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We study synchrony optimized networks. In particular, we focus on the Kuramoto model with non-
identical native frequencies on a random graph. In a first step, we generate synchrony optimized
networks using a dynamic breeding algorithm, whereby an initial network is successively rewired
toward increased synchronization. These networks are characterized by a large anti-correlation
between neighbouring frequencies. In a second step, the central part of our paper, we show that
synchrony optimized networks can be generated much more cost efficiently by minimization of an
energy-like quantity E and subsequent random rewires to control the average path length. We
demonstrate that synchrony optimized networks are characterized by a balance between two
opposing structural properties: A large number of links between positive and negative frequencies
of equal magnitude and a small average path length. Remarkably, these networks show the same
synchronization behaviour as those networks generated by the dynamic rewiring process.
Interestingly, synchrony-optimized network also exhibit significantly enhanced synchronization
behaviour for weak coupling, below the onset of global synchronization, with linear growth of the
order parameter with increasing coupling strength. We identify the underlying dynamical and
topological structures, which give rise to this atypical local synchronization, and provide a simple

analytical argument for its explanation. © 2011 American Institute of Physics.

[doi:10.1063/1.3590855]

Synchronization of networks is a ubiquitous phenomenon.
The Kuramoto model describing the interaction of a net-
work of identical oscillators has attracted mathematical
interest because of its analytical tractability. In this paper,
we will study the Kuramoto model with non-identical oscil-
lators. An important question is how a network should be
organized to allow for optimal synchronization behaviour
of the oscillators. Several computational methods have
been recently introduced to establish synchrony optimized
networks, based on dynamic rewiring™® and simulated
annealing."”8 However, these methods, although successful,
are computationally extremely costly and prohibit the
study of large networks. In this paper, we will propose a
very simple and cheap algorithm to create synchronization
optimized networks.

. INTRODUCTION

The notion of complex networks is a powerful way to
describe and understand the collective behaviour of many
interacting agents. Applications range from biology, neuro-
physiology, and social behaviour to technological examples
such as electric power grids and the Internet.’>*"* Recently,
much attention has been paid to the interplay between the
structure or topology of the network and the dynamics that
takes place on the network. This is particularly important in
the problem of mutual synchronization of oscillators. The
question we ask in this work is “What are the properties of a
network that are optimal with respect to synchronization?”
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Given the good synchronization properties of small world
networks,”’ which are characterized by a high clustering
coefficient and a small average path length, it was long
believed that a small average path length assures good syn-
chronization behaviour. Small path length has been associ-
ated with heterogeneity in degree distribution.” It has since
been shown, however, that some homogeneity in the degree
distribution is actually desirable when optimizing for syn-
chrony at the expense of small average path length.22’20 The
notion of homogeneity in the context of synchronization has
been pushed further by so called entangled networks, which
are synchrony optimized” and exhibit large girth and homo-
geneous degree, betweenness, and distance distributions.

Prompted by these findings, research has turned away
from testing individual structural traits, instead focussing on
finding a collection of structural properties that fit together in
a network constructively, with the aim of optimizing syn-
chronizability.™ This can be achieved by making small
mutations consisting of rewirings to a given network and
accepting those mutations which make a network fitter for
synchronization. By tracking the structural properties over
the course of the evolution, one can identify the emergence
of those properties that together constitute the synchrony
optimal topology.

We follow this trend of seeking the optimal topology,
but without the common assumption that all oscillators are
intrinsically identical.”?***?* In Refs. 5 and 6, a dynamical
rewiring procedure was introduced to optimize synchroniza-
tion at a particular coupling strength. The algorithm rewires
a given network in order to maximize the level of phase
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coherence measured by a synchronization order parameter.
By tracking the evolution of topological properties of the
network over the course of the rewiring process, it was found
that synchrony optimized networks are characterized by a
prevalence of connections between nodes with similar mag-
nitudes of native frequencies but opposite signs. The net-
works found in Ref. 5 exhibited a significant drop in the
average path length during the final stages of the optimiza-
tion procedure. This was linked in Ref. 5 to the formation of
hubs. As discussed above, the creation of hubs is in some
cases detrimental for synchronization.”*?® We will therefore
modify the dynamic rewiring algorithm (DRA) proposed in
Ref. 5 to allow only for rewirings, which preserve the initial
degree distribution.

We will then introduce an energy-like quantity £, which
measures the correlation of frequencies with the same mag-
nitude but opposite signs and will construct network topolo-
gies that minimize this energy. We present an efficient and
straightforward algorithm to generate those FE-minimized
networks. The average path length of those networks is
much larger than the one associated with DRA-synchrony-
optimized networks or with an Erd6s-Rényi network with
the same number of nodes and the same mean degree. The
increased path length is reflected in an overall poorer syn-
chronization behaviour of global synchronization. We there-
fore, akin to the idea of the small-world network, propose a
rewiring algorithm to the E-minimized network. We demon-
strate that approximate synchrony optimized networks are
given as a balance between requiring small average path
length and assuring homogeneity in the sense of how native
frequencies are distributed over the network.

Interestingly, we will see that synchrony-optimized net-
works exhibit significantly enhanced synchronization behaviour
for weak coupling strength, below the onset of global synchro-
nization. We coin this local synchronization. In this regime,
the order parameter is a linear function of the coupling
strength. We will explain this atypical behaviour by investigat-
ing local interactions of partially synchronized clusters.

The paper is organized as follows. In the following sec-
tion, we describe the networks under consideration and intro-
duce order parameters to measure synchronization. In Sec. III,
we describe the methods to generate synchrony optimized net-
works. We introduce two methods, a modification of the
dynamic rewiring algorithm (DRA) developed in Ref. 5 and a
novel algorithm based on a minimization procedure of an
energy-like quantity with subsequent random rewirings to
ensure sufficiently small average path length. These
synchrony-optimized networks not only exhibit the well
known global synchronization at large coupling strength but
also local synchronization at weak coupling strength. This
will be analyzed in Sec. IV. We conclude in Sec. V with a
discussion.

Il. THE MODEL

We will study the Kuramoto model for N phase
oscillators ¢, with non-identical native frequencies ;. The
Kuramoto model is a simple paradigmatic model for syn-
chronization phenomena®'~ and is written as
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where the natural frequencies w; are randomly chosen from
a uniform distribution U/(—1,1). The adjacency matrix
A = {a;} determines the topology of the network and
describes which oscillators are connected. For interacting
oscillators, generically, there exists a critical coupling strength
K. such that, for sufficiently large coupling strength K > K,
the oscillators synchronize in the sense that they become
locked to their mutual mean frequency and their phases
become localized about their mean phase.”*> This type of
synchronous behaviour known as global synchronization
occurs if the dynamics settles on a globally attracting
manifold.

We restrict our analysis to unweighted, undirected net-
works for which the adjacency matrix A = {a;;} is symmet-
ric with a;; = a;; = 1 if there is an edge between oscillators i
and j and a; = O otherwise. As in our initial network from
which we start our synchrony optimization we choose con-
nected ErdGs-Rényi random graphs (ERs), characterized by
a parameter p € (0, 1), which describes the likelihood of an
edge joining two nodes (or oscillators). ERs feature a small
average path length ¢ which scales only logarithmically with
the size N of the network as ¢ ~ log(N)/log(({k)) with the
mean degree (k) = YV deg(i)/N = p(N — 1) and a Poisson
degree distribution.

In the following, we will study how the adjacency ma-
trix, and hence the topology of the network, has to be con-
structed to allow for an optimal communication between the
oscillators leading to partial and/or global synchronization.
Synchronization is usually monitored via the order parameter

1.
r(t) = N 1> e,
j=1

with 0 < r < 1. The asymptotic limit of this order parameter
can be estimated by introducing

2.2)

1 To+T
F= lim —J r(t) dt, (2.3)

where T is chosen large enough to eliminate any possible
transient behaviour of the oscillators. The order parameter r
and its long time average 7 provide a measure for phase co-
herence. That is, full synchronization as measured by r is
defined as ¢,;(r) = ¢;(t) for all pairs i, j and for all times .
The order parameter 7 ~ 1 indicates complete synchroniza-
tion, and 7 = O(1/+/N) indicates incoherent phase dynam-
ics; values inbetween indicate partial coherence.

In the following, we will discuss methods, which are
designed to evolve a network toward enhanced synchrony as
measured by 7.

lll. SYNCHRONY OPTIMIZED NETWORKS

Studying how to optimally rewire networks is an ongoing
problem. The fully synchronized state can be studied by
means of the master stability function approach® and is
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determined by the ratio of the largest nonzero eigenvalue and
the smallest eigenvalue of the Laplacian matrix. This has
been used to study given networks as well as to design rewir-
ing strategies of networks.?22%%11:1214 We will apply here
schemes, which have a less rigorous foundation but allow us
to evolve networks, which are not yet fully synchronized.
Synchrony here is measured by means of the order parameter
7 defined in Eq. (2.3). This includes the fully synchronized
state as well as partially synchronized states.''-'%¢2

A. DRA

In a recent paper,” a method was proposed based on a
rewiring algorithm designed to optimize synchronization at a
specified coupling strength K = K*. The measure for syn-
chronization used is 7, although combinations of 7 and local
order parameters have been used as well.® This approach
allows one to study the network topology and structure even
at coupling strengths before full synchronization has been
achieved. We will follow” and briefly describe how we apply
it: Given an initial network with a specified initial structure
{a;} and distribution of frequencies (we choose the frequen-
cies from a uniform distribution /(—1, 1)), the initial condi-
tions ¢;(0), drawn from a normal distribution with unit
variance, are evolved using the Kuramoto model [Eq. (2.1)]
at some fixed coupling strength K*. The network is then suc-
cessively rewired for fixed K = K*, thereby changing the
network structure, to achieve enhanced synchronization
measured by higher values of 7(K*) for the rewired net-
works. The order parameter 7(K*) is determined after each
rewiring through a sufficiently long simulation of the Kura-
moto model [Eq. (2.1)]. A rewiring is accepted if the value
of 7 is larger compared with the value obtained from the pre-
vious network structure. The synchrony optimized network
is then obtained once 7 reaches a stationary value after suc-
cessive rewirings. The actual optimization is performed at
one fixed K* > K.. The resulting synchrony optimized net-
work is then simulated for a range of coupling strength K to
obtain the corresponding 7(K)-curve.

We modify the method described in Ref. 5 and allow
only those rewirings, which preserve the degree distribution
to isolate those structural network properties not related to
the creation of hubs, which may prohibit synchroniza-
tion.**? This is achieved by employing the Maslov-Sneppen
rewiring algorithm'? rather than a random edge-replacement
as done in Refs. 5 and 9. In the Maslov-Sneppen algorithm,
two unconnected edges connecting four distinct nodes are
randomly drawn, and then mutually rewired, provided the
rewiring leaves the network connected and does not create
self-loops or double edges.

In our numerical simulations, we use as an initial net-
work an Erdds-Rényi random graph specified by the number
of nodes N and the mean degree (k). We chose here N = 500
and (k) = 25. The coupling strength K*, at which the optimi-
zation procedure is performed at, is chosen as K* = 30 so
that 7(K*) = 0.9 for this initial network, which allows the
optimization to be performed on a network that is already
close to synchronization. To determine 7, we eliminate tran-
sient behaviour by choosing an appropriate T and time win-
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dow T in which to perform the temporal average [Eq. (2.3)].
In particular, we used Ty =50 and 7 = 100 for networks
with N = 500 oscillators for which the value of 7 has con-
verged. The rewiring is terminated if the number of consecu-
tive rejected rewirings exceeds twice the number of edges
Neages = 1/2 Ziv deg(i) =1/23;; aj.

In Figure 1, we show the order parameter 7 as a function
of the coupling strength K for the initial network and for the
synchrony optimized network created by the dynamic rewir-
ing as described above. One can clearly see the enhanced
synchrony for all values of K and not just for K* at which the
optimization was performed. Both networks exhibit global
synchronization for sufficiently large values of the coupling
strength K > K. with the onset of global synchronization
being significantly smaller for the DRA-synchrony opti-
mized networks at K, ~ 18 compared to K, ~ 25 for the ini-
tial ER. To estimate the value of K., we use the inflection
point of the r-curve as a rough measure. We note that for suf-
ficiently large coupling strengths, the initial ER network will
also reach full synchronization with 7 ~ 1. Typically, one
expects to see non-synchronous behaviour for weak coupling
strength K < K., followed by the sudden onset of the global
synchrony branch for K > K. This behaviour is evident in
the initial ER network illustrated in Figure 1. Surprisingly,
the DRA-networks show enhanced synchronization below
the onset of global synchronization for K < K.. A remark-
able feature is the observed atypical linear dependency of 7
on K below the onset of global synchronization. We label
this the /local synchrony regime. In previous work on
synchrony-optimized networks, this regime had not been
observed, and indeed for smaller networks this regime is not
apparent in DRA networks (see figures in Ref. 5). We shall
explain the presence of the local synchrony branch and detail
the mechanisms behind this atypical behaviour in Sec. I'V.

When using DRA one has to bear in mind the following
caveats. The DRA approach is only designed to find local
maxima and may in principle miss the global maximum.
However, we have tested that for initial networks at suffi-
ciently strong coupling strengths above the critical value of
the initial ER, using K* > 25 ~ K, the optimized network
and the associated topological properties are robust. We
found that for K* =30, where 7 ~ 0.9 the optimization

T T T T T T T T T

PRRPReeTE e
e

-
o’
-

08

06

el

04

02

SR bl

I 1 ! 1 ! 1 ! 1
0 5 10 15 20 25 30 35 40 45 50

FIG. 1. (Color online) Synchrony order parameter 7 as a function of cou-
pling strength K for the N = 500 initial random ER network (dashed line,
online blue) and for the synchrony optimized version of the same network
using the approach detailed in Sec. III A (continuous line, online red). The
DRA synchrony optimization was performed at K* = 30.
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converges fastest toward the global maximum defined by the
globally attracting synchronization manifold. If the dynamics
is not attracted to a globally attracting set (i.e., in particular
for K* < K, =~ 25), the DRA procedure shows dependence
on the initial conditions ¢,;(0). For coupling strengths
K < K., we found DRA unable to optimize the networks to
significant values of 7 suggesting the algorithm is finding
only a local maximum.

Note that the DRA approach relies obviously on the defi-
nition of synchronizability via the choice of the order parame-
ter 7 with respect to which the optimization is performed.
One may think of optimizing not 7 for one particular K* but
rather optimizing networks by minimization of the onset of
global synchronization K.. However, this would be computa-
tionally much more expensive and would require finite size
scaling (e.g., Ref. 15). There is, however, numerical evidence
that the two approaches are equivalent if K* is chosen suffi-
ciently large. In Ref. 5, it was shown that for sufficiently large
K*, the optimized networks had larger values of 7 for all cou-
pling strengths, implying an earlier onset of synchronization.
To show that the two approaches are equivalent and to find
for which optimization schemes this is the case is a non-triv-
ial matter, which we do not attempt to address here. We
have checked numerically, however, that the topological
properties of DRA-optimized networks and the 7(K)-curves
are invariant if initialized at different values of K* provided
K* > K. ~ 25, suggesting that K. is minimized as well.

B. Topological structure of DRA-optimized networks

We now look in detail at the topological structure of
DRA-optimized networks. To understand what structural
properties we can associate with enhanced synchrony, we
plot in Figure 2 how certain parameters change during the
optimization process. In particular, we look at the average
path length ¢ defined as
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where dj; is the shortest path length between nodes 7 and ;.
Note that d;; is finite in connected networks. We further ana-
lyze the clustering coefficient (or transitivity)

3 x number of triangles in the network

~ number of connected triples of vertices’

which measures the heightened probability of two neigh-
bours of a node sharing an edge. It measures the triangle den-
sity of the network, where the factor of 3 in the numerator
takes into account that each triangle contributes three con-
nected triples. In ER’s, the connectivity is given by
C = (k)/(N —1). In Ref. 5, the following two parameters
turned out to be of utmost importance for synchrony opti-
mized networks, the frequency sign ratio p_, which measures
the proportion of edges linking oscillators, whose native fre-
quency has the opposite sign, and the correlation coefficient
¢y € [—1,1] defined as

2_aijj(0; = (@) (0 = (0))

o = 5

%Iau(wi —(w))?

3.1)

which measures the correlation between frequencies of adja-
cent nodes and quantifies how likely nodes with large posi-
tive native frequencies are connected to nodes with large
negative native frequencies.

In Figure 2, it is seen that synchrony optimized networks
are characterized by a low clustering coefficient, strongly
negative values of ¢, and large values of p_. Therefore, the
optimized network no longer exhibits the structural proper-
ties of an ER. We note that, contrary to the results presented
in Ref. 5, the average path length ¢ increases rapidly albeit
slightly in the later stages of the optimization. This counter-
intuitive result along with the low clustering coefficient is in
line with the idea of homogeneity promoted in Refs. 22, 20,
and 9. Note that although large values of the correlation
coefficient ¢, and large clustering coefficients have each
been identified as individually promoting synchronizabil-
ity,'” these are incommensurate properties in the networks

FIG. 2. (Color online) Change of struc-
tural network parameters during the
DRA optimization process. The lowest
value of 7 refers to the initial random

network and the largest value of 7 to the
r final synchrony optimized network. (a)

Average path length ¢, (b) clustering
coefficient C, (c) frequency sign ratio
p—, and (d) frequency correlation c,.
We used an initial ER with N = 500
nodes and (k) = 25, and initialized the
DRA optimization at K* = 30.
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we consider: Triangles are a poor configuration for maximiz-
ing anti-correlation, because they must contain a plus-plus or
minus-minus pair. Therefore, the optimal network contains
very few triangles, explaining the drop in clustering coeffi-
cient from the value of the initial ER network with
C = (k)/(N — 1) = 0.05 observed in Figure 2(a).

The results for ¢, and p_ suggest a different type of ho-
mogeneity in synchrony optimized networks with non-identi-
cal native frequencies: the nodes are arranged in such a way
as to maximize the ratio of positive-negative pairs of native
frequencies as well as their anti-correlation. This allows
strongly positive and strongly negative native frequencies to
neutralize toward the mean frequency (w) =0. It is this
tendency of synchrony optimized networks to form linear
structures of positive-negative native frequency node pairs,
which is responsible for the increase in path length.

C. E-networks

The results from Ref. 5 for random rewirings and our
own results for degree-preserving rewirings described in
Sec. III B suggest that for Kuramoto-models with non-identi-
cal oscillators, synchrony optimized networks are character-
ized by a strong anti-correlation of adjacent positive and
negative native frequencies. In light of these results, we pro-
pose to reformulate the optimization of synchrony as an opti-
mization problem for certain structural network properties.
Analogously to spin systems, we define an “energy”

E = %QAQT, (3.2)

where the frequency vector Q is defined as Q= (wy,
3, ..., wy). Note that the energy E is just a (non-normal-
ized) reformulation of the frequency correlation coefficient
¢, (compare with Eq. (3.1)). For frequency distributions
with non-zero mean of the native frequencies (w), we simply
replace Q by Q — ().

The results of Sec. III B suggest to minimize this
energy. This can be done by iteratively pairing up the nodes
occupied by negative native frequencies of largest absolute
values with the available nodes occupied by positive native
frequencies with largest absolute value. This is achieved effi-
ciently by a shoestring method, as seen in Figure 3. To gen-
erate E-minimized networks one starts with an edge-free
network, keeping note of each node degree. The first edge is
then chosen between those two nodes which contribute the
maximal negative energy. The second edge is chosen to be
the edge which contributes the second most negative energy,
provided the two nodes concerned each have a vacant
degree. This is repeated until all nodes have reached their
initial fixed node degree. This iterative algorithm, however,
fails when there are only two nodes left and no further edges
can be laid without creating multiple edges between these
two nodes. We bypass this problem by simply stopping the
algorithm at this point and leaving out these extra edges. In
most networks, we consider around 20 edges out of 6250 are
omitted, which has minimal effect on the synchronizability
and topological properties of the optimized network.
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W

FIG. 3. Illustration of networks of minimal energy E. Left: Initial ER with
N = 10 nodes. Nodes with positive frequencies are on the right and nodes
with negative frequencies on the left. Nodes are ordered from top to bottom
with decreasing absolute value of their frequencies. Right: The same net-
work but rewired to minimize E.

Minimizing the energy E creates a particular network
structure. The energy E measures correlation of adjacent
native frequencies. So by minimizing E, nodes with w; > 0
will, with high probability, be linked to nodes w; < 0 with
similar magnitude. This creates an approximate bipartition in
the network, where nodes are divided into camps of positive
and negative ;. In Figure 3, we compare a typical E-mini-
mized network with its corresponding initial ER with
N = 10 nodes and mean degree (k) = 2.2. One clearly sees
how nodes of similar |w;| but opposite sign are paired to-
gether in the E-minimized network. This community struc-
ture is not present in the DRA network to the same extent.

The synchronization behaviour of energy-minimized
networks is illustrated in Figure 4. The order parameter 7 is
shown as a function of the coupling strength for a 500-node
network obtained by minimizing £ and compared to the
DRA synchrony-optimized network. The onset of global syn-
chronization is delayed with K. ~ 27 for the E-minimized
network and K. =~ 18 for DRA. The values of i of the DRA-
optimized network are significantly larger than for the
E-minimized network for most values of K. For very large
coupling strengths K > K, both network types exhibit simi-
lar synchronization behaviour (not shown), as expected.
However, for very small values of the coupling strength
K, E-minimized networks are superior.
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FIG. 4. (Color online) Synchrony order parameter 7 as a function of cou-
pling strength K for optimal networks with N = 500 nodes and mean degree
(k) = 25 produced by the dynamic approach (DRA) (continuous line, online
red) and by minimizing E (dashed line, online blue). We used an average
over six E-minimized networks generated from different initial ER networks
with same N and mean degree.
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FIG. 5. Sketch of the rewiring. The nodes with negative native frequencies
are on the left hand side and the nodes with positive native frequencies on
the right hand side.

Let us now investigate the cause for this overall poor
synchronization behaviour of E-minimized networks. The
energy of the DRA-optimized network with £ = —1614 is
much smaller in absolute value than the minimal energy of
the E-minimized network with E.;, = —2008. However, the
reader may have already suspected that the “shoestring” na-
ture of the edges in the approximate bipartite E-minimized
networks implies a much larger average path length ¢ than for
an ER of equal size. A path from a node of w; > 0 to a node
of w; > 0 must go via a node of w; < 0, thus, paths between
nodes of the same sign are of length 2, 4, 6, and so forth. Sim-
ilarly, paths between non-adjacent nodes of opposite sign are
of length 3, 5, 7, and so forth. This bipartition then implies an
increase in the average path-length of the network, making it
difficult for frequency information to propagate and hence
harder to reach a state of global synchronization. The delayed
onset of global synchronization of E-minimized networks and
their significantly reduced global synchronizability,®'!?
reflected by the lower values of 7 for large coupling strengths
K > K., can be linked to a massively increased average path
length. The DRA-optimized networks have an average path
length of ¢ = 2.34, which is close to the theoretical value of a
corresponding ER with /zg ~ log(N)/log((k)) = 1.93. The
E-minimized network, however, exhibits a large average path
length ¢ = 6.14. Furthermore, the bipartite structure leads to
a clustering of nodes with large absolute values of their native
frequencies |w;|. We have checked that those large-|w;]
neighbourhoods are highly resistant to entrainment even at
large coupling strengths.

The reader will have noticed in Figure 4 that the syn-
chronization behaviour at moderate values of the coupling
strength K in E-minimized networks is not monotonically
increasing as is the case for the global synchrony branch.
This can be attributed to deconstructive interference between
two separate clusters of synchronous oscillators. Detailed
analysis of this and other phenomena present in minimal
energy networks will be presented elsewhere.'’
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D. (E,¢)-networks

To control the increase of the average path length ¢ asso-
ciated with the approximate bipartite structure of the E-mini-
mized network, we propose the following random rewiring,
inspired by the small world networks.>’

As with the Maslov-Sneppen rewiring procedure,'® we
choose two edges (i,/) and (k, ) of an E-minimized network
and rewire them as depicted in Figure 5, accepting the rewir-
ing with probability

P(i,j, k1) = min{exp(~qloo; — o) exp(~glo; — on ) .

The rewiring procedure is repeated until £ and ¢ have
reached constant values. We coin those networks (E, £)-net-
works. The procedure produces approximately anti-diagonal
networks, whose adjacency matrices are now supported by a
Gaussian distribution centred on the anti-diagonal (provided
the native frequencies are ordered according to their values
with 0 < wy < -+ < wy). We show in Figure 6 the adja-
cency matrix A for a 500-node network for several values of
q. The value g = oo corresponds to the original E-minimized
network because the probability of a rewiring is zero. The
adjacency matrix has a clear anti-diagonal structure. At the
other extreme, the value ¢ = 0 corresponds to ER when all
rewirings will be accepted. For sorted native frequencies
which are uniformly distributed, 1/,/7 is the characteristic
width of the anti-diagonal.

In Figure 7, we show how the energy E and the average
path length ¢ change as a function of ¢. For ¢ < 1, the net-
work is Erdds-Rényi-like and has |E|/|E.i,| < 1 and
0 =~ lggr ~log(N)/log({k)) = 1.93. For large values of ¢,
the network will stay close to the energy-minimized network
with E ~ Eyi, = —2008 and a corresponding large average
path length ¢ = 6.14 (not shown).

For large ¢, i.e., close to the E-minimized state, we can
estimate the average path length ¢ as a function of ¢g. Due to
the approximate anti-diagonal structure of the adjacency ma-
trix, the path length can be estimated by the average width W
of the anti-diagonal band (see Figure 6) as ¢ ~ N/W. Since
the width of the band is given by W ~ 1/,/g, we obtain

0 — b ~ /7.

This is numerically verified in Figure 8. For very large
values of ¢, when / saturates to the average path length of

FIG. 6. (Color online) Visual represen-
tation of the adjacency matrix A of
N = 500 node (E, £)-networks for differ-
ent values of ¢. Here, we assume the
node indices are sorted by decreasing
native frequency. Entries with a; =1
are coloured dark (online blue). Left:
E-minimized network with ¢ = oo. Mid-
dle: ¢ = 30. Right: ¢ = 5.
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FIG. 7. (Color online) Energy E and
path length ¢ as a function of the rewir-
ing probability g. The red dashed
line represents the energy of the E-
minimized network.
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the E-minimized network, and for very small values of ¢,
when W > N, the formula is obviously not correct, but it
captures the behaviour of the average path length for a large
range of g.

The above discussion suggests that the dominant struc-
tural and topological properties of synchrony optimized net-
works are the energy E and the average path length /. We
now show that synchrony-optimized networks are character-
ized by a trade-off between small energies £ and small aver-
age path length /. We can find a range of values ¢* for which
the resulting (E, ¢)-networks exhibit the same synchroniza-
tion behaviour as DRA optimized networks. In Figure 9, we
show the order parameter 7 as a function of coupling strength
K for the DRA-optimized network and for (E, £)-networks
with ¢ = 0 (equivalent to ER), ¢ = oo (equivalent to E-mini-
mized network), and for ¢ = 30. It is remarkable that (E, ¢)-
networks with values of ¢ in the range ¢ € (25,50) produce
synchrony-optimized networks of the same synchronization
quality as DRA. We stress that this way to construct syn-
chrony-optimized networks is computationally much faster
than the DRA algorithm proposed in Ref. 5. To investigate
the range of optimal values ¢*, in Figure 10, we plot 7" as a
function of ¢ measured at fixed values of the coupling
strength K. A comparison with the values of 7 of the DRA-
optimized network reveals that there is no value of g, which
allows for optimal synchronization behaviour at a/l coupling
strengths. In particular, for each value of K, the curve 7(q)
has its maximum at different values of g. We conclude that
there is no optimal topological structure valid for all values
of K. We have encountered this already in Figure 4 where
for very small values of the coupling strength K, the E-mini-
mized network was optimal, whereas for large values of K it
was suboptimal.

0.2~ B

045 36 38 P a2 4.4
log(q)

FIG. 8. (Color online) Log-log plot of the average path length ¢ as a func-
tion of the rewiring probability g. The slope of the line of best fit (dashed
line) is 0.493.

IV. LOCAL SYNCHRONIZATION AT WEAK COUPLING

Synchrony optimized networks clearly exhibit two sepa-
rate regimes of synchronization for different ranges of K. For
K > K.~ 18, we observe the typical global synchrony
branch. For K < K, we observe enhanced synchronization
with nonvanishing values of 7(K). Remarkably, we found
that the 7r-curves of all E-minimized networks (¢ = o0),
which differ in the seed ER used to initialize the optimiza-
tion, collapse onto the same linear curve for small values of
K < 12 (but differ significantly for higher values of K). We
will now discuss the enhanced synchronizability of syn-
chrony-optimized networks in the local regime for weak cou-
pling strengths K.

First, recall that networks of minimal £ have a very un-
usual pairing structure. Nodes of largest |w;| and opposite
sign are likely to be paired together to produce negative
energies. Similarly, nodes with w; ~ 0 are likely to be paired
to each other in order to minimize E. Note that rewiring the
small @; nodes does not significantly change the energy E.
We propose that the small- |w;| communities are causing
these networks to register high values of 7 at weak coupling
strengths. The closer the frequencies of adjacent nodes are in
value, the smaller is the required critical coupling strength
for mutual synchronization. Those communities of nodes
with small |w;| can mutually synchronize at small K inde-
pendent of their respective signs, and then act as a stable
community of nodes entraining algebraically larger frequen-
cies (recall that (w) = 0). Therefore, synchronized clusters

K

FIG. 9. (Color online) Synchrony order parameter 7 as a function of cou-
pling strength K for the N = 500 synchrony-optimized networks. We show a
DRA-optimized network (continuous line, online red) and several (E, £)-net-
works with ¢ = 0 (dashed, online blue), ¢ = oo (crosses, online green), and
g = 30 (triangles, online magenta). For the energy minimized networks with
g = 0, we have plotted an average over 6 seperate networks.
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FIG. 10. (Color online) Left: Synchrony
order parameter 7 as a function of the
rewiring probability ¢ for several values
of the coupling strength K. Right: For
the coupling strength K = 50, we pres-
ent a zoom at low values of ¢ showing
that there exists a value ¢* such that syn-
chronization is maximized.

025110-8 D. Kelly and G. A. Gottwald
‘ : : 0.9894
0_3%
W\M |
06} _ B
K=15 ;
F 09885}
04 K=10
K=5 0988
0.2\/\/_/_\__,\/\/——\N
% 50 100 150 200 0TS

q

begin to form in the E-minimized network at lower coupling
strengths than in the DRA network.?’

A. Linear scaling of the local synchronization regime
for weak coupling

The local regime for synchronization of synchrony-opti-
mized networks exhibits a clear linear growth behaviour as a
function of the coupling strength K, which is clearly visible
in Figures 4 and 9. We claim that this linear scaling will
occur in highly negative energy networks such as synchrony
optimized networks (DRA, (E,{)-networks). This is sup-
ported by the following simple argument.

Suppose we have a synchrony-optimized network of N
nodes. Our numerical experiments suggest that there is a
synchronized cluster of nodes with small ;| even for very
low values of K. Let I'x be the set of all nodes in this cluster
at coupling strength K. Clearly, ['x will grow with K, and we
wish to know how the size of I'g scales with K. For a node i
to be in Tk, its frequency ¢;(¢) must be locked to the mean
frequency, which in our case is zero. From the oscillator dy-
namics [Eq. (2.1)], we obtain a condition for node i to be in
the locally synchronized cluster I'x, given by

K
|CO,'| = <Nk,',

K&
ﬁ;aﬁ Sin(¢j - ;)

foralli € Tx. Here, k; = 5 a;; is the degree of node i. Since
the E-minimized networks have identical degree distribu-
tions to the initial ER, the degree of an individual node k;
does not differ much from the mean degree (k). This yields
the simple requirement for membership in I'x

(KK

|owi| < N
The low energy structure of the synchrony-optimized net-
work ensures that all the nodes with |w;| small enough to sat-
isfy the above inequality are linked to each other and are
found in the small-|w;| community. Therefore, they will
readily form a synchronized cluster. We therefore assume
that all nodes that can potentially become entrained at cou-
pling strength K do become entrained. The size of I' is then
simply the number of nodes whose absolute values of their
native frequencies is smaller than K (k) /N. This is given by

40

60 80 100 120

T =N | elo)do.

()
|oo] <=7

where g(w) is the probability density function of the native
frequencies . Suppose that g is sufficiently smooth. A sim-
ple Taylor expansion implies that

(k)*K? ) . @

el = 20wk + o 0

We may now calculate the order parameter r for this decom-
position as

r :]l\/| Zei¢f + Zeid’f|.

Jj€lk 7€k

We further assume that all oscillators in I'x are locked to the
same phase, and all others are randomly distributed. Thus we
obtain the linear relationship

l‘(K)Z%FK-‘rO(%)
KK 1 K2(k)?
(®) +O<ﬁ’ ]5>>

1 K
:pK + O<—7PZK2ap_> .

N
i N 4.2)

In the above, we use relation [Eq. (4.1)] and the fact that for
ERs we have (k) = p(N — 1). The argument suggests that
linear scaling is expected for all K < 1/p, which agrees
with all linear behaviour observed thus far.

We test our prediction for the N = 500 node synchrony-
optimized network with p = 0.05 and g ~ U(—1, 1), so that
¢(0) = 1/2. In Figure 11, we plot 7 as a function of K and
compare the analytical result [Eq. (4.2)] with results from
our synchrony-optimized networks. The actual slope is
approximately 30% smaller than the predicted slope, but this
is unsurprising given that we took I'x to be the theoretically
maximal size, and that we further assumed that all oscillators
in I'x were exactly equal in phase and had equal node degree
ki = (k). Furthermore, there is a finite size effect due to the
sampling of the uniformly distributed native frequencies. We
checked that for N = 2000 the slope increases to 0.04.
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0.8 T

FIG. 11. (Color online) Order parameter 7 as a function of coupling strength
K for the local synchronization branch for the (E,)-networks with ¢ = oo
(continuous line, online blue). The dashed line (online red) shows the best lin-
ear fit and the dashed-dotted line (online magenta) shows the predicted linear
behaviour [Eq. (4.2)]. For this particular network, (k)/(N — 1) = 0.05. The
line of best fit has slope 0.034.

In this section, we have analysed the behaviour of the
local synchrony branch. We found that the existence of signif-
icant coherence for weak coupling K is explained by the pres-
ence of small-|w;| communities in synchrony-optimized
networks. Furthermore, we showed that the linear scaling
behaviour in 7 follows from the simple fact that the size of the
small-|w;| synchronized cluster I'x grows linearly with K.

V. DISCUSSION

We proposed a novel rewiring algorithm aimed at pro-
ducing synchrony optimized networks of non-identical Kura-
moto oscillators with a given fixed degree distribution. The
algorithm is built around the observation that, in synchrony
optimized networks, there is a high degree of anti-correlation
between nodes with native frequencies of similar absolute
value but opposite sign. We presented a simple and computa-
tionally cheap algorithm to construct networks, which maxi-
mize this anti-correlation by minimizing an energy-like
quantity E. However, we found that in order for oscillators to
communicate more efficiently in a network, a balance
between having small communication length and large anti-
correlation between neighbouring frequencies must be
achieved. In a second step of the synchrony-optimization
algorithm, we therefore rewire the E-minimized network
with a prescribed probability to decrease the average small-
est path length £. The resulting (E,¢)-minimized networks
have very similar synchronization properties as measured by
the order parameter 7 to a dynamically rewired network pro-
posed in Ref. 5. We verified this for a wide range of the
rewiring probability ¢. This indicates that the two properties
of energy and path length are the two dominant properties
for network synchronization of ER’s with constant degree
distribution and non-identical native frequencies. The actual
balance between those dominant topological properties
depends strongly on the coupling strength. In particular, we
found that for large coupling strengths K > K., when the dy-
namics evolves on the global synchronization branch, the
requirement of small average path length is significant,
whereas for small coupling strengths K < K., below the
onset of global synchronization, the requirement for small
average path length seems irrelevant. As in Ref. 22, we find
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that particular homogeneity properties are promoted in opti-
mal networks, even when they impose a greater average path
length.

The particular topological structure of (E, ¢)-minimized
networks provides several new and atypical phenomena.
Interestingly, we identified a local synchronization regime
for K < K., where synchrony optimized networks exhibit ro-
bust enhanced synchronization behaviour. We have linked
this enhanced synchronization to the special topological
structure of highly negative energy networks. Networks
obtained by minimizing E have the tendency to pair up oscil-
lators with similar but sign-opposite native frequencies. This
creates local communities of oscillators with small algebraic
frequencies which—amongst themselves—can synchronize
at values of K way below K, required for complete synchro-
nization of the full network. This local synchrony regime is
characterized by linear growth of 7 as a function of K. We
showed that the linear scaling is caused by the presence of a
small-|w;| community and derived an approximate formula
for this scaling behaviour.

Simulated annealing'® is a natural algorithm to study the
rewiring of networks, which has received recent attention.®’
We also used simulated annealing to find the global minimum
of the high-dimensional energy landscape E,'® and in order to
control the average path length ¢, we considered a constrained
energy introducing a penalty term on /. This procedure is also
able to create synchrony-optimized networks,'® but as DRA
simulated annealing is computationally expensive.

It is pertinent to mention that the (E, ¢)-minimized net-
works are not necessarily optimized for synchronization (in
order to do that one would need to perform optimization
with respect to 7 or K.). If one is simply interested in gener-
ating optimized networks, without trying to extract dominant
topological features which enhance synchronization, one
may want to perform simulated annealing not on some
energy-like quantity but on 7. This can be done at each cou-
pling strength K, but would be computationally extremely
expensive. We have performed such an optimization of 7 for
N = 200 node networks using simulated annealing.'® The
topological properties and the associated 7(K) curve were
qualitatively the same as the ones discussed here, showing a
linear local synchronization branch as well as enhanced
global synchronization. We note that for N = 200 node net-
works, we did not find a local synchronization branch in
DRA-minimized networks.
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