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Abstract

We give a complete description and clarification of the structure of the Lévy
area correction to Itô/Stratonovich stochastic integrals arising as limits of time-
reversible deterministic dynamical systems. In particular, we show that time-
reversibility forces the Lévy area to vanish only in very specific situations that
are easily classified. In the absence of such obstructions, we prove that there
are no further restrictions on the Lévy area and that it is typically nonvanishing
and far from negligible.

1 Introduction

The classical Wong-Zakai question [31] from 1965 is concerned with weak conver-
gence of smooth processes Wn to Brownian motion W and the consequences for the
interpretation of the corresponding stochastic integral

∫
W dW .

In simple situations [31, 17], the limiting stochastic integrals are Stratonovich,
denoted

∫
W ◦dW , but numerous counterexamples exist in higher dimensions [27, 30].

In general, there is a correction, reminiscent of the Itô-Stratonovich correction, given
by a deterministic quantity known as the Lévy area E, whereby

∫ t

0
Wn dWn converges

weakly to
∫ t

0
W ◦ dW +Et as n→ ∞. Many references give closed-form formulas for

the Lévy area E, see [2, 6, 8, 16, 21, 23, 24, 25, 26].
It is by now well-understood (if not always well-known) that the Lévy area is an

important and nontrivial correction to the Wong-Zakai question. However, there are
few investigations of whether this formula for E as displayed in Section 2 (which looks
like it may be nonzero) is actually nonzero in the presence of additional constraints
such as time-reversibility.

The Lévy area is skew-symmetric (ET = −E) and hence vanishes in the scalar
case. In higher dimensions, Lévy area corrections vanish as a consequence of exact-
ness, or commutativity of the defining vector fields, but such conditions are atypical
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outside the scalar case. On the other hand, an example where it is proved that E ̸= 0
is given by Hairer, Pavliotis & Stuart, see [29, Section 11.7.7].

From time to time, we have been asked whether time-reversibility can force E = 0.
(The example of Hairer et al. in [29] is not time-reversible.) In dispersing billiard ex-
amples considered by Chernov & Dolgopyat [4], the Lévy area is indeed zero as a
consequence of time-reversibility and the structure of the equations. For Markov
processes, there is a related condition, detailed balance, which forces E = 0, see for
example [20, Section 3.3.2] or [28, Section 5.1]. See also [9, Remark 3.4] and [25, Sec-
tion 1.4.2] for further comments on E being zero in certain time-reversible situations.

The recent work [10] gives numerical evidence that E ̸= 0 in certain examples,
but also questions whether this is typical or just occasional. On the other hand,
it has recently been conjectured that in numerical simulations of certain stochastic
systems which were obtained via some stochastic parametrisation it is numerically
advantageous to neglect the Lévy area and set E = 0 [15, 3].

In this paper, we offer a complete description and clarification of the structure
of the Lévy area. In particular, we classify the constraints on E imposed by time-
reversibility. The cases where E is forced to vanish are easily described. Outside of
these rare situations, we find that E is typically far from negligible.

In terms of physical quantities such as position and momenta, there is the following
simple description. Position is preserved by time-reversals and momenta are reflected,
leading to three possibilities:

(i) all slow variables behave like position;

(ii) all slow variables behave like momenta;

(iii) some slow variables behave like position and some like momenta.

We show that E = 0 in cases (i) and (ii), but that in case (iii) — which seems natural
in most physical applications — E is typically nonzero in the strongest possible sense.

Remark 1.1 A similar trichotomy arises in the theory of reversible Markov chains,
see for example [1, 11]. Detailed balance corresponds to case (i) so we recover the
fact that E = 0 when there is detailed balance. Case (ii) is called “modified” detailed
balance [13] or “skewed” detailed balance [18]; again E = 0. Case (iii) is called
“Yaglom reversibility” [32] and it is here that our results say that E is typically
nonzero.

The remainder of this paper is organised as follows. Section 2 contains the setup in
this paper and gives a rough description of our main result. In Section 3, we introduce
time-reversibility and determine the constraints imposed by the time-reversibility on
the Lévy area. In Sections 4 and 5, we state and prove the main results described in
Section 2. Finally, in Section 6, we verify that, in reasonable situations, nonvanishing
Lévy area leads as anticipated to nontrivial corrections to limiting stochastic integrals.
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2 The setup

We consider fast-slow ordinary differential equations (ODEs) on Rd×Rm of the form

ẋ = a(x) + ϵ−1b(x)v(y), x(0) = ξ ∈ Rd

ẏ = ϵ−2g(y), y(0) ∈ Λ (2.1)

Here, Λ ⊂ Rm is a compact invariant set for the ẏ equation and y(0) is chosen
randomly from Λ according to an ergodic Borel probability measure µ on Λ. The
functions

a : Rd → Rd, b : Rd → Rd×d, v : Rm → Rd, g : Rm → Rm,

are assumed to be Cr (for some r ≥ 1) with
∫
Λ
v dµ = 0. Let gt : Λ → Λ denote the

flow on Λ generated by the ODE ẏ = g(y). We assume moreover that µ is mixing, so
that limt→∞

∫
Λ
ϕψ ◦ gt dµ =

∫
Λ
ϕ dµ

∫
Λ
ψ dµ for all ϕ, ψ ∈ L2(Λ).

The aim of homogenisation is to establish, as ϵ→ 0 in (2.1), a limiting stochastic
differential equation (SDE) of the form

dX = ã(X) dt+ b(X) ◦ dW, X(0) = ξ, (2.2)

such that x = x(ϵ) converges weakly to X. Here, W is d-dimensional Brownian
motion, the stochastic integral b(X) ◦ dW has the Stratonovich interpretation, and
ã is a modified drift term incorporating the correction (if any) to the Stratonovich
integral.

In the deterministic setting of (2.1), convergence to an SDE of the form (2.2)
was obtained in [21] under suitable chaoticity assumptions (subsequently optimised
in [6, 14, 22]) on the fast dynamics ẏ = g(y). Under these assumptions, we have
convergent series of Green-Kubo-type:

Covariance Σ =
∫∞
0

∫
Λ

{
v ⊗ (v ◦ gt) + (v ◦ gt)⊗ v

}
dµ dt,

Lévy area E =
∫∞
0

∫
Λ

{
v ⊗ (v ◦ gt)− (v ◦ gt)⊗ v

}
dµ dt,

where u⊗ v = uvT ∈ Rd×d for u, v ∈ Rd. These series define a positive semi-definite
symmetric matrix Σ ∈ Rd×d and a skew-symmetric matrix E ∈ Rd×d. Moreover
(under smoothness assumptions on a and b which play no further role in this paper),
the solutions x(ϵ) converge weakly to solutions of the SDE (2.2) where the Brownian
motion W has covariance matrix Σ and the modified drift term is given by

ã(X) = a(X) + 1
2

d∑
α,β,γ=1

Eγβ∂αb
β(X)bαγ(X). (2.3)

Here, Zij denotes the (i, j)’th entry of a matrix Z and bβ denotes the β’th column
of b.
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Generally, Σ is positive definite in the setting of [21]. Indeed, the case detΣ = 0 is
infinitely unlikely in a sense that can be made precise, see for example [5, Section 2.3].
Given its antisymmetry, a natural question is to ask whether the Lévy area E may be
forced to vanish in certain circumstances. Clearly, if d = 1 then E = 0. In addition,
if v transforms as v ◦ R = v or v ◦ R = −v, where R is a time-reversal symmetry for
the fast dynamics, then again it is easily verified (see Remark 3.2) that E = 0. This
situation can occur in simplified physical situations where v represents only position
or velocity, such as in the dispersing billiards examples in [4] and is also the case
for the special classes of reversible Markov chains satisfying detailed balance or skew
detailed balance.

In this paper, we show that the cases v ◦ R = v and v ◦ R = −v are the only
situations where time-reversal symmetry forces the Lévy area to vanish, and typically
E ̸= 0 for the remaining time-reversible systems. (These three cases are precisely the
situations (i), (ii), (iii) mentioned in the Introduction.)

In particular, we show that v transforms as v ◦R = Av where A = Id+ ⊕ (−Id−) in

appropriate coordinates (with d++d− = d), and that E =

(
0 E0

−ET
0 0

)
where E0 is

a d+×d− matrix. Our main results include that there are no further constraints on E
(Theorem 4.3) and that E0 is typically of full rank min{d+, d−} in both the topological
sense (openness and density) and in the probabilistic sense (prevalence [7, 19]), see
Remark 5.2. Moreover, the map from the dynamical system to E0 ∈ Rd+×d− is locally
surjective (Theorem 5.4) in addition to the aforementioned surjectivity.

3 Time-reversal symmetry

In this section, we introduce time-reversal symmetry into the fast-slow ODE (2.1) and
derive simplified formulas for the covariance Σ and Lévy area E. Our only assumption
in this section is that the Green-Kubo-type formulas for Σ and E converge.

We assume that there is a time-reversal symmetry (x, y) 7→ (Sx,Ry) where
S ∈ Rd×d and R ∈ Rm×m satisfy S2 = I and R2 = I. As usual, this means that
(Sx(−t), Ry(−t)) is a solution of (2.1) whenever (x(t), y(t)) is a solution. We sup-
pose also that µ is R-invariant.

For the fast dynamics, time-reversibility means that

gt(Ry) = Rg−t(y) for all y ∈ Λ, t ∈ R. (3.1)

Equivalently, g(Ry) = −Rg(y) for all y ∈ Λ.

Proposition 3.1

Σ =

∫ ∞

0

∫
Λ

{
v ⊗ (v ◦ gt) + (v ◦R)⊗ (v ◦R ◦ gt)

}
dµ dt,

E =

∫ ∞

0

∫
Λ

{
v ⊗ (v ◦ gt)− (v ◦R)⊗ (v ◦R ◦ gt)

}
dµ dt.
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Proof By invariance of µ under the fast flow gt and R, and (3.1),∫
Λ

(v ◦ gt)⊗ v dµ =

∫
Λ

(v ◦R)⊗ (v ◦ g−t ◦R) dµ

=

∫
Λ

(v ◦R)⊗ (v ◦R ◦ gt) dµ.

Substituting this into the covariance and Lévy area formulas from Section 2 yields
the result.

Remark 3.2 It can be seen already from Proposition 3.1 that E = 0 if either v◦R = v
or v ◦ R = −v. (This was the case in [4].) Our main results imply in particular that
typically E ̸= 0 outside of these cases.

For the slow dynamics, time-reversibility means that

a(Sx) + ϵ−1b(Sx)v(Ry) = −S
{
a(x) + ϵ−1b(x)v(y)

}
for all x ∈ Rd, y ∈ Λ, ϵ > 0.

This simplifies to the requirement that

a(Sx) = −Sa(x) and b(Sx)v(Ry) = −Sb(x)v(y) for all x ∈ Rd, y ∈ Λ. (3.2)

To avoid pathologies, from now on we suppose that b : Rd → Rd×d defines a
nonsingular matrix in Rd×d on a dense subset of Rd and that {v(y) : y ∈ Λ} spans
Rd. Then the second condition in (3.2) simplifies further:

Lemma 3.3 Condition (3.2) holds if and only if there exists A ∈ Rd×d with A2 = I
such that

a(Sx) = −Sa(x), b(Sx) = −Sb(x)A, v(Ry) = Av(y),

for all x ∈ Rd, y ∈ Λ.

Proof It is immediate that if a, b and v satisfy these restrictions for some A with
A2 = I, then condition (3.2) holds.

Conversely, suppose that condition (3.2) holds. Let X = {x ∈ Rd : det b(x) ̸= 0}.
Define

A : X → Rd×d, A(x) = −b(x)−1Sb(Sx).

Then

v(y) = A(x1)v(Ry) and v(Ry) = A(x2)v(y) for all x1, x2 ∈ X, y ∈ Λ.

Hence v(y) = A(x1)A(x2)v(y) for all y and it follows from the spanning assumption
on v that

A(x1)A(x2) = I for all x1, x2 ∈ X.
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Taking x1 = x2, we obtain that A(x) ≡ A is constant on X with A2 = I. We
immediately obtain that v ◦ R = Av. Also b ◦ S = −SbA on the dense set X ⊂ Rd

and hence on the whole of Rd by continuity of b.

Let π± : Rd → Rd be the projections onto the ±1 eigenspaces of A. Then we can
write v in (2.1) uniquely as v = v+ + v− where v± = π±v. Note that

∫
Λ
v± dµ = 0.

Corollary 3.4 In the (π+, π−) coordinates,

Σ =

(
Σ+ 0
0 Σ−

)
, E =

(
0 E0

−ET
0 0

)
,

where

Σ± = 2

∫ ∞

0

∫
Λ

v± ⊗ (v± ◦ gt) dµ dt, E0 = 2

∫ ∞

0

∫
Λ

v+ ⊗ (v− ◦ gt) dµ dt.

Proof Since v ◦R = Av = v+ − v−, we obtain

Σ = 2

∫ ∞

0

∫
Λ

{
v+ ⊗ (v+ ◦ gt) + v− ⊗ (v− ◦ gt)

}
dµ dt,

E = 2

∫ ∞

0

∫
Λ

{
v+ ⊗ (v− ◦ gt) + v− ⊗ (v+ ◦ gt)

}
dµ dt.

The result follows.

4 Generality of E0

In this section, we show that there are no further restrictions on the Lévy area E
beyond those in Corollary 3.4. Recall that the vector field g in (2.1) is assumed to
be Cr for some r ≥ 1. We suppose that the fast dynamics defined by g is mixing
sufficiently quickly, so that the series for E in Section 2 and hence E0 in Corollary 3.4
converge for all Cr functions v : Λ → Rd with

∫
Λ
v dµ = 0. We exclude the uninter-

esting case where Λ is a fixed point. (For then v|Λ ≡ 0, so Σ = E = 0 and there is no
stochasticity in the limit.)

Remark 4.1 In the setting of [6, 14, 21, 22], the matrices Σ and E depend continu-
ously on v ∈ Cr.

Throughout this section, the functions a and b play no role and neither does the
involution S. The fast vector field g is fixed, as are the involutions A and R. Our
focus is purely on the dependence of E0 (and hence E) on the function v. Recall from

Section 2 that A = Id+ ⊕ (−Id−) (with d+ + d− = d), and that E =

(
0 E0

−ET
0 0

)
where E0 is a d+ × d− matrix.

We say that a function f defined on Λ is R-invariant if f ◦R = f .
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Proposition 4.2 For any R-invariant functions

f ∈ Cr(Rm,Rd+), h ∈ Cr+1(Rm,Rd−),

with
∫
Λ
f dµ = 0, there exists

v ∈ Cr(Rm,Rd) with v ◦R = Av and
∫
Λ
v dµ = 0,

such that E0 =
∫
Λ
f ⊗ h dµ.

Proof Recall that gt denotes the fast flow generated by the vector field g in (2.1).
We define v = v+ + v− : Λ → Rd by setting

v+ = −f, v− = ∇h · g =
∑
j

∂h

∂yj
gj.

Clearly, v+◦R = v+ = Av+. By the chain rule, (∇h)Ry = (∇h)yR. This combined
with the identity g ◦R = −Rg ensures that v− ◦R = −v− = Av−. Hence v ◦R = Av.
Also,

∫
Λ
v− dµ =

∫
Λ
v− ◦ Rdµ = −

∫
Λ
v− dµ. Hence

∫
Λ
v− dµ = 0. But

∫
Λ
v+ dµ = 0

by construction, so
∫
Λ
v dµ = 0.

Along solutions y(t) to ẏ = g(y),

v−(y(t)) =
∑
j

∂h

∂yj
(y(t)) ẏj(t) =

d

dt
h(y(t)).

Hence
∫ T

0
v−(y(t)) dt = h(y(T ))− h(y(0)). In other words,∫ T

0

v− ◦ gt dt = h ◦ gT − h.

Since the flow is mixing and
∫
Λ
v+ dµ = 0,∫ T

0

∫
Λ

v+ ⊗ (v− ◦ gt) dµ dt =
∫
Λ

v+ ⊗
(
h ◦ gT − h

)
dµ

→ −
∫
Λ

v+ ⊗ h dµ =

∫
Λ

f ⊗ h dµ

as T → ∞. By the definition of E0 in Corollary 3.4 (up to a factor of 2 which can be
incorporated into f) we have proved the result.

Theorem 4.3 For any d+ × d− matrix F , there exists a Cr function v : Rm → Rd

with v ◦R = Av and
∫
Λ
v dµ = 0 such that E0 = F .
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Proof We claim that it is possible to choose v so that E0 has full rank, namely
min{d+, d−}. Assuming this is the case, let L± ∈ Rd±×d± . By the definition of E0

in Corollary 3.4, transforming v to (L+v+, L−v−) changes E0 to L+E0(L
−)T . By

standard linear algebra, this results in any desired matrix in Rd+×d− .
It remains to prove the claim. The first step is to construct suitable R-invariant

functions f1 ∈ L2(Λ,Rd+) and h1 ∈ L2(Λ,Rd−) with
∫
Λ
f1 dµ = 0 such that

∫
Λ
f1 ⊗

h1 dµ has full rank. The second step is to approximate f1 and h1 by smooth R-
invariant functions f : Rm → Rd+ and h : Rm → Rd− with

∫
Λ
f dµ = 0 so that∫

Λ
f ⊗ h dµ has full rank. The third step is to apply Proposition 4.2.

Step 1 Since Λ is not a fixed point, we can choose infinitely many orthonormal R-
invariant functions ϕj ∈ L2(Λ) with

∫
Λ
ϕj dµ = 0 and

∫
Λ
ϕiϕj dµ = δij. Let f1 =∑d−

i=1 αiϕi and h1 =
∑d−

j=1 βjϕj where αi ∈ Rd+ , βj ∈ Rd− . Then

∫
Λ

f1 ⊗ h1 dµ =
∑
i,j

(αi ⊗ βj)

∫
Λ

ϕiϕj dµ =
d−∑
j=1

αj ⊗ βj.

Let F1 =
∫
Λ
f1 ⊗ h1 dµ. Taking βj to be the j’th canonical unit vector, F1 is the

d+ × d− matrix with columns α1, . . . , αd− . In particular, F1 is arbitrary and we can
choose the αi so that F1 is a matrix of full rank.

Step 2 Now choose R-invariant functions ϕ̃j ∈ C∞(Rm) with
∫
Λ
ϕ̃j dµ = 0 and∫

Λ
|ϕj − ϕ̃j|2 dµ small1 and define f , h using ϕ̃j in place of ϕj with αi, βj unchanged.

This results in a matrix F =
∫
Λ
f ⊗ h dµ close to F1. In particular, taking the

approximation close enough ensures that F is still of full rank.

Step 3 It follows from Proposition 4.2 that we can choose v ∈ Cr(Rm,Rd) with
v ◦R = Av and

∫
Λ
v dµ = 0 so that E0 =

∫
Λ
f ⊗ h dµ. In particular, such E0 has full

rank, proving the claim.

5 Local surjectivity for perturbations of E0

Let χ : Cr(Rm,Rd) → Rd+×d− be the mapping defining E0 = χ(v) in Corollary 3.4.
In Section 4, we showed that E0 was a general matrix in the sense that χ is

surjective. As mentioned in Remark 4.1, χ is continuous in reasonable situations. In

1The existence of such functions is standard. For instance, to approximate ϕ1 by a C∞ function,
first approximate ϕ1 in L2 by a simple function

∑ℓ
k=1 ck1Ek

(with ck ∈ R and Ek ⊂ Λ measurable).
By outer regularity of the Borel probability measure µ, there exist open neighbourhoods Uk ⊂ Rm

of Ek with µ(Uk \ Ek) small. Hence
∑ℓ

k=1 ck1Uk
is L2-close to ϕ1. Choose Vk ⊂ Rm closed such

that Uk ⊂ IntVk with µ(Vk − Uk) small. By Urysohn’s Lemma, there exists a continuous function
ψk : Rm → [0, 1] supported on Vk with ψk|Uk

≡ 1. In this way we obtain a continuous function∑ℓ
k=1 ckψk that is L2-close to ϕ1. Each ψk can be uniformly approximated by a C∞ function ζk

resulting in a C∞ function ϕ̃1 =
∑ℓ

k=1 ckζk that is L2-close to ϕ1. Finally, replace ϕ̃1 by ϕ̃1−
∫
Λ
ϕ̃1 dµ.
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this section, we complete the picture by establishing a local surjectivity result for χ;
namely that if χ(v0) = E0 and F0 is close to E0 of full rank, then there exists v1 close
to v0 with χ(v1) = F0.

The first step is to show that if E0 = χ(v0) does not have full rank, then the rank
can be increased under small perturbations.

Lemma 5.1 For any v0 ∈ Cr(Rm,Rd), there exists v arbitrarily Cr-close to v0 such
that rankχ(v) = min{d+, d−}.

Proof Suppose without loss of generality that d+ ≤ d−. By Theorem 4.3, we can
choose v∗ ∈ Cr(Rm,Rd) such that χ(v∗) =

(
Id+ 0

)
. Let vt = v0 + tv∗ and define

Et = χ(vt). Then Et =
(
At Bt

)
where At = A0 + tA1 + t2Id+ for some matrices

A0, A1 ∈ Rd+×d+ , Bt ∈ Rd+×d− . Define the polynomial p(t) = detAt of degree 2d+.
Note that p(t) = t2d

+
(1 + O(t−1)) so p(t) ̸= 0 for large t. Since p is a polynomial,

it follows that there exists ϵ > 0 such that p(t) ̸= 0 for all t ∈ (0, ϵ). Hence At is
invertible, and so rankEt = d+, for all t ∈ (0, ϵ).

Remark 5.2 When Remark 4.1 applies, E (and hence E0) depends continuously on
v ∈ Cr. Hence E0 has full rank for an open set of v ∈ Cr. By Lemma 5.1, the full
rank property for v holds on an open and dense subset of Cr.

In addition, the proof of Lemma 5.1 shows that E0 having full rank is typical in
the probabilistic sense of prevalence [7, 19]. In particular, the map v0 7→ vt = v0+ tv∗
is a “probe” in the terminology of [19].

Next, we require a basic result from linear algebra.

Proposition 5.3 Let E0, F0 ∈ Rm×n be matrices of full rank and suppose that F0 is
close to E0. Then there exist near identity matrices P ∈ Rm×m, Q ∈ Rn×n such that
PE0Q

T = F0.

Proof Suppose without loss of generality thatm ≤ n. Since rankE0 = m, there exist
invertible matrices P0 ∈ Rm×m, Q0 ∈ Rn×n such that P0E0Q

T
0 =

(
Im 0

)
. Then

P0F0Q
T
0 is close to

(
Im 0

)
and it is easily seen that there exist near identity matrices

P1 ∈ Rm×m, Q1 ∈ Rn×n corresponding to near identity row and column operations
such that (P1P0)F0(Q1Q0)

T =
(
Im 0

)
. Moreover, (P−1

0 P1P0)F0(Q
−1
0 Q1Q0)

T = E0.
Hence the result holds with P = P−1

0 P−1
1 P0, Q = Q−1

0 Q−1
1 Q0.

We can now state and prove the main result of this section.

Theorem 5.4 Suppose that E0 = χ(v0) and that F0 is of full rank and close to E0.
Then there exists v that is Cr-close to v0 such that χ(v) = F0.

Proof Suppose without loss of generality that d+ ≤ d−. By Lemma 5.1, we can
make an initial perturbation so that rankE0 = d+. By Proposition 5.3, there exist
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near identity matrices P ∈ Rd+×d+ , Q ∈ Rd−×d− such that PE0Q
T = F0. Hence we

can take v = (P ⊕Q)v0.

6 Corrections to limiting stochastic integrals

In the previous sections, we gave a complete description of the Lévy area, namely the
skew symmetric matrix E whose entries determine the correction

1
2

d∑
α,β,γ=1

Eγβ∂αb
β(X)bαγ(X) (6.1)

to the drift term a(X) as given in (2.3). This is not the complete story since even
when E is nonzero, it might be the case that the correction is forced to vanish due
to the structure of b. Indeed, this happens when b : Rd → Rd×d satisfies an exactness
condition, namely that b−1 = dh for some h : Rd → Rd, see for example [17].

In general, b satisfies the time-reversibility constraint

b(Sx) = −Sb(x)A, (6.2)

from Lemma 3.3 which places restrictions on the correction (6.1).
In this section, we consider some simple time-reversible situations with E nonvan-

ishing and show that in these cases the correction (6.1) is typically nonzero. Given the
bilinearity of this term, it suffices to exhibit a single b for which the term is nonzero.2

Recall that A2 = S2 = I and that we can choose coordinates such that A =
Id+ ⊕ Id− . Recall also that Eγβ = 0 if 1 ≤ β, γ ≤ d+ and if d+ + 1 ≤ β, γ ≤ d, while
the remaining entries of E are general. Since E is assumed to be nonvanishing, we
have d± ≥ 1.

Our simplifying assumption, which is natural in term-reversible situations, is that
S is also diagonal in these coordinates, so S = diag{S1, S2, . . . , Sd} where Sβ ∈ {±1},
and that S ̸= ±I. Define B ⊂ {1, . . . , d} so that Sβ = 1 if and only if β ∈ B. Then
the constraint (6.2) reduces to the constraints

bβγ(Sx) = bβγ(x) for β ∈ B, γ > d+ and for β ̸∈ B, γ ≤ d+,

and
bβγ(Sx) = −bβγ(x) for β ∈ B, γ ≤ d+ and for β ̸∈ B, γ > d+.

Fix i ∈ B, j ̸∈ B. Then an allowable choice of b is obtained by setting

bid(x) = bj1(x) = xi

2A similar argument was used in the more difficult proof of Lemma 5.1. Given one b∗ that
succeeds, we can use it to perturb any b0 that fails: the perturbation b0 + tb∗ succeeds for all small
t > 0.
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and setting the remaining entries to zero. Substituting into the sum in (6.1), we see
immediately that nonzero terms require α = i. Then the factor bαγ(x) is nonzero
only for γ = d. The column vector bβ(x) has nonzero entries only for β = 1, d. Since
Edd = 0, the correction (6.1) reduces to a single term

1
2
Ed1∂ib

1(x)bid(x) = 1
2
Ed1xiej

where ej is the canonical unit vector with 1 in the j’th entry. We know that typically
Ed1 ̸= 0, so this yields a nontrivial correction to the drift term a as required.

Explicit example A classical example of a time-reversible mixing flow is the
geodesic flow for a negatively curved compact orientable surface M . The unit tan-
gent bundle Λ = T 1M is a compact three-dimensional manifold and the geodesic flow
gt : Λ → Λ is given by gt(x) = γ′x(t) where γx : R → M is the unique geodesic such
that γ′x(0) = x. An ergodic probability measure is given by the normalised Liouville
measure µ. Writing y ∈ Λ as y = (q, p) where q ∈ M and p ∈ T 1

qM , the geodesic
flow is time-reversible with R(q, p) = (q,−p). By [12], the geodesic flow is exponen-
tially mixing and hence the formula for E0 in Corollary 3.4 converges and depends
continuously on Hölder observables v.

To incorporate the slow variables, we take d = 2 and A = S = R = diag{1,−1}.
In particular, d+ = d− = 1 and E0 is scalar.

Let g : T 1M → T (T 1M) be the vector field for the geodesic flow and let f, h :
T 1M → R be any R-invariant functions with

∫
Λ
f dµ = 0. Following the proof of

Proposition 4.2, we define v = (v+, v−) : Λ → R2 where v+ = −f and v− = ∇h · g.
Then E0 =

∫
Λ
fh dµ.

SinceM is orientable, we can view p as a unit vector in R2. Let κ denote curvature.
Explicit choices of f and h are f = ψ−

∫
ψ and h = ψ where ψ(q, p) = κ(q)p22, resulting

in

E0 =

∫
Λ

(
κ(q)p22 −

∫
Λ

κ(q)p22 dµ
)2

dµ > 0.

The constraints a(Sx) = −Sa(x) and b(Sx) = −Sb(x)A reduce to a1, b11, b22

being odd in x2 and a2, b12, b21 being even in x2. We can take

a(x1, x2) = (x2 cosx1, cosx2), b(x1, x2) =

(
0 x1
x1 0

)
.

By the calculation at the beginning of this section, we obtain the nontrivial drift
correction

ã(x) = a(x) + (0, 1
2
E0x1) = (x2 cosx1, cosx2 +

1
2
E0x1)

with E0 > 0 as above.

Remark 6.1 The slow dynamics in this example is not very physical, but the reader
is invited to take their favourite choice of a, b and v subject to the constraints arising
from R, A and S. If ã(x) = a(x), then perturb your choice slightly.
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of functions of converging stochastic processes. Application to homogenization.
Current trends in potential theory, Theta Ser. Adv. Math. 4, Theta, Bucharest,
2005, pp. 63–84.

[24] S. H. Lim. Anomalous thermodynamics in homogenized generalized Langevin
systems. Journal of Physics A: Mathematical and Theoretical 54 (2021) 155001.

[25] O. Lopusanschi and D. Simon. Lévy area with a drift as a renormalization limit
of Markov chains on periodic graphs. Stochastic Process. Appl. 128 (2018) 2404–
2426.

[26] R. S. MacKay. Langevin equation for slow degrees of freedom of Hamiltonian
systems. Nonlinear dynamics and chaos: advances and perspectives, Underst.
Complex Syst., Springer, Berlin, 2010, pp. 89–102.

[27] E. J. McShane. Stochastic differential equations and models of random processes.
Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and
Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. III: Probability
theory (Berkeley, Calif.), Univ. California Press, 1972, pp. 263–294.

[28] G. A. Pavliotis. Stochastic processes and applications. Texts in Applied Math-
ematics 60, Springer, New York, 2014. Diffusion processes, the Fokker-Planck
and Langevin equations.

[29] G. A. Pavliotis and A. M. Stuart. Multiscale methods: Averaging and homoge-
nization. Texts in Applied Mathematics 53, Springer, New York, 2008.

[30] H. J. Sussmann. Limits of the Wong-Zakai type with a modified drift term.
Stochastic analysis, Academic Press, Boston, MA, 1991, pp. 475–493.

[31] E. Wong and M. Zakai. On the convergence of ordinary integrals to stochastic
integrals. Ann. Math. Statist. 36 (1965) 1560–1564.

[32] A. M. Yaglom. On the statistical reversibility of Brownian motion. Mat. Sbornik
N.S. 24/66 (1949) 457–492.

14


	Introduction
	The setup
	Time-reversal symmetry
	Generality of E0
	Local surjectivity for perturbations of E0
	Corrections to limiting stochastic integrals

