin to Dansgaard-Oeschger events. In the model these abrupt climate changes8

are not triggered by external perturbations but rather emerge in a dynamic self-9

consistent model through complex interactions of the ocean, the atmosphere and10

an intermittent process. The abrupt climate changes are caused in our model by in-11

termittencies in the sea-ice cover. The ocean is represented by a Stommel two-box12

model, the atmosphere by a Lorenz-84 model and the sea-ice cover by a determin-13

istic approximation of correlated additive and multiplicative noise (CAM) process.14

The key dynamical ingredients of the model are given by stochastic limits of de-15

terministic multi-scale systems and recent results in deterministic homogenisation16

theory. The deterministic model reproduces statistical features of actual ice-core17

data such as non-Gaussian α-stable behaviour.18

The proposed mechanism for abrupt millenial-scale climate change only relies on19

the existence of a quantity, which exhibits intermittent dynamics on an interme-20

diate time scale. We consider as a particular mechanism intermittent sea-ice cover21

where the intermittency is generated by emergent atmospheric noise. However,22

other mechanisms such as freshwater influxes may also be formulated within the23

proposed framework.24

Keywords Dansgaard-Oeschger events · intermittency25

1 Introduction26

A remarkable signature of the climate of the past 100 kyrs are the so called27

Dansgaard-Oeschger (DO) events (Dansgaard et al., 1984). These events occurred28

during the last glacial period and are characterised by abrupt warming within a29

few decades of 5-10 degrees followed by more gradual cooling over more than 130
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kyr back to the stadial period with DO events recurring on a millennial time scale31

(Grootes and Stuiver, 1997; Yiou et al., 1997; Ditlevsen et al., 2005). They were32

first detected in time series of temperature proxies such as O18-isotopes concentra-33

tions in ice-cores collated in Greenland (Greenland Ice-core Project (GRIP) Members,34

1993; Andersen et al., 2004). The analysis of the ice-core data conveyed certain35

statistical features of DO events such that the abrupt warming events are con-36

sistent with non-Gaussian Lévy jump processes (so called α-stable processes)37

(Fuhrer et al., 1993; Ditlevsen, 1999). The dynamic mechanism which gave rise38

to these events is still under debate. There exists a plethora of theories aimed39

at explaining their occurrence, ranging from conceptual models to simulations40

of complex coupled atmosphere-ocean general circulation models (see the excel-41

lent reviews by Crucifix (2012) and by Li and Born (2019)). Most theories are42

built around the premise that the ocean is the main agent controlling the DO43

events, and that the ocean’s meridional overturning circulation (MOC) is re-44

duced by freshwater influx (Manabe and Stouffer, 2011; Friedrich et al., 2010).45

This hypothesis has been tested in ocean general circulation models by studying46

the ocean response to prescribed freshwater flushes (Weaver and Hughes, 1994;47

Ganopolski and Rahmstorf, 2001; Haarsma et al., 2001; Meissner et al., 2008; Timmermann et al.,48

2003). How these freshwater fluxes were produced in the first place is, however,49

left out in these studies. There is a need to develop a self-consistent mecha-50

nism for DO events, which does not rely on external factors not covered by51

the model. Moreover, the pivotal role of internal ocean dynamics has been ques-52

tioned by Wunsch (2006). Therein it is argued that the ocean’s net meridional53

heat transport is not sufficiently strong to cause the massive changes in temper-54

ature as suggested from the ice-core data, and that “the oceanic tail may not55

necessarily be wagging the meteorological dog”. It has instead been recognised56

recently that DO events involve an intimate and complex interaction between the57

ocean, sea-ice and the atmosphere (see the comprehensive review by Li and Born58

(2019)). In particular the role of stochastic wind forcing (Monahan et al., 2008;59

Drijfhout et al., 2013; Kleppin et al., 2015), the importance of sea-ice and its60

changes (Gildor and Tziperman, 2003; Li et al., 2005; Petersen et al., 2013; Dokken et al.,61

2013; Zhang et al., 2014; Kleppin et al., 2015; Hoff et al., 2016; Boers et al., 2018;62

Sadatzki et al., 2019), the vertical structure of the Nordic seas (Singh et al., 2014;63

Jensen et al., 2016) as well as inter-hemisphere coupling mediated by Southern64

Ocean winds (Banderas et al., 2012, 2015) have all been found to have a signifi-65

cant effect on the phenomenon of DO events.66

67

Building on these current developments in our understanding of DO events,68

we develop here a conceptual model for millennial-scale abrupt climate change69

consisting of a coupled dynamical system modelling the interactions between the70

ocean, sea-ice and the atmosphere, without any external forcing such as pre-71

scribed freshwater fluxes. We do so in an entirely deterministic fashion. The impor-72

tance of stochastic atmospheric dynamics (Monahan et al., 2008; Drijfhout et al.,73

2013; Dokken et al., 2013; Kleppin et al., 2015) and the observed effective α-stable74

statistics of the ocean temperature (Ditlevsen, 1999) are accounted for via deter-75

ministically self-generated noise in a multi-scale setting. On the slow scale the76

ocean is modelled by a Stommel two-box model (Stommel, 1961) which is forced77

by an intermittent sea-ice model on an intermediate time scale. The atmosphere78

enters the model in form of a Lorenz-84 model on the fastest time scale, modelling79



A model for Dansgaard-Oeschger events 3

jet streams and baroclinic eddy activity (Lorenz, 1984). We consider here the pos-80

sibility of two atmospheric Lorenz-84 models, one for the Northern hemisphere81

and one for the Southern hemisphere (Banderas et al., 2012, 2015). The strongly82

chaotic atmosphere gives rise to Gaussian noise on the slower time scales of the83

sea-ice and of the ocean. The crucial premise of our model is that sea-ice is inter-84

mittent and that its dynamics is punctuated by sporadic events of extreme large85

sea-ice cover. The effect of atmospheric forcing on the variations of sea-ice has long86

been recognised (Fang and Wallace, 1994; Venegas and Mysak, 2000; Deser et al.,87

2002). In our model chaotic weather dynamics deterministically generates intermit-88

tent sea-ice dynamics. The emerging weakly chaotic intermittent sea-ice dynamics89

then subsequently generates the necessary non-Gaussian Lévy noise in the slow90

ocean dynamics, driving the ocean temperature abruptly from its glacial steady91

(noisy) state to a warmer unstable state.92

From a dynamical systems point of view the theoretical backbone of the model93

consists of statistical limit laws to generate stochastic processes by appropriately94

integrating deterministic chaotic dynamics and hinges on recent advances in the95

study of diffusive limits of deterministic multi-scale systems (Melbourne and Stuart,96

2011; Gottwald and Melbourne, 2013b; Kelly and Melbourne, 2016; Chevyrev et al.,97

2019). Therein it is shown that noise can be deterministically generated within a98

multi-scale system. If the driving fast process is strongly chaotic, the slow dynam-99

ics is, in the limit of infinite time-scale separation, in effect a stochastic differ-100

ential equation driven by Brownian (possibly multiplicative) noise. The mecha-101

nism can be motivated heuristically as follow: within one slow time unit the slow102

dynamics integrates the chaotic fast process and, invoking a central limit type103

argument, one ends up with an effective Gaussian noise. However, as was shown104

by Ditlevsen (1999), ice-core data exhibit a strong degree of non-Gaussian α-105

stable dynamics. Anomalous α-stable noise, or a Lévy process, is characterised106

by jumps at all scales with non-zero probability of large jumps (see, for ex-107

ample, Chechkin et al. (2008) for an exposition of α-stable processes). As for108

the Gaussian noise discussed above, α-stable Lévy noise can be deterministi-109

cally generated in an entirely deterministic fashion. The deterministic origin of110

anomalous diffusion can be linked to intermittent fast dynamics in which the111

dynamics spends long temporal intervals near a marginally stable fixed point112

or periodic orbit before experiencing chaotic bursts (Gaspard and Wang, 1988).113

The central limit theorem which generated the Gaussian noise in the case of114

strongly chaotic non-intermittent dynamics ceases to be valid but can be re-115

placed by a modified statistical law (Gouëzel, 2004). Gottwald and Melbourne116

(2013b); Chevyrev et al. (2019) showed that for multi-scale systems with a weakly117

chaotic intermittent fast driving process the limiting stochastic process of the slow118

dynamics is given by (possibly multiplicative) α-stable noise1 We consider here119

intermittent sea-ice dynamics modelled by correlated additive and multiplica-120

tive noise (CAM) (Sura and Sardeshmukh, 2008; Sardeshmukh and Sura, 2009;121

Penland and Sardeshmukh, 2012; Sardeshmukh and Penland, 2015). CAM noise122

naturally arises in deterministic multi-scale systems for the effective slow dynam-123

ics (Sardeshmukh and Sura, 2009; Majda et al., 2009). Using statistical limit laws124

developed by Kuske and Keller (2001), Thompson et al. (2017) showed that fast125

1 See Gottwald and Melbourne (2013a) for a definition of what constitutes strong and weak
chaos.
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intermittent CAM noise can be used to generate α-stable processes. Within the126

framework of statistical limit laws we can now highlight the dynamic function of127

the geophysical ingredients of our coupled ocean-atmosphere sea-ice model: using128

the classical central limit theorem, a fast atmospheric model generates intermittent129

Brownian CAM noise of the sea-ice dynamics on an intermediate time scale. The130

sea-ice dynamics then generates α-stable noise on the slow oceanic time scale by131

means of a generalised central limit theorem.We show that the emerging stochastic132

dynamics of this coupled ocean-atmosphere and sea-ice model is able to generate133

abrupt changes in the temperature akin of DO events.134

135

The paper is organised as follow. In Section 2 we perform an analysis of ice-core136

data confirming that the data are consistent with a dynamic process involving α-137

stable noise. Section 3 provides a heuristic approach to deterministic generation of138

stochastic processes, covering both the Gaussian and the α-stable case. Sections 4139

and 5 are the heart of the paper. Section 4 introduces the deterministic coupled140

ocean-atmosphere and sea-ice model. Section 5 provides numerical simulations141

illustrating the capability of the model to capture abrupt climate changes akin to142

DO events. We conclude in Section 6 with a discussion.143

2 Time series analysis of ice-core data144

Ice core data have immensely increased our knowledge about past climate varia-145

tions (Greenland Ice-core Project (GRIP) Members, 1993; Andersen et al., 2004).146

An analysis of calcium ice core data collated in central Greenland as part of the147

GRIP programme (Fuhrer et al., 1993) was performed by Ditlevsen (1999). Cal-148

cium originates from dust deposited on the ice and is not diffusing as much as149

the usual δ18O proxy allowing for a higher temporal resolution. The logarithm150

of the calcium concentration is negatively correlated with δ18O, with higher con-151

centrations of Ca2+ in colder conditions due to enhanced exposure to sea shelves152

caused by lower sea levels, increased aridity and stronger zonal winds caused by an153

increased meridional temperature gradient (Fuhrer et al., 1993; Schüpbach et al.,154

2018). The time series of − log(Ca) is shown in Figure 1 together with the time155

series of δ18O illustrating their strong correlation. The data for δ18O were ob-156

tained from the NGRIP programme using the Greenland Ice Core Chronology157

(GICC05) time scale and the GICCO05modelext time scale for times past 60kyr158

before year 2000 (Vinther et al., 2006; Rasmussen et al., 2006; Andersen et al.,159

2006; Svensson et al., 2008; Wolff et al., 2010). The time series of log(Ca) exhibits160

strong non-Gaussian character. Ditlevsen (1999) found that the data contain a161

significant α-stable component with a stability parameter α = 1.75 in conjunction162

with multiplicative Gaussian noise.163

164

We briefly revisit the analysis, using a different method to detect the α-stable
component. We assume that the data can be modelled by a one-dimensional
stochastic differential equation of the form dX = −U ′(X)dt+σwdWt+dLα where
Wt is standard Brownian motion and Lα is an α-stable stochastic process. The
prime denotes the derivative with respect to X. The potential U(X) can be readily
estimated from the data by using standard coarse graining of the data to estimate
the conditional average of dX (Gardiner, 2003; Siegert et al., 1998; Stemler et al.,
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2007). We obtain a quartic potential U(X) = 0.0018X4−0.0058X3+0.0024X2+
0.0028X where the two potential well minima correspond to the stadial and inter-
stadial regimes (see also Kwasniok and Lohmann (2009); Lohmann and Ditlevsen
(2019)). The colder potential minimum is more stable than the warmer one. To
estimate the presence of α-stable noise we will not, as in Ditlevsen (1999), study
the scaling of the tails of the empirical probability density function (which scales
as X−α−1), but rather employ the method of p-variation (Magdziarz et al., 2009;
Magdziarz and Klafter, 2010; Hein et al., 2009). Whereas the presence of fat tails
may also be caused by multiplicative Gaussian noise, p-variation is a proper statis-
tics to isolate α-stable behaviour. The statistics concerns the asymptotic behaviour
of

V n
p (t) =

[nt]
∑

k=1

|X(k/n)−X([k − 1]/n)|p.

This easily computable statistics measures the roughness of the process X, tun-165

ing into finer and finer partitions with increasing n. For p = 1 the statistics re-166

duces to the total variation and for p = 2 it reduces to the quadratic variation.167

For Brownian motion where increments scale as
√

1/n one obtains in the limit168

of n → ∞ that V n
2 (t) ∼ t, and V n

p (t) → 0 for p > 2. Given an α-stable pro-169

cess X for some α < 2, the statistics V n
p (t) converges for p > α and diverges170

for p < α. In Hein et al. (2009) it was shown that if X is a stochastic pro-171

cess dX = −U ′(X)dt + σwdWt + dLα driven by α-stable noise with α = p/2172

then V n
p (t) converges in distribution to L1/2. This suggests to use a Kolmogorov-173

Smirnov test and find the value of p = 2α for which the empirical cumulative174

distribution function is closest to the target cumulative distribution function of175

L1/2. To estimate the cumulative distribution function we follow Hein et al. (2009)176

and choose to divide the Ca time series into 282 segments, each consisting of 282177

data points. The minimal Kolmogorov-Smirnov distance is then found by varying178

the scale parameter of the target distribution L1/2 for each value of p. The value179

p⋆ for which the minimum is attained then determines α = p⋆/2. For details on180

the p-variation method see (Magdziarz et al., 2009; Magdziarz and Klafter, 2010;181

Hein et al., 2009). We remark that Hein et al. (2009) found a value of α = 0.75,182

suggesting a Lévy process with infinite mean. We find here, in reasonably close183

agreement with the result by Ditlevsen (1999), the value of α = 1.78. In our model,184

introduced in Section 4, the particular feature of DO events to exhibit α-stable185

statistics will be generated by intermittent sea-ice dynamics.186

3 Dynamic mechanism to generate Brownian motion and Lévy noise187

from deterministic multi-scale systems188

The model developed in Section 4 relies on recent developments in the study
of stochastic limits of deterministic multi-scale systems The mathematical pro-
gramme to derive limiting stochastic slow dynamics is coined homogenisation
(Givon et al., 2004). The machinery of homogenisation provides explicit expres-
sions for the drift and diffusion components of the effective stochastic slow dynam-
ics. In particular, we will use results from deterministic homogenisation of multi-
scale systems (Melbourne and Stuart, 2011; Gottwald and Melbourne, 2013b; Kelly and Melbourne,
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Fig. 1 The negative logarithm of the calcium concentration and δ18O as a function of time.
The Ca time series was obtained from the GRIP ice-core data and have a temporal resolution
of approximately 1 year, and there are a total of 79, 957 data points between 11 kyrs and
91 kyrs. The δ18O time series was obtained from NGRIP ice-core data and have a temporal
resolution of 20 years with 6, 114 data points.

2017; Chevyrev et al., 2019). Rather than stating the theorems we present here,
following Gottwald et al. (2017), a heuristic motivation to illustrate how deter-
ministic multi-scale systems can give rise to an effective stochastic dynamics for
the slow variables. Consider the slow-fast system for slow variables xε and fast
variables yε

ẋε = εγ−1h(xε)f(yε), xε(0) = x0 (1)

ẏε = ε−1g(yε), yε(0) = y0, (2)

which is formulated on the fast time scale. Here ε ≪ 1 denotes the time scale
separation and γ ≥ 1

2 . We assume that the fast dynamics is supported on a chaotic
attractor and is statistically stationary in the sense that averages can be computed
by means of temporal averages. Integration of the slow dynamics yields

xε(t) = x0 + εγ
∫ t

ε

0

h(xε(τ))f(yε(τ))dτ.

Introducing n = ε−1 and α = 1/γ we obtain

xε(t) = x0 +
1

n
1

α

∫ tn

0

h(xε(τ))f(yε(τ))dτ. (3)

Consider first the case α = γ = 1, then for n → ∞ (or equivalently for ǫ → 0)
the temporal integral is simply the average over the fast dynamics, and by the
law of large numbers (the most simple statistical limit law) the slow dynamics
remains deterministic in the limit ε → 0, and solutions xε(t) converge to solutions
of the deterministic equation Ẋ = Fh(X) with X(0) = x0 where F ≡ const is the
average over the fast dynamics of f(yε). Now consider the case when the average
is zero with F ≡ 0. Clearly, the implied deterministic limit X(t) = X(0) does not
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capture the dynamics of the solution xε(t) of the actual multi-scale system which
is constantly driven by non-zero f(yε(t)). One needs to go to longer time scales
to see these fluctuations sum up to generate noise. This can be seen from (3) by
setting α = 2 (i.e. γ = 1

2 ). For α = 2 the integral is reminiscent of the central
limit theorem. Indeed using statistical limit laws for strongly chaotic dynamical
systems (Melbourne and Nicol, 2005, 2009), the integral term converges to Gaus-
sian noise. For the purpose of this exposition it is sufficient to think of strongly
chaotic dynamical systems as systems for which the auto-correlation function is
integrable; this will be contrasted to weakly chaotic dynamical systems for which
the auto-correlation function is not integrable (Gottwald and Melbourne, 2013a).
It is important to note that it is not the chaotic signal yε itself that is noisy but
rather the integrated fast chaotic variable. Care has to be taken in what way the
stochastic integral in (3) is to be interpreted (Gottwald and Melbourne, 2013b;
Kelly and Melbourne, 2017). In the case of 1-dimensional slow variables xε, which
will be considered in Section 4 for the sea-ice model, the stochastic integrals are
in the sense of Stratonovich, i.e. classical calculus is preserved in the limiting pro-
cess when passing from the smooth deterministic multi-scale system to the rough
stochastic differential equation. In this case, the slow dynamics of the multi-scale
system (1)–(2) converges on the slow times xε(t/ε) → X(t) where X satisfies the
stochastic differential equation

dX = Σ h(X) ◦ dWt, (4)

with standard Brownian motion Wt (and ◦ denoting that the noise is to be inter-
preted in the sense of Stratonovich) and the diffusion coefficient is given by the
Green-Kubo formula

Σ =

∫

∞

0

C(t)dt,

with normalised auto-correlation

C(t) =
1

σ2

∫

∞

0

f0(yε(t+ s))f0(yε(s))ds

with C(0) = 1. The diffusion coefficient Σ is well defined if the auto-correlation189

function is integrable.190

There is, however, a class of weakly chaotic dynamical systems, for which
the central limit theorem breaks down and fluctuations are of the Lévy type
rather than Gaussian. Weakly chaotic dynamics is characterised by intermittent
behaviour where the dynamics spends extensive time near “sticky” equilibria or
periodic orbits before sporadic excursive bursts away from those marginally un-
stable objects. It has recently been shown that, if f(yε) is non-zero in the laminar
phase, the central limit theorem can be replaced for weakly chaotic dynamics and
the integral term in (3) converges in distribution to a stable law Lα,η,β of exponent
α ∈ (1, 2) (Gouëzel, 2004). The stability parameter α determines the algebraic de-
cay in the tail of the probability density function, the scale parameter η measures
the spread of the distribution around its maximum and the skewness parameter β
encapsulates the probability of the process experiencing a positive jump or negative
jump with β = ±1 having only positive/negative jumps. Gottwald and Melbourne
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(2013b); Chevyrev et al. (2019) showed that for intermittent fast dynamics (2)
solutions xε converge weakly to solutions of the stochastic differential equation

dX = h(X) ⋄ dLα,η,β , X(0) = x0. (5)

The parameters α, β and η of the Lévy process Lα,η,β are determined by the statis-191

tical properties of the driver f(yε). The diamond denotes that the noise h(X)⋄dL192

is to be interpreted in the sense of Marcus (Marcus, 1981; Applebaum, 2009;193

Chechkin and Pavlyukevich, 2014). The Marcus interpretation is the analogue of194

the Stratonovich interpretation for Brownian noise in the sense that classical calcu-195

lus prevails, consistent with the intuition that one expects that the noise arises as a196

limit involving only smooth functions of a smooth deterministic system, and hence197

classical calculus should be inherited by the limiting system. We remark that the198

noise is of Marcus type independent of the dimension of the slow variables, unlike199

for the Stratonovich interpretation in the case of Brownian motion which is only200

ensured for 1-dimensional slow variables. The Marcus integral
∫ t

h(X)⋄dLα,η,β(s)201

involves cumbersome expressions such as sums over infinitely many jumps. More-202

over, whereas one can pass readily between the Stratonovich integrals to Itô inte-203

grals, this is not possible for Marcus integrals. In our applications here, however,204

the α-stable noise will be additive and these issues do not arise. The convergence205

to a Lévy process can be heuristically understood by realising that if the dynam-206

ics yε is near the marginally unstable fixed point yε = y⋆ε , the slow dynamics is207

driven by a constant h(xε)f(y
⋆
ε) (note that on the fast time scale τ = t/ǫ xε is208

approximately constant). Hence the slow variable experiences ballistic drift during209

the laminar phases. It is those long ballistic drifts which amount to the jumps of210

the Lévy process when viewed on a long time scale (see Gottwald and Melbourne211

(2013a, 2016, 2020) for numerical illustrations of this mechanism).212

In a different strand of work, based on statistical limit laws for stochastic
dynamical systems (Kuske and Keller, 2001), Thompson et al. (2017) argue that
so called correlated additive and multiplicative (CAM) noise processes

dyε = Lyε dt−
E

2
Gdt+ (Eyε +G) ◦ dW1 +B dW2 (6)

with independent standard Brownian motions W1,2 and L < 0 lie in the domain
of α-stable processes which means that they give rise to α-stable processes when
integrated. For B 6= 0 the mean is well defined and one has explicit expressions
for the parameters of the resulting Lévy process α, β and η as functions of the
parameters of the CAM process (Kuske and Keller, 2001; Thompson et al., 2017).
The stability parameter α of the resulting α-stable process Lα,η,β is given by

α = −2
L

E2
, (7)

the skewness parameter is given by

β = tanh(
πG(α− 1)

2B
) (8)

and the scale parameter η is given by

η =

(

2 cosh(πG(α−1)
2B )

Eα+1αN
Γ (1− α) cos(

π

2
α)

) 1

α
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Fig. 2 Left: Realisation of a CAM process with (L,E,G,B) = (−094, 1.118, 1, 0.3). Right:
Approximation of an α-stable process with α = 1.5 and β = 0.99 from the time series shown
on the left.

with

N = 2π(2B)−α Γ (α)

EΓ (z)Γ (z̄)
, z =

α+ 1

2
+ i

G(α− 1)

B
,

where the bar denotes the complex conjugate.213

Figure 2 shows an example of a time series of a CAM process with L = −0.94,214

E = 1.118 G = 1 and B = 0.3, implying that ξ = εγ
∫ t/ε

f(yε(s))ds with γ = 1/α215

converges to an α-stable process with α = 1.5 and β = 0.99 (implying that there216

are almost only upwards jumps). Here the mechanism of generating α-stable noise217

is different to the one described above: rather than the jumps consisting of many218

small jumps during the long laminar phases of varying length, the jumps here are219

caused by the sporadic peaks of varying sizes.220

221

In Section 4 we shall model sea-ice by a deterministic approximation of a CAM222

process, whereby the two independent Brownian motions W1,2 are approximated223

by two uncorrelated fast strongly chaotic processes, along the lines described above.224

4 Coupled ocean-atmosphere and sea-ice model225

We construct a conceptual deterministic coupled ocean-atmosphere and sea-ice
model. The ocean model is given by a Stommel two-box model (Stommel, 1961)
and the atmosphere is represented by a Lorenz-84 model, decsribing the westerly
jet stream and large-scale eddies (Lorenz, 1984). The sea-ice is modelled by a lin-
ear intermittent CAM process driven by the fast atmosphere and is characterised
by sporadic brief periods of large sea-ice extent (cf. Figure 2). The intermittent
character of the sea-ice is the main premise of our model and is paramount to
generate the abrupt climate changes of DO events. The abrupt climate changes
are a signature of an emerging α-stable driving signal induced by integrated inter-
mittent sea-ice dynamics. To deterministically generate the α-stable noise on the
slow oceanic time scale using the statistical limit theorems outlined in Section 3,
two further scales are required besides the slow oceanic time scale: a fast and an
intermediate time scale. The fast strongly chaotic atmosphere dynamics integrates
on the intermediate time scale of the sea-ice to Brownian motion to generate CAM
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Fig. 3 Schematic of the coupled ocean-atmosphere and sea-ice model, highlighting the inter-
dependencies and the characterising variables.

noise. Then the CAM noise is integrated on the slow oceanic time scale to gener-
ate α-stable Lévy noise. We impose the natural time scale separation of the slow
ocean with the typical diffusive time scale estimated as 219 years (Cessi, 1994),
an intermediate sea-ice dynamics occurring on time scales of months and a fast
atmosphere with typical time scales of days. This suggest to introduce time scale
parameters for the fast atmosphere ǫf and the intermediate sea-ice dynamics ǫi as

ǫf =
1

365× 219
≈ 1.25× 10−5, (9)

ǫi =
30

365× 219
≈ 3.75× 10−4. (10)

The ocean is characterised by coarse meridional temperature and salinity gradients

T = Te − Tp, (11)

S = Se − Sp, (12)

where the subscripts e and p denote the respective values at equatorial and polar226

locations. The sea-ice dynamics is characterised by the extent of the sea-ice cover227

ξ. The atmosphere is characterised by the westerly zonal mean flow xN,S and the228

superimposed large scale eddies with amplitudes yN,S and zN,S . Subscripts N and229

H denote the respective values of the Northern and Southern hemisphere. We first230

present the coupled non-dimensional model (13)–(18) for these variables together231

with the coupling terms (19)–(22) capturing the various interactions between the232

ocean, atmosphere and sea-ice, before deriving the model and the non-standard233

coupling terms in Sections 4.1–4.3. Figure 3 presents a schematic illustrating the234

model and its various dependencies. For ease of navigation relevant variables and235

parameters are listed in Table 1.236

Specifically, we propose the following model: the ocean is described by a Stom-
mel two-box model

Ṫ = − 1

ǫa
(T −Θ(t))− T − µ|S − T |T − 1

ǫ1−γ
i

d (ξ − ξ̄)T (13)

Ṡ = σ(t)− S − µ|S − T |S, (14)
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Variable/Parameter Brief description

fast atmosphere: Lorenz-84 model

(for Northern (H) and Southern (S) hemisphere)

xN,S strength of westerly zonal mean flow
yN,S , zN,S amplitude of sine and cosine phase of large-scale eddy
∆N,S eddy energy with ∆ = y2 + z2

FN,S meridional temperature gradient
GN,S longitudinal temperature gradient

intermediate sea-ice model: CAM noise

ξ sea-ice cover

slow ocean: Stommel two-box model

T temperature gradient T = Te − Tp between
equatorial and polar ocean

S salinity gradient S = Se − Sp between
equatorial and polar ocean

Θ ambient temperature gradient
σ freshwater flux

global coupling parameters

ǫf ratio of characteristic time scales of
fast atmosphere and slow ocean

εi ratio of characteristic time scales of
intermediate sea-ice and slow ocean

γ inverse of stability parameter of the α-stable
process with γ = 1/α

Table 1 Variables and parameters used for the coupled ocean-atmosphere and sea-ice model.

where ǫa measures the relaxation of the ocean temperature to the ambient tem-
perature Θ(t), µ quantifies the transport strength and σ(t) denotes freshwater
flux. A more detailed definition of the parameters is provided in Section 4.1. The
parameter γ controls the application of the statistical limit theorems discussed in
Section 3 to generate Lévy noise with stability parameter α = 1/γ. The ocean-
dynamics couples to the sea-ice dynamics

ǫiξ̇ = (λ+
κ2

2
)ξ +

√

ǫi
ǫf

δ (κξ + g)(xS − x̄S) +

√

ǫi
ǫf

c (∆N − ∆̄N ), (15)

where the sea-ice dynamics is driven by the Northern hemisphere atmosphere
through the eddy strength ∆N = y2N + z2N and by the Southern hemisphere at-
mosphere by the jet stream xS . The parameters λ, κ, δ, g, c allow for tuning of the
α-stable noise emerging in the ocean model (13) (cf. (6)). The atmospheres of the
Northern and Southern hemisphere are modelled by two Lorenz-84 systems

ǫf ẋN,S = −(y2N,S + z2N,S)− a(N,S) (xN,S − F (N,S)) (16)

ǫf ẏN,S = xN,S yN,S − b(N,S) xN,S zN,S − (yN,S −G(N,S)) (17)

ǫf żN,S = b(N,S) xN,S yN,S + xN,S zN,S − zN,S . (18)

To generate Brownian motion in the sea-ice dynamics (15) the only requirement
for the choice of the parameters a(N,S), b(N,S), F (N,S) and G(N,S) is that the
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Lorenz-84 systems supports chaotic dynamics. The southern meridional and lon-

gitudinal temperature gradients F (S) and G(S) are set to constant F (S) = F
(S)
0

and G(S) = G
(S)
0 whereas the northern meridional and longitudinal temperature

gradients F (N) and G(N) include back-coupling to the ocean dynamics and the
sea-ice via

F (N) = F
(N)
0 + F

(N)
1 T + F

(N)
2 ξ (19)

G(N) = G
(N)
0 −G

(N)
1 T −G

(N)
2 ξ, (20)

with F
(N)
1,2 ≥ 0 and G

(N)
1,2 ≥ 0. The ambient temperature gradient Θ(t) of the ocean

is driven by the atmosphere via thermal wind balance and is modelled as

Θ(t) = θ0 + θ1
xN − x̄N√

ǫf
, (21)

and the salinity gradient S is driven by the freshwater flux σ(t) which is affected
by both the atmosphere and the sea-ice, and is modelled as

σ(t) = σ0 + σ1
∆N − ∆̄N√

ǫf
+ σ2

ξ̇ − ¯̇
ξ

ǫ
1−γξ

i

. (22)

The model (13)–(18) includes a wide range of interactions between the ocean,237

the atmosphere and the sea-ice, captured in (19)–(22). To obtain abrupt warming238

events, however, it is sufficient to consider a minimal model with F
(N)
1 = F

(N)
2 =239

G
(N)
1 = G

(N)
2 = θ1 = σ1 = σ2 ≡ 0. To reproduce realistic stochastic variations,240

however, we include atmospheric noise on the ocean dynamics and allow for θ1 6= 0241

and σ1 6= 0 in the numerical simulations presented in Section 5.242

243

We derive the model (13)–(18) with its coupling terms (19)–(22) in the follow-244

ing subsections. We begin by first deriving the classical Stommel two-box model on245

the slow time scale. We then continue setting up the atmosphere dynamics on the246

fastest time scale with a Lorenz-84 model and discuss how the atmosphere and the247

ocean couple. Finally, we set out to propose our model for the intermittent sea-ice248

dynamics and discuss how it modifies the dynamics of the (northern) atmosphere249

and ocean.250

4.1 Ocean model251

We first formulate the ocean model on the slow time scale. We consider here the
Stommel two-box model for the temperatures Te,p and salinities Se,p of an equa-
torial ocean box and a polar ocean box, respectively, (Stommel, 1961). Although
the derivation is standard and the box model is part of the canonical suite of con-
ceptual models we present the derivation to illustrate the order of magnitude of
the respective parameters of our model. We follow here Cessi (1994) and Roebber
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(1995) in the derivation. From conservation of heat, salt and water mass one ob-
tains

Ṫe = − 1

tr
(Te −Θe(t))−

1

2
Ψ(∆ρ) (Te − Tp)

Ṫp = − 1

tr
(Tp +Θp(t))−

1

2
Ψ(∆ρ) (Tp − Te)

Ṡe =
We(t)

H
− 1

2
Ψ(∆ρ) (Se − Sp)

Ṡp = −Wp(t)

H
− 1

2
Ψ(∆ρ) (Sp − Se) .

Here Θe,p(t) are the ambient atmospheric temperatures the ocean would equi-
librate to on a relaxation time tr without any mass and heat exchange. The
flux Ψ(∆ρ), capturing the mass and heat exchange, is driven by the density
difference ∆ρ = ρe − ρp between the two ocean boxes. The densities are as-
sumed to be linearly related to the temperature and salinity with ρe,p/ρ0 =
1 + αs(Se,p − S0) − αT (Te,p − T0). The functions We,p, scaled with the typi-
cal height of the boxes H, model salinity sources or sinks Wprecept associated with
precipitation/evaporation and/or freshwater sources Wfresh stemming from melt-
ing land ice. (Note that with slight abuse of notation, we use W in this section to
denote the salinity sinks and sources, and use W otherwise to denote Brownian
motion). We set We(t) = Wprec(t)/2 and Wp(t) = Wprec(t)/2 +Wfresh(t).
Introducing the coarse meridional temperature and salinity gradients T = Te−Tp

and S = Se − Sp we obtain

Ṫ = − 1

tr
(T −Θ(t))− Ψ(∆ρ)T (23)

Ṡ =
We(t) +Wp(t)

H
− Ψ(∆ρ)S, (24)

withΘ(t) = Θe(t)−Θp(t). Following Stommel (1961) the flux is assumed to involve
a diffusive component on the diffusive time scale td and a hydraulic component of
a Poiseuille flow with transport coefficient q, and we write

Ψ(∆ρ) =
1

td
+

q

V
|∆ρ|

=
1

td
+

qρ0
V

|αsS − αTT |, (25)

where V denotes the typical volume of the boxes.252

253

The equations (23)–(24) are non-dimensionalised by scaling time with the dif-
fusive time td, temperature with a characteristic temperature T ⋆ and salinity with
αTT

⋆/αS . Introducing ǫa = tr/td we arrive at

Ṫ = − 1

ǫa
(T −Θ(t))− T − µ|S − T |T (26)

Ṡ = σ(t)− S − µ|S − T |S. (27)

Here µ = tdqρ0T0αT /V and σ(t) = αStd(Wprec(t) + Wfresh(t))/(αTT
⋆H). We254

refer to (Cessi, 1994; Roebber, 1995) for typical parameters. Typical relaxation255
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times are tr = 25 days for the relaxation of the ocean surface, tr = 5 years for256

relaxation at a depth of 400 m, tr = 10 years for relaxation at a depth of 800257

and tr = 75 years for the relaxation of the deep ocean. If we use the relaxation258

time at a typical ocean depth of 400 m, we estimate tr = 5 years, which yields259

ǫa = 0.0228. Depending on whether we choose the ocean surface, depths at 400260

m, 800 m or the deep ocean we estimate ǫa = {3×10−4, 0.0228, 0.046, 0.34}. The261

results presented in Section 5 are not sensitive to the choice of depth. The box262

model has a typical ocean depth of H = 4500 m and the control volume is esti-263

mated as V = HLδw where the typical meridional scale is L = 8, 250 km and the264

width of the western boundary current is roughly δw = 300 km. The typical den-265

sity is ρ0 = 1, 029 kg m−3. The reference temperature is chosen to be T ⋆ = 20oC,266

and αT = 0.17 × 10−3 C−1 and αS = 0.75 × 10−3 psu−1. The flux parameter267

µ is the ratio between the advective time scale and the diffusive time scale with268

µ = tad/td. The advective time scale is calculated as follows: The western bound-269

ary current transports B = 12Sv = 12 × 106m3s−1. The advective time scale is270

then tad = HLδw/B = 29.4 years which yields µ = 7.5. The freshwater flux in the271

North Atlantic is estimated as (Wprec(t) + Wfresh)S0 ≈ 0.2Sv with S0 = 35pus272

(Ganopolski and Rahmstorf, 2002). Hence σ = 0.95. The diffusive time-scale is es-273

timated as td = L2/π2κH = 219 years, where κH = 1000 m2s−1 is the horizontal274

diffusion coefficient. Since we scale with the diffusive time scale, one unit of time275

corresponds to 219 years, which defines the slow ocean time scale.276

277

The Stommel box model exhibits bistability for certain parameter ranges with278

one stable solution being thermally controlled with q = T − S > 0 and the other279

controlled by salinity with q < 0. Figure 4 shows the steady-state flow strength280

q = T−S as a function of the freshwater flux σ. We remark that for the parameters281

described above the Stommel box model (26)–(27) is very close to the saddle-node.282

In Section 5 we shall consider freshwater fluxes which allow for bistability with283

σ = 0.8 and which support only a single stable solution with σ = 1.3.284

4.2 Atmosphere model285

We consider the Lorenz-84 model for the general circulation of the atmosphere
(Lorenz, 1984, 1990)

ẋ = −(y2 + z2)− a(x− F )

ẏ = xy − bxz − (y −G)

ż = bxy + xz − z, (28)

which evolves on the fastest time scale with typical times of the order of days.286

These equations describe the westerly zonal mean flow current with strength x287

and the amplitudes y, z of the cosine and sine waves of the mean circulation. The288

superimposed sine and cosine waves are advected by the mean flow, modelled here289

by the quadratic terms involving the factor b. The model describes how energy290

vacillates between a zonal jet stream and a meandering jet stream. F denotes the291

meridional temperature gradient and the model assumes that the zonal mean flow292

is in thermal balance, neglecting the effect of the eddies (y, z). Similarly,G denotes293

the longitudinal temperature gradient, i.e. the heating gradient between land and294
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Fig. 4 Flow strength q = T − S as a function of the freshwater flux σ for µ = 7.5, Θ = 1 and
ǫa = 0.34 for the Stommel box model (26)–(27). The red branch depicts stable thermally driven
steady states, the dashed curve depicts unstable solutions and the lower blue branch depicts
salinity driven steady states. The Stommel box model exhibits bistability for σ ∈ [0.750.94].

sea, which is driving y. The model exhibits chaos depending on the parameters295

a, b, F and G. Reasonable time units in this model are 5 days and a < 1 and296

b > 1 (Lorenz, 1990). In Figure 3 the chaotic attractor is depicted for F = 8,297

G = 1, a = 0.25 and b = 4. For each hemisphere we assume that the dynamics is298

given by a Lorenz-84 system (28). The difference between the two hemispheres is299

in how far the ocean and the sea-ice couple into the atmospheric model via the300

meridional and zonal temperature gradients. In the Southern hemisphere the effect301

of the Northern ocean and sea-ice is neglected and we assume constant temperature302

gradients with F (S) = F
(S)
0 and G(S) = G

(S)
0 . In the Northern hemisphere, the303

ocean and the atmosphere are coupled and we follow Roebber (1995) to couple the304

Stommel box model (26)–(27) with the Lorenz-84 model (28). The coupling of the305

fast atmosphere to the slow ocean occurs via the ambient atmospheric temperature306

gradient Θ and the freshwater influx σ. The backcoupling of the slow ocean to the307

fast atmosphere occurs via the meridional and zonal temperature gradients F and308

G, respectively. We make the following assumptions (suppressing the superscript309

N denoting the Northern hemisphere):310

(i) The meridional temperature gradient F in the Lorenz-84 model (28) is (in311

the absence of sea-ice) approximated by the meridional temperature gradient312

of the ocean T = Te − Tp with F = F0 + F1T with F1 ≥ 0.313

(ii) The longitudinal gradient G in the Lorenz-84 model (28) is dominated by the314

temperature difference of land and sea. Ignoring the diurnal cycle, we argue315

that near the equator the land heats up more than the ocean whereas in the316

polar region the ocean is warmer than the land (especially during winter).317

Hence, an increased oceanic meridional temperature gradient T = Te − Tp318

with warmer equatorial waters and colder polar waters, implies a decreased319

longitudinal temperature gradient decreases. Hence the longitudinal temper-320
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ature gradient G in the Lorenz-84 model (28) is (in the absence of sea-ice)321

modelled as G = G0 −G1T with G1 ≥ 0.322

(iii) The ambient temperature gradient Θ(t) = Θe(t)−Θp(t) in the Stommel box323

model (26)–(27) is given by thermal wind balance as Θ = θx (in the absence324

of sea-ice) . Without sea-ice we would have Θ = (x− F0)/F1.325

(iv) The freshwater transport associated with evaporation and precipitation de-326

pends on the strength of the atmospheric eddies and we set σ(t) = σ0 +327

σ1(y
2+z2). Here σ0 may be a function of time if freshwater fluxes stemming328

from melting glaciers is included. In this work, however, we do not consider329

any external freshwater flushes.330

Introducing the eddy strength ∆ = y2 + z2, we summarise the ocean-atmosphere
coupling as

F = F0 + F1T

G = G0 −G1T

Θ(t) = θ0 + θ1
x− x̄√

ǫf

σ(t) = σ0 + σ1
∆− ∆̄√

ǫf
. (29)

Here and in the following a bar denotes the average. The atmospheric driving331

terms (x− x̄)/
√
ǫf and (∆− ∆̄)/

√
ǫf converge to Brownian motion for ǫf → 0 as332

outlined in Section 3. They represent the stochastic forcing of the atmosphere on333

the slow ocean dynamics.334

4.3 Sea-ice model335

The presence of sea-ice significantly changes the dynamics of the slower ocean and336

the faster atmosphere. Sea-ice interacts with both the atmosphere and the ocean337

in several ways. Sea-ice responds rapidly to changes in temperature and grows338

on a typical time scale of a few months, placing its dynamics on an intermediate339

time scale between the fast atmospheric dynamics and the slow ocean dynamics.340

Sea-ice is created by colder polar ocean box temperatures Tp. Conversely, it is341

melted by warmer polar ocean temperatures Tp. Furthermore, the meridional at-342

mospheric heat flux plays a major role in the melting and preservation of sea-ice343

(Monahan et al., 2008; Drijfhout et al., 2013; Kleppin et al., 2015). In particular,344

meandering of the westerly Northern hemisphere jet stream enhances the merid-345

ional atmospheric heat flux by warm eddies drawing warm tropical air into polar346

regions. The degree of meandering of the jet stream is captured in our model by347

∆N = y2N + z2N . Banderas et al. (2012, 2015) showed that additionally Southern348

Ocean winds, measured in our model by the strength of the zonal mean flow xS,349

couple the southern and northern oceans via Ekman pumping thereby influencing350

the sea-ice extent.351

We parametrise the sea-ice cover by a variable ξ(t). We consider here inter-
mittent sea-ice dynamics where the sea-ice cover exhibits sporadic brief periods of
extreme extent. To model such dynamics we employ a CAM process (6). Acknowl-
edging the atmospheric dynamics as a driver for the variations of sea-ice cover, we
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propose the following deterministic approximation of a CAM process,

ǫiξ̇ = (λ+
κ2

2
)ξ +

√

ǫi
ǫf

δ(κξ + g)(xS − x̄S) +

√

ǫi
ǫf

c (∆N − ∆̄N ), (30)

where the noise is deterministically generated by the chaotic atmospheric northern
eddies ∆N (t) and the effect of the southern zonal jet stream xS(t). We assume
for simplicity that this effect scales linearly with ∆N (t) and xS(t), respectively.
According to the theory of deterministic homogenisation presented in Section 3,
this ordinary differential equation converges for ǫf → 0, i.e. when the atmosphere
is infinitely faster than the sea-ice dynamics, to the CAM stochastic differential
equation

ǫidξ = (λ+ κ2)ξ dt+ (κξ + g) ◦ dW1 + c̃ dW2. (31)

The limiting stochastic differential equation (31) corresponds to the CAM process352

(6) with L = λ + κ2/2, E = δηxκ, B = c̃ = η∆c and G = δηxg/(1 + E2/(2L))353

and with yε = ξ − A where A = EG/(2L). Here ηx,∆ are the standard devi-354

ations of the noises Wx(t) = limǫf→0

∫ t/ǫf (xS(s) − x̄S)ds/
√
ǫf and W∆(t) =355

limǫf→0

∫ t/ǫf (∆N (s) − ∆̄N )ds/
√
ǫf . Note that whereas actual sea-ice cover is a356

bounded variable, the variable ξ(t) is unbounded. In this sense the CAM process357

(30) (and its limiting dynamics (31)) does not model the actual extent of the358

sea-ice but rather constitutes a conceptual model to account for the assumed in-359

termittent nature of the sea-ice cover.360

361

The influence of sea-ice on the ocean and atmosphere is manifold. Sea-ice acts362

as a thermal insulator, preventing the exchange of heat from the ocean to the atmo-363

sphere, thereby decreasing the meridional ocean temperature gradient T = Te−Tp.364

This effect plays a major role in our model and will be shown to be responsible for365

the abrupt temperature changes. Once sea-ice has formed it prohibits precipitation366

of evaporated water from the polar ocean on polar land mass, suppressing fresh-367

water fluxes. Furthermore, during the formation of sea-ice salt is extruded into368

the ocean during build up and freshwater is added into the ocean during melting.369

Sea-ice affects both meridional and longitudinal temperature gradients of the at-370

mosphere (i.e. F (N) and G(N) in our model). Increased sea-ice extent strengthens371

the meridional thermal gradient experienced by the atmosphere, thereby increasing372

the zonal mean-flow component xN . Similarly, an increased sea-ice extent leads to373

a decreased longitudinal thermal gradient experienced by the atmosphere, thereby374

decreasing G (again favouring zonal flow xN ). This motivates to augment the375

expressions for the meridional and longitudinal temperature gradients of the at-376

mosphere F and G in the Lorenz-84 model (28) (for the Northern hemisphere)377

and the ambient oceanic temperature gradient Θ and the freshwater flux σ in the378

Stommel box model (26)–(27). In particular we note (suppressing the superscript379

N):380

(i) The meridional thermal gradient in the Northern hemisphere is given by the
ocean temperature gradient T if there is no sea-ice (ξ = 0) and is increased
by sea-ice ξ > 0 independent of the ocean temperature gradient:

F = F0 + F1T + F2ξ, (32)
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with F1,2 ≥ 0. Note that in the case of sea-ice ξ > 0, the equatorial sea tem-381

perature Te continues to contribute to the thermal gradient, so the oceanic382

temperature gradient T is still affecting F with F1 6= 0 even in the presence383

of sea-ice.384

(ii) The longitudinal thermal gradient in the Northern hemisphere is dominated
by the ocean temperature gradient T if there is no sea-ice (ξ = 0) and is
decreased by sea-ice ξ > 0 independent of the ocean temperature gradient

G = G0 −G1T −G2ξ, (33)

with G1,2 ≥ 0. As for the meridional thermal gradient discussed above in (i),385

the land-sea temperature gradient at the equator is still determined by the386

equatorial ocean temperature Te, so the oceanic temperature gradient T is387

still affecting G with G1 6= 0 even in the presence of sea-ice.388

(iii) The atmospheric temperature gradient Θ(t) = θx is maintained by thermal389

balance, so only indirectly affected by sea-ice. To account for the insulating390

effect of sea-ice a damping term proportional to (ξ − ξ̄)T , where ξ̄ denotes391

the mean of the sea-ice cover variable ξ, is added to the temperature gradient392

equation (26). This term (cf. (13)) is the key dynamical ingredient for the393

generation of abrupt sharp temperature changes in our model, resembling DO394

events. To highlight the role of the intermittent sea-ice events we introduce395

a thresholded driver Ξ(ξ) = max(ξ, ξ⋆) which filters out small fluctuations396

with ξ < ξ⋆. We shall use this thresholded driver, upon subtracting its mean397

Ξ̄, to enter the ocean dynamics and consider a damping term of the form398

(Ξ(t)− Ξ̄)T in the temperature gradient equation (26).399

(iv) The source term of salinity decreases during growth of sea-ice and increases
during melting of sea-ice. We set

σ(t) = σ0 + σ1(y
2 + z2)− σ2ξ̇. (34)

Summarising we motivated the proposed coupled ocean-atmosphere and sea-ice400

model (13)–(18) with the interactions captured in (19)–(22), which are expressed401

by (32)–(34). In the next section we will illustrate how this model is able to402

reproduce abrupt temperature changes as in DO events.403

5 Illustration of the model404

We now show numerical simulations of the conceptual coupled ocean-atmosphere405

and sea-ice model (13)–(18). We focus here on the effect of intermittent sea-ice on406

the oceanic temperature gradient T through insulation, as expressed by the linear407

damping term in (13).408

In the Stommel box model we set µ = 7.5 and set ǫa = 0.34, corresponding409

to the relaxation time in the deep ocean (we have checked that our results do not410

depend qualitatively when varying ǫa). We choose as base ambient temperature411

gradient θ0 = 1 and as base freshwater flux we consider here σ0 = 0.8 for which412

the uncoupled Stommel box model exhibits bistability and σ0 = 1.3 for which only413

a single stable solution exists (cf. Figure 4). The perturbations to these base states414

induced by atmospheric noise are set to θ1 = 0.01/ηx and σ1 = 0.01/η∆ and ne-415

glect the effect of sea-ice on the freshwater flux setting σ2 = 0. We further suppress416
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the backcoupling of the slow ocean dynamics onto the fast atmospheric dynamics417

by setting F1 = G1 = 0. The standard deviations of the atmospheric noise associ-418

ated with zonal mean flow x and the large-scale eddies ∆, respectively, ηx = 0.513419

and η∆ = 0.071, were estimated from a long time-integration of the Lorenz-84420

model. The atmosphere is kept in perpetual winter conditions with F0 = 8 and421

G0 = 1 and with a = 0.25 and b = 4 (Lorenz, 1984). We choose for simplicity422

the same values of the parameters a, b, F0, G0 for the Northern and the Southern423

hemisphere. This is not necessary; the only requirement in the derivation of the424

deterministic approximation of the CAM noise model for sea-ice is that the north-425

ern and southern atmospheric dynamics are sufficiently decorrelated which can be426

achieved using the same equation parameters but different initial conditions. The427

sea-ice is coupled to the Stommel two-box model with d = 50, and its parameters428

are set to κ = 1.118, λ = −1.565, g = 0.3351, δ = 1/σ1 and c = 0.3/η2. Similarly429

the mean values x̄ = 1.0147, ∆̄ = 1.7463 and ξ̄ = 0.12 were estimated from long430

time simulations of the Lorenz-84 model and the sea-ice model. Note that in the431

limit ǫf → 0 we expect ξ̄ = 0. The physical set-up suggests that in the Stommel432

box model a unit of time corresponds to 219 years, and that the time-scale pa-433

rameters controlling the time-scales of the fastest atmospheric processes and the434

intermediate time scale of the sea-ice are ǫf = 0.0083 and ǫi = 0.05 (cf. (10)).435

436

We first illustrate the various statistical limit laws which give rise to the ef-
fective stochastic behaviour of the deterministic coupled ocean-atmosphere and
sea-ice model (13)–(18). We confirm the deterministic approximation of stochastic
Gaussian processes Wt by

Wx(t) =
1√
ǫf

∫ t

ǫf

(x(s)− x̄)ds (35)

W∆(t) =
1√
ǫf

∫ t

ǫf

(∆(s)− ∆̄)ds, (36)

and of the Lévy processes Lα,η,β by

Lξ(t) =
1

ǫ1−γ
i

∫ t

ǫi

(ξ(s)− ξ̄)ds, (37)

with γ = 1/α. These constitute the noise processes driving the coupled model437

(13)–(18). We show results in Figure 5 for the approximation of Gaussian noise438

W∆ (plots for Wx look similar). Figure 6 shows a realisation of the time series439

of the sea-ice variable ξ(t) obtained from (15), as well as the thresholded driver440

Ξ(ξ) which captures the intermittent large sea-ice cover events above the thresh-441

old ξ⋆ = 6. The corresponding integrated noise approximation LΞ is shown in442

Figure 7. The parameters chosen for the sea-ice model (15) imply α = 1.5 and443

β = 0.99 (cf. (7) and (8)). The integrated CAM-process Lξ and the thresholded444

version LΞ exhibit almost exclusively positive jumps as predicted by the homogeni-445

sation theory results which yields β = 0.99.446

447

The effect of these jumps on the ocean’s temperature gradient T is illustrated448

in Figure 8 where we show results for σ0 = 0.8 and for σ0 = 1.3. For σ0 = 0.8449

the uncoupled Stommel box model supports two stable solutions, and the abrupt450
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Fig. 5 Time series of W∆ (36) approximating Gaussian noise.

changes are shown as deviations of the interstadial solution which is characterised451

by a positive thermally-driven flux q = T − S > 0. For σ0 = 1.3 the Stommel box452

model only supports a single solution which is characterised by negative salinity-453

driven flux q < 0. In both cases, the α-stable driver LΞ leads to significant sharp454

drops on the meridional temperature gradient T = Te − Tp, implying sharp in-455

creases of the oceanic polar temperature Tp. At t ≈ 14, 300 this is particularly456

strong with a change in temperature of more than 7°C (the Stommel model is457

normalised such that T = 1 corresponds to 20°C). This large and abrupt change is458

caused by the large jump of Lξ which itself is caused by a prolonged period of large459

sea-ice cover events ξ (cf. Figure 7). These temperature increases gradually decay460

to the (noisy) steady interstadial state. The time between events is here roughly461

1, 800 years, which is the same order of magnitude as observed in ice-core records.462

The corresponding time-series for the salinity S(t) and the flux q(t) = T − S463

are shown in Figure 9 and Figure 10. Whereas the salinity gradient increases for464

σ0 = 0.8 it decreases for σ0 = 1.3 during the abrupt changes. In both cases, the465

resulting flux q decreases, implying a more salinity-driven transport during the466

abrupt changes.467

468

An application of the p-variation test, described in Section 2, determines the469

stability parameter of the time-series for the meridional temperature gradient T470

as α = 1.8 for σ0 = 0.8 and α = 1.75 for σ0 = 1.3, consistent with the value471

of α = 1.78 obtained in Section 2 from Ca2+ ice-core data and the results by472

Ditlevsen (1999). The small fluctuations of T and S are induced by fast atmo-473

spheric (Brownian) noise with θ1 6= 0 and σ − 1 6= 0, respectively.474

475

6 Discussion476

We developed a self-consistent conceptual model of a slow ocean coupled to a fast477

atmosphere and to sea-ice, which evolves on an intermediate time scale and is478

driven by the atmosphere. The model relates the abrupt climate changes of DO479

events to intermittent sea-ice dynamics and the sporadic occurrence of large sea-480

ice extent. The intermittency in the sea-ice model is induced by synergetic forcing481

by fast atmospheric Northern hemisphere eddy activity and by fast atmospheric482
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Fig. 6 Left: Time series of the sea-ice variable ξ(t) approximating CAM noise. Right: Time
series of the associated threshold time series Ξ(ξ) = max(ξ, 6) − 6.
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Fig. 7 Integrated noise LΞ (37) approximating and α-stable process with α = 1.5 and β =
0.99 for the time series Ξ(ξ) depicted in Figure 6.
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Fig. 8 Time-series of the oceanic meridional temperature gradient T obtained by integration
of the model (13) driven by the sea-ice time-series depicted in Figure 6. Left: σ0 = 0.8. Right:
σ0 = 1.3.

Southern hemisphere zonal mean flow. The sea-ice then acts on the slow ocean by483

insulating it, preventing the heat exchange of the polar ocean with the atmosphere.484

Using statistical limit laws for deterministic chaotic dynamical systems the sea-ice485

model was shown to generate non-Gaussian α-stable noise, consistent with the time486

series analysis of ice core data (Ditlevsen, 1999). The apparent regularity of the487

temporal spacing between successive Dansgaard-Oeschger events deduced from488
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Fig. 9 Time-series of the salinity S obtained by integration of the model (13) driven by the
sea-ice time-series depicted in Figure 6. Left: σ0 = 0.8. Right: σ0 = 1.3.
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Fig. 10 Time-series of the flux q = T − S obtained by integration of the model (13) driven
by the sea-ice time-series depicted in Figure 6. Left: σ0 = 0.8. Right: σ0 = 1.3.

the ice-core data (Grootes and Stuiver, 1997; Yiou et al., 1997; Ditlevsen et al.,489

2005), is here not caused by any inherent periodicity in the system but rather490

by the random occurrence of extreme sea-ice extents above a certain threshold491

below which the response of the ocean is not significant. This is in accordance492

with Ditlevsen et al. (2007) who showed that there is no statistically significant493

evidence for strict periodicity.494

495

The particular signature of the temperature with its abrupt warming events is496

caused by an intermittent process evolving on a faster time scale than the oceanic497

time scale. In our model here this process is provided by (the approximation of)498

a CAM process ξ (cf (30)) which quantifies the variability in the sea-ice cover.499

The integrated CAM noise in the variable the gives rise to non-Gaussian α-stable500

statistics with the jumps corresponding to the abrupt warming events. The CAM501

noise itself was dynamically induced by fast atmospheric noise. It is pertinent to502

mention that one could equally consider other intermittent mechanisms than sea-503

ice cover variability such as intermittent freshwater influxes. In this case the CAM504

noise would enter the salinity equation (13) via the freshwater source terms in σ(t)505

(22), and the CAM noise would be a conceptual model for intermittent freshwater506

changes, captured by ξ̇.507

508
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The model hinges on statistical limit laws. These laws were invoked to gener-509

ate both the Brownian noise as well as the non-Gaussian α-stable noise. Statistical510

limit laws describe the statistical properties of integrals (or sums) of observables.511

The observables here are observables of (relatively) fast variables. The integrals512

over the observables naturally arise in the multi-scale context when the faster513

variables are integrated in the slower dynamics. The simplest statistical limit law514

is the law of large numbers, which ensures that appropriately scaled variables515

(here our observables) converge to a deterministic limit, their average. The cen-516

tral limit theorem and its generalisations allows precise statements on fluctuations517

around the mean behaviour. Whereas statistical limit laws are part of the stan-518

dard tool box when the observations are of a stochastic nature, and in particular519

when the observations are independent identically distributed random variables.520

The case of integrals (or sums ) of deterministic chaotic observables has only been521

recently explored. These studies provide a rigorous justification why scientists can522

parametrise the effect of unresolved scales, such as the effect of fast weather on523

the slow ocean, by noise as proclaimed by Hasselmann (1976) and Leith (1975) in524

the context of climate dynamics. Rather than just providing a general qualitative525

framework, statistical limit theorems and homogenisation theory provide precise526

statements on the nature of the noise – i.e. is the noise Brownian or α-stable, is527

it additive or multiplicative, and is the noise to be interpreted in the sense of Itô528

or of Stratonovich/Marcus? Furthermore, homogenisation theory provides explicit529

expressions for the drift and diffusion coefficients of the limiting stochastic dif-530

ferential equation. Recently, at least formally, statistical limit laws were extended531

to the more realistic case of finite time-scale separation (Wouters and Gottwald,532

2019a,b). The typical application of statistical limit laws in the geosciences is to533

provide closed equations for resolved variables of interest by parametrising unre-534

solved fast and/or small-scale degrees of freedom by noise. The reward for such a535

parametrisation is of a computational nature as one now only needs to simulate536

an equation on the slow time scale, avoiding prohibitively small time steps needed537

to control numerical instabilities of the fast dynamics.538

Here we pursue a conceptionally different route. Rather than starting from a539

deterministic dynamical system to derive a limiting stochastic dynamical system,540

we reverse the order and use statistical limit laws to determine dynamical mecha-541

nisms which are consistent with the statistical properties of the observations. We542

use statistical limit laws in the sense of reverse engineering, thereby identifying543

key dynamical mechanisms for DO events such as intermittency, provided by sea-544

ice variability on an intermediate time-scale. Statistical limit laws allowed us to545

both generate the intermittent process in the first place (here we used atmospheric546

noise to generate the intermittent CAM process for the sea-ice dynamics) as well as547

generating the α-stable process driving the slow ocean dynamics with its abrupt548

climate changes. The former was achieved by central limit theorems generating549

Brownian motion, the latter by a generalised central limit theorem generating550

non-Gaussian Lévy processes.551
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of Lévy flights. In: Klages R, Radons G, Sokolov IM (eds) Anomalous Transport,591

Wiley-VCH Verlag GmbH & Co. KGaA, pp 129–162592

Chevyrev I, Friz PK, Korepanov A, Melbourne I (2019) Superdiffusive limits for593

deterministic fast-slow dynamical systems. arXiv 1907.04825, 1907.04825594

Crucifix M (2012) Oscillators and relaxation phenomena in Pleistocene climate595

theory. Philosophical Transactions of the Royal Society of London A: Mathe-596

matical, Physical and Engineering Sciences 370(1962):1140–1165597

DansgaardW, Johnsen S, Clausen HB, Dahl-Jensen D, Gundestrup N, Hammer H,598

Oeschger H (1984) North Atlantic climate oscillations revealed by deep Greeland599

ice cores. Climate Processes and Climate Sensitivity, Geophys Mongogr 5:288–600

298601

1907.04825


A model for Dansgaard-Oeschger events 25

Deser C, Holland M, Reverdin G, Timlin M (2002) Decadal variations in Labrador602

sea ice cover and North Atlantic sea surface temperatures. Journal of Geophys-603

ical Research: Oceans 107(C5):3–1–3–12604

Ditlevsen PD (1999) Observation of α-stable noise induced millennial climate605

changes from an ice-core record. Geophysical Research Letters 26(10):1441–1444606

Ditlevsen PD, Kristensen MS, Andersen KK (2005) The Recurrence Time of607

Dansgaard–Oeschger Events and Limits on the Possible Periodic Component.608

Journal of Climate 18(14):2594–2603609

Ditlevsen PD, Andersen KK, Svensson A (2007) The DO-climate events are prob-610

ably noise induced: statistical investigation of the claimed 1470 years cycle.611

Climate of the Past 3(1):129–134612

Dokken TM, Nisancioglu KH, Li C, Battisti DS, Kissel C (2013) Dansgaard-613

Oeschger cycles: Interactions between ocean and sea ice intrinsic to the Nordic614

seas. Paleoceanography 28(3):491–502615

Drijfhout S, Gleeson E, Dijkstra HA, Livina V (2013) Spontaneous abrupt climate616

change due to an atmospheric blocking–sea-ice–ocean feedback in an unforced617

climate model simulation. Proceedings of the National Academy of Sciences618

110(49):19713–19718619

Fang Z, Wallace JM (1994) Arctic sea ice variability on a timescale of weeks and620

its relation to atmospheric forcing. Journal of Climate 7(12):1897–1914621

Friedrich T, Timmermann A, Menviel L, Elison Timm O, Mouchet A, Roche622

DM (2010) The mechanism behind internally generated centennial-to-millennial623

scale climate variability in an earth system model of intermediate complexity.624

Geoscientific Model Development 3(2):377–389625

Fuhrer K, Neftel A, Anklin M, Maggi V (1993) Continuous measurements of hydro-626

gen peroxide, formaldehyde, calcium and ammonium concentrations along the627

new GRIP ice core from Summit, Central Greenland. Atmospheric Environment628

27A:1873–1880629

Ganopolski A, Rahmstorf S (2001) Rapid changes of glacial climate simulated in630

a coupled climate model. Nature 409(6817):153–158631

Ganopolski A, Rahmstorf S (2002) Abrupt glacial climate changes due to stochas-632

tic resonance. Physical Review Letters 88(3):153–158633

Gardiner CW (2003) Handbook of Stochastic Methods for Physics, Chemistry, and634

the Natural Sciences, 3rd edn. Springer, New York635

Gaspard P, Wang XJ (1988) Sporadicity: Between periodic and chaotic dynamical636

behaviours. Proceedings of the National Academy of Sciences 85:4591–4595637

Gildor H, Tziperman E (2003) Sea-ice switches and abrupt climate change. Philo-638

sophical Transactions of the Royal Society of London Series A: Mathematical,639

Physical and Engineering Sciences 361(1810):1935–1944640

Givon D, Kupferman R, Stuart A (2004) Extracting macroscopic dynamics: Model641

problems and algorithms. Nonlinearity 17(6):R55–127642

Gottwald G, Crommelin D, Franzke C (2017) Stochastic climate theory. In:643

Franzke CLE, O’Kane TJ (eds) Nonlinear and Stochastic Climate Dynamics,644

Cambridge University Press, Cambridge, pp 209–240645

Gottwald GA, Melbourne I (2013a) A Huygens principle for diffusion and anoma-646

lous diffusion in spatially extended systems. Proc Natl Acad Sci USA 110:8411–647

8416648

Gottwald GA, Melbourne I (2013b) Homogenization for deterministic maps and649

multiplicative noise. Proceedings of the Royal Society A: Mathematical, Physical650



26 Georg A. Gottwald

and Engineering Science 469(2156)651

Gottwald GA, Melbourne I (2016) On the detection of superdiffusive behaviour652

in time series. Journal of Statistical Mechanics: Theory and Experiment653

2016(12):123205654

Gottwald GA, Melbourne I (2020) Simulation of non-Lipschitz stochastic differ-655

ential equations driven by α-stable noise: a method based on deterministic ho-656

mogenisation. arXiv 2004.09914657
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