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ON CONVERGENCE OF THE PROJECTIVE INTEGRATION

METHOD FOR STIFF ORDINARY DIFFERENTIAL EQUATIONS∗
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Abstract. We present a convergence proof of the projective integration method for a class of
deterministic multi-dimensional multi-scale systems which are amenable to center manifold theory.
The error is shown to contain contributions associated with the numerical accuracy of the microsolver,
the numerical accuracy of the macrosolver and the distance from the center manifold caused by the
combined effect of micro- and macrosolvers, respectively. We corroborate our results by numerical
simulations.
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1. Introduction

Devising efficient computational methods to simulate high-dimensional complex
systems is of paramount importance to a wide range of scientific fields, ranging from
nanotechnology, biomolecular dynamics, and material science to climate science. The
dynamics of large complex systems is made complicated by their high dimensionality
and by the possible existence of active entangled processes running on temporal scales
varying by several orders of magnitude. To resolve all variables in a high-dimensional
system and capture the whole range of temporal scales is impossible given current
computing power. In many applications, however, the modeler is only interested in the
dynamics of a few relevant slow macroscopic coarse-grained variables. How to extract
from a dynamical system the relevant dynamics of the slow degrees of freedom while
ensuring that the collective effect of the unresolved variables is implicitly represented
is one of the most challenging problems in computational modeling. There are two
separate scenarios when such a dimension reduction is possible: scale separation and
weak coupling [9]. We restrict ourselves here to the big class of time scale separated
systems, in particular to deterministic stiff dissipative systems.

Recently two numerical methods to deal with multi-scale systems have received
much attention: the projective integration method (PI) within the equation-free frame-
work [8, 13] and the heterogeneous multiscale method (HMM) [3, 7]. These powerful
methods have successfully been applied to a wide range of problems, including model-
ing of water in nanotubes, micelle formation, chemical kinetics, and climate modeling
[18, 5, 12]. The general strategy of both methods is the following: Provided there
exist closed (but possibly unknown) equations for the slow variables, the simulation is
split between a macrosolver employing a large integration time-step and a microsolver,
in which the full high dimensional system is integrated for a short burst employing
a small integration time step. The two methods differ in the way the information
of the microsolver is utilized in the macrosolver to evolve the slow variables. In the
equation-free approach this is done without any assumptions on the actual form of the
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reduced equations, using the microsolver to estimate the temporal derivative of the
slow variable, which is then subsequently propagated over a large time step. The un-
derlying assumption is that the fast variables quickly relax to their equilibrium value
(conditioned on the slow variables), and that subsequently the dynamics evolves on
a reduced slow manifold. In heterogeneous multiscale methods, on the other hand,
information available (i.e. through perturbation theory such as for example center
manifold theory, averaging theorems, or homogenization [1, 14, 15, 19]) is used to
determine the functional form of the reduced slow vector field; the microsolver is
then used to estimate the coefficients of this slow vector field conditioned on the slow
variables. For further details we refer the reader to [12, 13, 6, 22].

The question we address here is the convergence of the numerical PI approxima-
tion to the true solution of a full multi-scale system of stiff deterministic ordinary
differential equations. There exists a body of analytical work on the convergence
of HMM [3, 2, 7], including formulations for stochastic differential equations [4, 17].
Convergence results for PI were obtained for specific deterministic systems and for
on-the-fly local error estimates in numerical algorithms [8, 16]. Stochastic differential
equations were treated in [10]. Here we provide global error estimates for PI for a
subclass of systems amenable to center-manifold theory.

The paper is organized as follows. In Section 2 we discuss the class of dynamical
systems studied, and briefly summarize in Section 3 HMM and PI for these systems.
In Section 4, the main part of this work, we derive rigorous error bounds for those nu-
merical multiscale methods. In Section 5 these are numerically verified. We conclude
with a summary in Section 6.

2. Model

We consider deterministic multiscale systems for slow variables yε∈R
n and fast

variables xε∈R
m of the form

ẏε=g(xε,yε) , (2.1)

ẋε=
1

ε
(−Λxε+f(yε)) , (2.2)

with time scale separation parameter 0<ε≪1. Without loss of generality we assume
that (xε,yε)=(0,0) is a fixed point. We assume there is a coordinate system such that
the matrix Λ∈R

m×m is diagonal with diagonal entries λii>0. We further assume
that we allowed for a scaling of time such that min(λii)=1 and define max(λii)=λ.
We assume that the vector field of the slow variable g(x,y) is purely nonlinear with
detDg(0,0) 6=0, where Dg denotes the Jacobian of g(x,y), so that there exists a center
manifold x=hε(y) on which the slow dynamics evolve according to

Ẏ =G(Y ) , (2.3)

with Y =y+O(ε). The reduced slow vector field is given by (see for example [1])

G(y)=g(hε(y),y) . (2.4)

Initial conditions close to the fixed point are exponentially quickly attracted towards
the center manifold along the stable manifold of the fast variables xε. Near the center
manifold the dynamics slow down and are approximately determined by the dynamics
of the slow variables (2.3) only. Center manifold theory assures that on times T ∼O(1)
the dynamics of (2.1) are well approximated by the reduced slow system (2.3) (see for
example [1]).
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It is worthwhile to formulate center manifold theory in the framework of averaging
[9], and view the effect of the fast variables on the slow variables through their induced
empirical measure which is approximated by µy(dx)= δ(x−hε(y))dx, conditioned on
the slow variables. The dynamical system (2.1)-(2.2) can equivalently be described by
its associated Liouville equation for the probability density function ρ(xε,yε). After
an initial transient, the solution of the Liouville equation is approximated by

ρ(x,y)= δ(x−hε(y))ρ̂(y)+O(ε) . (2.5)

We can now reformulate (2.4) as

G(y)=

∫

g(x,y)µy(dx)

=g(hε(y),y) . (2.6)

The underlying assumption is that the measure µy(dx)= δ(x−hε(y))dx is the physi-
cally observable measure on the y-fibre; that is, Lebesgue almost all initial conditions
of the fast variables will evolve to generate µy(dx), if sufficiently close to the center
manifold. Center manifold theory [1] makes this approach rigorous and ρ̂(y) is the
invariant density of the reduced system (2.3). This is exploited explicitly in HMM
and implicitly in PI. In the following we will approximate the center manifold hε(y)
by hε(y)≈Λ−1f(y)+O(ε).

3. Numerical multiscale methods

We consider here two numerical methods to deal with the deterministic multi-
scale system (2.1)-(2.2), namely heterogeneous multiscale methods and projective
integration. We use the formulation of PI as in [8, 13] and of heterogeneous multiscale
methods as in [3, 7]. We will see that both methods can be formulated in the same
framework.

We denote by xn and yn the numerical approximations to the solutions of (2.1)-
(2.2) evaluated at the discrete time tn, xε(t

n) and yε(t
n) respectively. Further we

denote by Y (tn) the time-continuous solution of the reduced ordinary differential
equation (2.3) evaluated at time tn. Throughout the paper superscripts denote dis-
crete variables whereas brackets are reserved for continuous variables. We will employ
a forward Euler method for both the micro- as well as the macrosolver.

3.1. Heterogeneous multiscale methods. The microsolver consists of M
microsteps with micro-time step δt [3]. The slow variables are held fixed during the
microsteps, assuming infinite time scale separation. Let us denote by xn,m the mth
microstep of the fast variables which was initialized at the nth macrostep at tn=n∆t
with xn,0=xn−1,M =xn and yn,0=yn. The microstep for a forward Euler scheme
then is

xn,m+1=xn,m−
δt

ε
(Λxn,m−f(yn)) ,

for m=0, . . . ,M . Invoking the Birkhoff ergodic theorem, the time series of the fast
variables xn,m is used to estimate the average in the reduced slow vector field (2.6),
and the macrosolver is initialized at the previous macrostep yn and is written for a
forward Euler step as

yn+1=yn+∆tĝ(xn,yn), (3.1)
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with the time-discrete approximation of the reduced slow vector field (2.4)

G(yε(t
n))≈ ĝ(xn,yn)=

M
∑

m=0

Wmg(xn,m,yn),

for some weights Wm. This is justified as long as the slow variable remains constant
while integrating over the fast fibres. Being associated with the empirical approxima-
tion of the invariant density induced by the fast dynamics (cf. (2.6)), the weights Wm

satisfy the normalization constraint

M
∑

m=0

Wm=1 . (3.2)

The weights should be chosen to best approximate the invariant density of the fast
variable. A natural choice for our system (2.1)-(2.2), where the fast dynamics rapidly
settle on the center manifold, and do not advance significantly on the center manifold
in M microsteps, is to set

Wm=

{

0, for m<M,

1, for m=M.
(3.3)

The convergence of this scheme has been analyzed in [2]. More general weights were
discussed in [7].

It is pertinent to mention that for this formulation of HMM the fast variables
must be initialized before each application of the microsolver; see for example [6] for
a discussion on initializations. In PI, as described in the next subsection, the fast
variables are initialized on the fly.

The seamless heterogeneous multiscale method [2, 7] can be applied to the case
when the slow and fast variables are not explicitly known. The seamless HMM formu-
lation for our system (2.1)-(2.2) advances both fast and slow variables simultaneously
first through M microsteps, and then subsequently through one macrostep. We adopt
here the formulation described in [2] for deterministic dissipative systems. Introducing
yn,m analogously to xn,m the M microsteps are executed as

xn,m+1=xn,m−
δt

ε
(Λxn,m−f(yn,m)), (3.4)

yn,m+1=yn,m+δtg(xn,m,yn,m) . (3.5)

The macrostep is initialized at (xn,yn)=(xn,0,yn,0) and takes the form

xn+1=xn−
∆t

ε

M
∑

m=0

Wm (Λxn,m−f(yn,m)) , (3.6)

yn+1=yn+∆tg̃(xn,yn) , (3.7)

with the time-discrete approximation of the slow vector field

g̃(xn,yn) :=

M
∑

m=0

Wmg(xn,m,yn,m) . (3.8)

Again, the weights Wm need to satisfy (3.2) (see [7] for choices of weights Wm).
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3.2. Projective integration. We present a formulation of projective integra-
tion which is close to the seamless formulation of HMM. PI advances both slow and
fast variables at the same time, as done in seamless HMM. However, the PI scheme
proposed in [8] does not start the macrostep at (xn,0,yn,0) as done in our adopted
formulation of seamless HMM, but at (xn,M ,yn,M ), allowing for nontrivial dynamics
of the slow variables during the M microsteps. This takes into account finite time
scale separation ε, ignored in HMM. The microsteps of PI are exactly as in seamless
HMM, (3.4)–(3.5). The macrostep of PI is given by estimating the temporal time
derivative of the slow (and fast) variables using the microsolver according to

xn+1=xn,M +∆t
xn,M −xn,M−1

δt
,

yn+1=yn,M +∆t
yn,M −yn,M−1

δt
,

which becomes, upon using the Euler step of the microsolver (3.4)–(3.5),

xn+1=xn,M −
∆t

ε
(Λxn,M −f(yn,M )), (3.9)

yn+1=yn,M +∆tg(xn,M ,yn,M ) . (3.10)

Here the time between two macrosteps is t∆=∆t+Mδt and we have tn=nt∆.
Upon substituting the microsteps (3.4)–(3.5) into the macrosolver (3.9)–(3.10) we
reformulate PI, such that it formally resembles seamless HMM, as

xn+1=xn−
t∆
ε

M
∑

m=0

Wm (Λxn,m−f(yn,m)) , (3.11)

yn+1=yn+ t∆ g̃(xn,yn) , (3.12)

with the weights Wm now defined as

Wm=















δt

t∆
, for m<M,

∆t

t∆
, for m=M.

(3.13)

Hence PI with a microstep of δt and macrostep of ∆t is equivalent to seamless HMM
with a microstep of δt, a macrostep of t∆, and a particular choice of weights Wm.

4. Error analysis for projective integration

We will now provide rigorous error bounds for PI in the formulation (3.11)–(3.13).
We follow the general line of proof used in [2] for error bounds of HMM with the choice
of weights (3.3).

Throughout this work we assume the following conditions on the global growth
and smoothness of solutions of our system and on the numerical discretization pa-
rameters of PI.

Assumptions

A1: The vector field f(y) is Lipschitz continuous; that is there exists a constant Lf

such that

|f(y1)−f(y2)|≤Lf |y1−y2| .
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A2: The vector field g(x,y) is Lipschitz continuous; that is there exists a con-
stant Lg such that

|g(x1,y1)−g(x2,y2)|≤Lg(|x1−x2|+ |y1−y2|) .

A3: The vector field f(y) is bounded for all y; that is there exists a constant Cf

such that

Cf =sup |f(y)| .

A4: The vector field g(x,y) is bounded for all x,y; that is there exists a constant Cg

such that

Cg =sup |g(x,y)| .

A5: The reduced vector field G(Y ) of the slow dynamics is of class C1; that is
there exists a constant C∗ such that

C∗=sup|Ÿ (t)| .

A6: The microstep size δt resolves the fastest of the fast variables, while the
macrostep size ∆t resolves the dynamics of the slow system, so that

0<δt≤
2ε

λ
<∆t .

A7: The total time Mδt of the microsteps is sufficiently short so that

LGMδt≤Lg(1+Lf )Mδt≤1 ,

where LG≤Lg(1+Lf ) is the Lipschitz constant of the reduced dynamics
(2.3).

A8: The macrostep size ∆t, number of microsteps M , and microstep size δt are
chosen such that

∆t exp

(

−
Mδt

ε

)

<
ε

λ
if 0<δt≤

2ε

λ+1
,

or

∆t exp

(

−
Mδt⋆

ε

)

<
ε

λ
if

2ε

λ+1
<δt<

2ε

λ
.

with δt⋆=2ε−λδt. The range 2ε/(λ+1)<δt<2ε/λ corresponds to
0<δt⋆<2ε/(λ+1). This assumption is necessary to bound the distance of
the fast variables from the center manifold over the macrosteps.

The global Lipschitz conditions can be relaxed to local Lipschitz conditions by the
usual means.

We will establish bounds for the error En between the PI estimate yn and the solution
of the full system yε(t

n):

En= |yε(t
n)−yn| .
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Our main result is provided by the following theorem.

Theorem 4.1. Given the assumptions (A1)–(A8), there exists a constant C such
that on a fixed time interval T , for each n such that nt∆≤T , the error between the
PI estimate and the exact solution of the full multiscale system (2.1)-(2.2) is given by

En≤



















C

(

t∆+ε+

(

ε

t∆
+ε+e−

Mδt
ε

)

|dn|

)

, if 0<δt≤
2ε

λ+1
,

C
δt

δt∗

(

t∆+ε+

(

ε

t∆
+ε+e−

Mδt∗

ε

)

|dn|

)

, if
2ε

λ+1
<δt<

2ε

λ
,

where dn measures the maximal distance of the fast variables x from the approximate
center manifold x= f̄(y) :=Λ−1f(y) over all macrosteps and is estimated by

|dn|≤



















∣

∣x0− f̄(y0)
∣

∣+
εLfCg(1+λ)∆t

ε−∆tλe−
Mδt
ε

, if 0<δt≤
2ε

λ+1
,

∣

∣x0− f̄(y0)
∣

∣+
εLfCg(1+

δt
δt∗

λ)∆t

ε−∆tλe−
Mδt∗

ε

, if
2ε

λ+1
<δt<

2ε

λ
,

with δt∗=2ε−λδt.

Before proceeding to the proof of the theorem, it is worthwhile to interpret the
bounds on En. The term proportional to t∆=∆t+Mδt reflects the first order conver-
gence of the forward Euler numerical scheme used to propagate the micro- and macro-
solver respectively. The terms proportional to the time scale parameter ε represent
the error made by the reduction as well as an additional error incurred during the drift
of the slow variable over the microsteps. The term proportional to exp(−Mδt/ε)|dn|
measures the exponential decay of the fast variables towards the slow manifold.

4.1. Error analysis. We split the error into two parts according to

En= |yε(t
n)−yn|

≤ |yε(t
n)−Y (tn)|+ |yn−Y (tn)| ,

where the first term describes the error between the exact solution of the full system
(2.1)-(2.2) and the reduced slow system (2.3), which we label reduction error , and
the second term the error between PI and the exact solution of the reduced slow
system (2.3), which we denote by discretization error . We will bound the two terms
separately in the following.

4.2. Reduction error. Defining the error between the exact solution of the
full system (2.1)-(2.2) and the reduced slow system (2.3) by

|En
c |= |yε(t

n)−Y (tn)| , (4.1)

and setting the initial conditions close to the slow manifold with yε(0)=Y (0)+c0,y ε
and xε(0)=f(yε(0))+c0,x, we can formulate the following theorem.

Theorem 4.2. Given the assumptions (A1)–(A3), there exists a constant C1 such
that on a fixed time interval T , for each tn≤T , the error between the exact solutions
of the reduced and the full system is bounded by

|En
c |≤C1ε ,
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with

C1=max(|yε(0)−Y (0)|,LfLgCgt
n,Lg|dε(0)|))e

Lg(1+Lf )t
n

,

where dε=xε−f(yε) measures the distance of the fast variables from the approximate
slow manifold.

Proof. The proof is standard in center manifold theory and is included for
completeness. Using assumptions (A1)–(A2) on the Lipschitz continuity of f and g
we estimate

d

dt
|yε(t)−Y (t)|= |g(xε,yε)−g(f̄(Y ),Y )|

≤ |g(xε,yε)−g(xε,Y )|+ |g(xε,Y )−g(f̄(Y ),Y )|

≤Lg|yε−Y |+Lg|xε− f̄(Y )|

≤Lg|yε−Y |+Lg|xε− f̄(yε)|+Lg|f̄(yε)− f̄(Y )|

≤Lg (1+Lf ) |yε−Y |+Lg|xε− f̄(yε)| , (4.2)

To estimate the second term, we differentiate the distance of the fast variable to the
slow manifold dε=xε− f̄(yε) with respect to time, using (2.2), as

ḋε=−
Λ

ε
dε−Df̄(yε)g(xε,yε) ,

where Df̄ denotes the Jacobian matrix of f̄ . Integrating and using the boundedness
Assumption (A4) on g and the Lipschitz continuity Assumption (A1) on f , we readily
estimate

|dε(t)|≤ exp
(

−
Λ

ε
t
)

|dε(0)|+

∣

∣

∣

∣

∫ t

0

exp
(

−
Λ

ε
(t−s)

)

Df̄(yε(s))g(xε(s),yε(s))ds

∣

∣

∣

∣

≤ e−
t
ε |dε(0)|+ sup

|g|≤Cg

|Df g|

∫ t

0

e−
t−s
ε ds

≤ e−
t
ε |dε(0)|+εLfCg , (4.3)

which signifies the exponential attraction of the fast dynamics towards the slow center
manifold. Substituting (4.3) into (4.2) yields, upon application of the Gronwall lemma,

|yε(t)−Y (t)|≤ eLg(1+Lf )t (|yε(0)−Y (0)|+εLfLgCgt+εLg|dε(0)|) ,

which immediately yields the desired result using the initial condition dε(0)= c0,x and
yε(0)=Y (0)+c0,yε.

4.3. Discretization error. In order to bound the discretization error
|yn−Y (tn)| we first estimate how close the fast variables remain to the center manifold
during the application of the microsolver. Defining the deviation of the PI approxi-
mation of the fast variables from the approximate center manifold at time tn+mδt
as

dn,m=xn,m− f̄(yn,m) , (4.4)

we formulate the following lemma which constitutes the discrete time version of (4.3).
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Lemma 4.3. Given assumptions (A1), (A4), and (A6), the error between the fast
variables and the approximate center manifold during the application of the PI micro-
solver is bounded for all 0≤m≤M by

|dn,m|≤



















(

1−
δt

ε

)m

|dn,0|+εLfCg, if 0<δt≤
2ε

λ+1
,

(

1−
δt∗

ε

)m

|dn,0|+
δt

δt∗
εLfCg, if

2ε

λ+1
<δt<

2ε

λ
.

The first term is a manifestation of the exponential decay of the fast variables towards
the slow center manifold along their stable eigendirection. The second term propor-
tional to ε describes, as we will see below, the cumulative effect of changes of the slow
variables y during the microsteps causing a departure from the center manifold for
nonconstant f̄(y).

Fig. 4.1: Illustration of equation (4.5) for xε∈R, so that Λ=1. The two dots show one

microstep in PI.

Proof. Using the definition of the PI microsolver (3.4), a recursive relationship
for dn,m is readily established as

dn,m=xn,m− f̄(yn,m)

=

(

I−
δt

ε
Λ

)

dn,m−1−
(

f̄(yn,m)− f̄(yn,m−1)
)

. (4.5)

Let us pause here for a moment to discuss the terms appearing in this equa-
tion. The first term illustrates that at each microstep the distance between the
ith fast variable and the approximate slow manifold decreases by a factor of
1−δtλii/ε. The second term represents the change in the approximate slow manifold
during the drift of the slow variable y in one microstep. This is illustrated in figure 4.1.

The cumulative effect of M microsteps on dn,m is easily obtained from (4.5) as

dn,m=

(

I−
δt

ε
Λ

)m

dn,0−
m−1
∑

k=0

(

I−
δt

ε
Λ

)k
(

f̄(yn,m−k)− f̄(yn,m−1−k)
)

. (4.6)
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Taking absolute values and using the Lipschitz condition on f (A1), the bound on
the slow vector field g (A4), and (3.5), the cumulative effect of M microsteps on the
distance |dn,m| of the fast variables to the approximate center manifold is

|dn,m|≤

∣

∣

∣

∣

I−
δt

ε
Λ

∣

∣

∣

∣

m

|dn,0|+LfCgδt
m−1
∑

k=0

∣

∣

∣

∣

I−
δt

ε
Λ

∣

∣

∣

∣

k

=

∣

∣

∣

∣

I−
δt

ε
Λ

∣

∣

∣

∣

m

|dn,0|+LfCgδt
1−|I− δt

ε
Λ|m

1−|I− δt
ε
Λ|

.

To avoid divergence from the center manifold we require
∣

∣

∣

∣

I−
δt

ε
Λ

∣

∣

∣

∣

=max

{

1−
δt

ε
,λ

δt

ε
−1

}

<1 ,

implying the standard condition 0<δt<2ε/λ. For 0<δt≤ 2ε
λ+1 ,

∣

∣I− δt
ε
Λ
∣

∣=1− δt
ε
and

we obtain the bound

|dn,m|≤

(

1−
δt

ε

)m

|dn,0|+εLfCg

[

1−

(

1−
δt

ε

)m]

. (4.7)

Furthermore for 2ε
λ+1 <δt< 2ε

λ
, introducing δt⋆=2ε−λδt,

∣

∣I− δt
ε
Λ
∣

∣=λ δt
ε
−1=1− δt∗

ε
,

yielding

|dn,m|≤

(

1−
δt∗

ε

)m

|dn,0|+
δt

δt∗
εLfCg

[

1−

(

1−
δt∗

ε

)m]

. (4.8)

Lemma 4.3 follows from (4.7)–(4.8). Note that the term proportional to ε was gener-
ated by a sum of error terms in δt related to the change in the manifold during the
drift of the slow variable yn,m over each microstep.

Remark 4.1. In the limit δt⋆→0 (i.e. δt→2ε/λ) the term
[

1−
(

1− δt∗

ε

)m]

in

(4.8), which is neglected in Lemma 4.3, is crucial to obtain a finite estimate |dn,m|≤
|dn,0|+mδtLfCg.

Remark 4.2. In the case xε∈R with Λ=1, a direct estimation of (4.5) implies that
for the particular choice δt= ε we have |dn,m|≤LfCgδt, i.e. there is no dependence on
initial conditions for the fast variable; this is a peculiarity of the underlying forward
Euler scheme used (cf. (3.4)) where for δt= ε we have xn,m+1=f(yn,m).

We have bounded the distance of the PI approximation of the fast variables xn,m

from the slow center manifold f̄(yn,m) over the microsteps. We now establish bounds
on the distance of the PI approximation of the slow variables yn,m from the solution
of the reduced dynamics on the center manifold over the microsteps. We therefore
introduce the auxiliary time-continuous system

Ẏ (n)(s)=G(Y (n)(s)), (4.9)

Y (n)(0)=yn , (4.10)

which resolves the reduced slow dynamics (2.3) initialized after each macrostep at time
tn=nt∆ with the PI approximation of the slow variables yn. Further we introduce
the discrete Euler approximation of the reduced slow dynamics (2.3)

ϕm
η =ϕm−1

η +δtG(ϕm−1
η ), (4.11)
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ϕ0
η =η , (4.12)

for arbitrary initial conditions η. Note that for the particular choice η=yn, (4.11)-
(4.12) corresponds to an Euler discretization of the system (4.9)-(4.10).

Lemma 4.4. Assuming (A1), (A2), (A5), and (A7), the numerical estimate yn,m of
the slow variable is close to ϕm

yn with

|yn,m−ϕm
yn |≤



















3Lgε|d
n,0|+2

LfCgε

Lf +1
+O(mδt2), if 0<δt≤

2ε

λ+1
,

(

3Lgε|d
n,0|+2

LfCgε

Lf +1

)

δt

δt∗
+O(mδt2), if

2ε

λ+1
<δt<

2ε

λ
.

Proof. Employing the auxiliary system (4.9)-(4.10), we split the error into

|yn,m−ϕm
yn |≤ |yn,m−Y (n)(mδt)|+ |Y (n)(mδt)−ϕm

yn | . (4.13)

The second term above can be readily bounded by the standard proof for Euler
convergence (see for example [11]). The first term is bounded by a slight variation of
the same proof. For completeness we provide the proof of the bounds for both terms,
beginning with the bound on the second term. By Taylor expanding we write, upon
using the auxiliary dynamics (4.9),

Y (n)(mδt)=Y (n)
(

(m−1)δt
)

+δtG
(

Y (n)
(

(m−1)δt
))

+O(δt2) . (4.14)

Note that assumptions (A1) and (A2) imply a Lipschitz constant LG≤Lg(1+Lf )
for the reduced vector field G. Using the Euler discretization (4.11) of the reduced
auxiliary system (4.9)-(4.10) with initial condition yn, and employing Assumption
(A5) with C∗=sup |Ÿ (t)| to bound the O(δt2)-term in (4.14), we obtain

|Y (n)(mδt)−ϕm
yn |≤

∣

∣

∣
Y (n)

(

(m−1)δt
)

−ϕm−1
yn

∣

∣

∣

+δt
∣

∣

∣
G
(

Y (n)
(

(m−1)δt
))

−G(ϕm−1
yn )

∣

∣

∣
+C∗δt2

≤(1+LGδt)
∣

∣

∣
Y (n)

(

(m−1)δt
)

−ϕm−1
yn

∣

∣

∣
+C∗δt2

≤C∗δt2
m−1
∑

k=0

(1+LGδt)
k ,

since we initialize with Y (n)(0)=ϕ0
yn . Evaluating the sum we find

|Y (n)(mδt)−ϕm
yn |≤C∗δt2

(1+LGδt)
m−1

LGδt

≤2C∗mδt2 , (4.15)

where Assumption (A7), that LGMδt≤1, was used to bound eLGmδt−1≤2LGmδt.
To bound the first term in (4.13), |yn,m−Y (n)(mδt)|, we analogously obtain

∣

∣

∣
yn,m−Y (n)(mδt)

∣

∣

∣
≤
∣

∣

∣
yn,m−1−Y (n)

(

(m−1)δt
)

∣

∣

∣

+δt
∣

∣g(xn,m−1,yn,m−1)−G(yn,m−1)
∣

∣
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+δt
∣

∣

∣
G(yn,m−1)−G

(

Y (n)
(

(m−1)δt
))

∣

∣

∣
+C∗δt2

≤(1+LGδt)
∣

∣

∣
yn,m−1−Y (n)

(

(m−1)δt
)

∣

∣

∣

+Lgδt
∣

∣dn,m−1
∣

∣+C∗δt2 . (4.16)

Employing Lemma 4.3 with 0<δt< 2ε
λ+1 , we obtain

∣

∣

∣
yn,m−Y (n)(mδt)

∣

∣

∣
≤δtLg|d

n,0|

m−1
∑

k=0

(1+LGδt)
k

(

1−
δt

ε

)m−1−k

+
[

LgLfCgεδt+C∗δt2
]

m−1
∑

k=0

(1+LGδt)
k ,

since yn,0=yn=Y (n)(0). Evaluating the sums and using Assumption (A7) yields

∣

∣

∣
yn,m−Y (n)(mδt)

∣

∣

∣
≤Lgδt|d

n,0|
(1+LGδt)

m−
(

1− δt
ε

)m

LGδt+
δt
ε

+2C∗mδt2

+2LgLfCgεmδt

≤Lgε|d
n,0|(1+2LGmδt)+2C∗mδt2+2

LfCgε

Lf +1

≤3Lgε|d
n,0|+2C∗mδt2+2

LfCgε

Lf +1
,

which concludes the proof of the lemma for 0<δt< 2ε
λ+1 . Analogously for 2ε

λ+1 <δt<
2ε
λ
, Lemma 4.3 is used to estimate (4.16) as

∣

∣

∣
yn,m−Y (n)(mδt)

∣

∣

∣
≤δtLg|d

n,0|
m−1
∑

k=0

(1+LGδt)
k

(

1−
δt∗

ε

)m−1−k

+

[

LgLfCgε
δt2

δt∗
+C∗δt2

]m−1
∑

k=0

(1+LGδt)
k

≤Lgδt|d
n,0|

(1+LGδt)
m−

(

1− δt∗

ε

)m

LGδt+
δt∗

ε

+2C∗mδt2

+2LgLfCgεm
δt2

δt∗

≤3Lgε
δt

δt∗
|dn,0|+2C∗mδt2+2

LfCgε

Lf +1

δt

δt∗
.

Lemma 4.4 established bounds on the PI approximation of the slow variables
and an Euler approximation of the reduced system during the microsteps. We will
now establish bounds on the PI approximation of the slow variables and an Euler
approximation of the reduced system during one macrostep. In order to do so we
introduce the vector field

G̃(η) :=

M
∑

m=0

WmG(ϕm
η ) , (4.17)
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with weights Wm given by (3.13) as in PI. We now proceed to bound |g̃(xn,yn)−
G̃(yn)|.

Lemma 4.5. Assuming (A1)-(A6), the auxiliary vector field G̃ is close to the vector
field g̃ of PI, with

|g̃(xn,yn)−G̃(yn)|≤















































Lg

(

ε

t∆
+3Lg(1+Lf )ε

)

|dn,0|

+Lge
−Mδt

ε |dn,0|+3LgLfCgε,

if 0<δt≤
2ε

λ+1
,

Lg

(

δt

δt∗
ε

t∆
+3

δt

δt∗
Lg(1+Lf )ε

)

|dn,0|

+Lge
−Mδt∗

ε |dn,0|+3
δt

δt∗
LgLfCgε,

if
2ε

λ+1
<δt<

2ε

λ
.

Proof. Employing the Lipschitz condition (A1) on f and (A2) on g, we write

|g̃(xn,yn)−G̃(yn)|

=

∣

∣

∣

∣

∣

M
∑

m=0

Wm

[

g(xn,m,yn,m)−G(ϕm
yn)

]

∣

∣

∣

∣

∣

≤

M
∑

m=0

WmLg

[

|xn,m− f̄(ϕm
yn)|+ |yn,m−ϕm

yn |
]

≤

M
∑

m=0

WmLg

[

|xn,m− f̄(yn,m)|+ |f̄(yn,m)− f̄(ϕm
yn)|+ |yn,m−ϕm

yn |
]

≤

M
∑

m=0

WmLg

[

|dn,m|+(1+Lf )|y
n,m−ϕm

yn |
]

. (4.18)

Using lemmas 4.3 and 4.4 for the case when 0<δt< 2ε
λ+1 , we expand

|g̃(xn,yn)−G̃(yn)|≤

M
∑

m=0

Wm

[

Lg

(

1−
δt

ε

)m

|dn,0|

]

+3LgLfCgε

+3L2
g(1+Lf )ε|d

n,0|. (4.19)

Inserting the weights Wm (3.13) which characterize PI, and evaluating the geometric
series, we obtain

|g̃(xn,yn)−G̃(yn)|≤
M−1
∑

m=0

δt

t∆
Lg

(

1−
δt

ε

)m

|dn,0|+
∆t

t∆
Lg

(

1−
δt

ε

)M

|dn,0|

+3LgLfCgε+3L2
g(1+Lf )ε|d

n,0|

≤Lg

(

ε

t∆
+3Lg(1+Lf )ε+e−

Mδt
ε

)

|dn,0|+3LgLfCgε,

which concludes the proof for that case. Using lemmas 4.3 and 4.4 for 2ε
λ+1 <δt< 2ε

λ

in (4.18), we obtain analogously

|g̃(xn,yn)−G̃(yn)|
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≤

M
∑

m=0

Wm

[

Lg

(

1−
δt∗

ε

)m

|dn,0|

]

+3
δt

δt∗
LgLfCgε+3

δt

δt∗
L2
g(1+Lf )ε|d

n,0| (4.20)

≤Lg

(

δt

δt∗
ε

t∆
+3

δt

δt∗
Lg(1+Lf )ε+e−

Mδt∗

ε

)

|dn,0|+3
δt

δt∗
LgLfCgε.

Remark 4.3. The above estimates (4.19) and (4.20) not only hold for PI, but also
for the seamless formulation of HMM, since they are independent of the particular
choice for the weights Wm and of the method of reinitialization of the fast variables
xn.

We have established in Lemma 4.5 that the vector field G̃ given by (4.17) is close
to the PI approximation g̃ of the slow dynamics over a time step of t∆. In the following
lemma we demonstrate that G̃ can be used to step forward the reduced slow variables
in a macrostep.

Lemma 4.6. G̃(Y (tn)) provides a numerical estimate of the reduced slow vector field
with

Y (tn+1)−Y (tn)= t∆G̃(Y (tn))+O(t2∆),

where the error term O(t2∆) is bounded by 2C∗t2∆.

Proof. By Taylor expanding we write

Y (tn+1)−Y (tn)= t∆G̃(Y (tn))+ t∆

(

G(Y (tn))−G̃(Y (tn))
)

+O(t2∆),

where according to Assumption (A5) the O(t2∆)-term is bounded by C⋆t2∆. We now
bound

∣

∣

∣
G(Y (tn))−G̃(Y (tn))

∣

∣

∣
=

∣

∣

∣

∣

∣

G(Y (tn))−

M
∑

m=0

WmG(ϕm
Y (tn))

∣

∣

∣

∣

∣

≤

M
∑

m=0

WmLG

∣

∣

∣
Y (tn)−ϕm

Y (tn)

∣

∣

∣

≤LGCGt∆,

where CG≤Cg is the maximum of |G|. Noting that C∗=sup |Ÿ |=sup |DG(Y )G(Y )|=
LGCG completes the proof.

Using lemmas 4.3, 4.4, 4.5, and 4.6 we now proceed to bound the discretization
error

|En
d |= |yn−Y (tn)|, (4.21)

and formulate the following theorem.

Theorem 4.7. Given the assumptions (A1)–(A8), there exists a constant C2 such
that on a fixed time interval T , for each n∆t≤T , the error between the solution of the
projective integration scheme and the exact solutions of the reduced system is bounded
by

En
d ≤



















C

(

t∆+ε+

(

ε

t∆
+ε+e−

Mδt
ε

)

|dn|

)

, if 0<δt≤
2ε

λ+1
,

C
δt

δt∗

(

t∆+ε+

(

ε

t∆
+ε+e−

Mδt∗

ε

)

|dn|

)

, if
2ε

λ+1
<δt<

2ε

λ
,
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where |dn| :=max0≤i≤n−1|d
i,0|.

Remark 4.4. The error estimate involves the well known exponential decay of the
fast variable towards the approximate center manifold, leading to a loss of memory of
the fast initial condition; PI, however, involves an additional error term proportional
to the maximal distance of the fast variable to the approximate center manifold which
involves no memory loss with M→∞.

Proof. We estimate the difference En
d =yn−Y (tn), applying Lemma 4.6, as

En
d −En−1

d =yn−yn−1−
(

Y (tn)−Y (tn−1)
)

= g̃(xn−1,yn−1)t∆−G̃
(

Y (tn−1)
)

t∆+O(t2∆)

=
(

G̃(yn−1)−G̃(Y (tn−1))
)

t∆+
(

g̃(xn−1,yn−1)−G̃(yn−1)
)

t∆+O(t2∆)

=Ln−1
G En−1

d t∆+αn−1t∆ . (4.22)

We used the mean value theorem for vector-valued functions to introduce

Ln
G :=

∫ 1

0

DG̃
(

Y (tn)+θ(yn−Y (tn))
)

dθ ,

where DG̃ is the Jacobian matrix of G̃, and we set

αn := g̃(xn,yn)−G̃(yn)+O(t∆) ,

where according to Lemma 4.6 we have

|αn|≤ |g̃(xn,yn)−G̃(yn)|+2C∗t∆ . (4.23)

Taking absolute values we obtain

|En
d |≤

(

1+ t∆||L
n−1
G ||

)∣

∣En−1
d

∣

∣+ |αn−1|t∆ .

Employing Assumption (A4 ) on the boundedness of g, we define

α̂= max
0≤i≤n−1

|αi| ,

and using (A5 ) on the boundedness of G it is easy to show that

LG= max
0≤i≤n−1

||Li
G||.

We obtain, evaluating the geometric series,

|En
d |≤ (1+ t∆LG)

n
∣

∣E0
d

∣

∣+ α̂t∆

n−1
∑

m=0

(1+ t∆LG)
m

≤
α̂

LG

ent∆LG , (4.24)

where we used that at n=0 we initialize with E0
d =0. Recalling the bound (4.23)

for |αn| and employing Lemma 4.5 for 0<δt< 2ε
λ+1 we obtain for the bound of the

discretization error

|En
d |≤

ent∆LG

LG

{

2C∗t∆+Lg

(

ε

t∆
+3Lg(1+Lf )ε+e−

Mδt
ε

)

|dn|+3LgLfCgε

}

. (4.25)
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Employing Lemma 4.5 for 2ε
λ+1 <δt< 2ε

λ
we analogously obtain

|En
d |≤

ent∆LG

LG

{

2C∗t∆+Lg

(

δt

δt∗
ε

t∆
+3

δt

δt∗
Lg(1+Lf )ε+e−

Mδt∗

ε

)

|dn|

+3
δt

δt∗
LgLfCgε

}

. (4.26)

Theorem 4.7 follows realizing δt⋆<δt for δt>2ε/(λ+1).

Besides the parameters used in the numerical scheme, i.e. the macrostep size ∆t,
the number of microsteps M with microstep size δt, and the time scale parameter ε,
the error bound also involves the maximal deviation |dn| of the fast variables to the
approximate center manifold.
The bound on |dn| is established in the following Lemma.

Lemma 4.8. Assuming (A1), (A4), (A6), and (A8), the maximal deviation of
the fast variables from the approximate center manifold over n macrosteps |dn|=
max0≤i≤n−1 |d

n,0| satisfies

|dn|≤



















∣

∣d0,0
∣

∣+
εLfCg(1+λ)∆t

ε−∆tλe−
Mδt
ε

, if 0<δt≤
2ε

λ+1
,

∣

∣d0,0
∣

∣+
εLfCg

(

1+λ δt
δt∗

)

∆t

ε−∆tλe−
Mδt∗

ε

, if
2ε

λ+1
<δt<

2ε

λ
.

Proof. We bound for 0≤ i≤n

|di,0|= |xi− f̄(yi)|

=

∣

∣

∣

∣

xi−1,M −
∆t

ε

(

Λxi−1,M −f(yi−1,M )
)

− f̄(yi)

∣

∣

∣

∣

≤∆t
λ

ε

∣

∣di−1,M
∣

∣+
∣

∣f̄(yi−1,M )− f̄(yi)
∣

∣ ,

where we have used Assumption (A6) to simplify
∣

∣

∣

∣

∆t
Λ

ε
−I

∣

∣

∣

∣

=∆t
λ

ε
−1<∆t

λ

ε
.

Employing Lemma 4.3 for 0<δt< 2ε
λ+1 , and assumptions (A1) and (A4), we obtain

|di,0|≤∆t
λ

ε

∣

∣di−1,M
∣

∣+Lf

∣

∣yi−1,M −yi
∣

∣

≤∆t
λ

ε
e−

Mδt
ε

∣

∣di−1,0
∣

∣+LfCg(1+λ)∆t. (4.27)

Evaluating this recursive relationship yields

|di,0|≤

[

∆t
λ

ε
e−

Mδt
ε

]i
∣

∣d0,0
∣

∣+LfCg(1+λ)∆t
1−

[

∆tλ
ε
e−

Mδt
ε

]i

1−∆tλ
ε
e−

Mδt
ε

≤
∣

∣d0,0
∣

∣+
LfCg(1+λ)∆t

1−∆tλ
ε
e−

Mδt
ε

, (4.28)
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where we used Assumption (A8) with 0<δt< 2ε
λ+1 . Using Lemma 4.3 for 2ε

λ+1 <δt< 2ε
λ

in (4.27), we obtain

|di,0|≤∆t
λ

ε
e−

Mδt∗

ε

∣

∣di−1,0
∣

∣+LfCg

(

1+λ
δt

δt∗

)

∆t

≤

[

∆t
λ

ε
e−

Mδt⋆

ε

]i
∣

∣d0,0
∣

∣+LfCg(1+λ
δt

δt⋆
)∆t

1−
[

∆tλ
ε
e−

Mδt⋆

ε

]i

1−∆tλ
ε
e−

Mδt⋆

ε

≤
∣

∣d0,0
∣

∣+
εLfCg

(

1+λ δt
δt∗

)

∆t

ε−∆tλe−
Mδt∗

ε

, (4.29)

where we used Assumption (A8) with 2ε
λ+1 <δt< 2ε

λ
.

Remark 4.5. In the limits of Assumption (A8), ∆t exp
(

−Mδt
ε

)

→ ε
λ

and

∆t exp
(

−Mδt⋆

ε

)

→ ε
λ
, the terms 1−

[

∆tλ
ε
e−

Mδt
ε

]i

in (4.28) and 1−
[

∆tλ
ε
e−

Mδt⋆

ε

]i

in (4.29), which are neglected in Lemma 4.8, are crucial to obtain finite estimates
|dn|≤

∣

∣d0,0
∣

∣+n∆tLfCg (1+λ) and |dn|≤
∣

∣d0,0
∣

∣+n∆tLfCg

(

1+ δt
δt∗

λ
)

, respectively.

Theorem 4.1 follows by combining theorems 4.2 and 4.7 with Lemma 4.8, realizing
δt⋆<δt for δt>2ε/(λ+1).

5. Numerical confirmation of the error bound |En
d |

We now illustrate the error bound |En
d | of Theorem 4.7, equation (4.25), which

we recall here including the constants as obtained in the proof:

|En
d |≤ 3

ent∆LG

LG

{

C∗t∆+Lg

(

ε

t∆
+Lg(1+Lf )ε+e−

Mδt
ε

)

|dn|+LgLfCgε

}

, (5.1)

for 0<δt< 2ε
λ+1 , and

|En
d |≤ 3

ent∆LG

LG

δt

δt∗

{

C∗t∆+Lg

(

ε

t∆
+Lg(1+Lf )ε+e−

Mδt∗

ε

)

|dn|+LgLfCgε

}

,

(5.2)

for 2ε
λ+1 <δt< 2ε

λ
.

We demonstrate the scaling of |En
d | with respect to the macrostep size ∆t, the

timescale parameter ε, and the reinitialization error of the fast variable |dn| for fixed
final time T =nt∆. Note that the dependencies of ε and ∆t are complicated through
the dependency of |dn| on those parameters. We show results for simulations using
the following multiscale system:

ẏε=−xεyε−ay2ε , (5.3)

ẋε=
−xε+sin2(byε)

ε
, (5.4)

which has, at lowest order in ε, the slow limit system

Ẏ =−Y sin2(bY )−aY 2. (5.5)
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Fig. 5.1: Plot of log |En

d | versus log∆t for fixed time of integration T =1. The dots represent

results from numerical PI simulations of the system (5.3)-(5.4), with the crosses representing

results from a system with δt=0.1ε and the circles representing a system with δt=1.6ε. The

dashed lines are linear regression lines with a slopes of 1.02 and 1.07, respectively.
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Fig. 5.2: Plot of log |En

d | versus logε. The dots represent results from numerical PI simula-

tions of the system (5.3)-(5.4). The line is a linear regression with a slope of 0.947.

For higher order approximations of the center manifold and the associated coordinate
transformations relating y and Y the reader is referred to the very useful webpage
[21] (see also [20]).

The system (5.3)-(5.4) with initial condition yε(0)>0 is locally Lipschitz with
Lipschitz constant Lf ≤ b and Lg =max(|xε|+2a|yε|), where the maximum is taken
over the local region around the fixed point at (xε,yε)=(0,0) under consideration. The
vector field of the slow dynamics (5.3) is locally bounded by Cg =max(|xεyε|+a|yε|

2),
with the maximum taken over the same region. The free parameters a and b are used
to control the Lipschitz constants Lf and Lg. Here λ=1, implying 2ε

λ+1 = ε. Therefore
(5.1) holds for 0<δt<ε and (5.2) holds for ε<δt<2ε.

We first investigate how |En
d | scales with the macrostep ∆t. We ensure that

the term proportional to C∗t∆ is the dominant term in (5.1) by initializing the fast
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Fig. 5.3: Plot of log |En

d | versus log |dn|. The dots represent results from numerical PI

simulations of the system (5.3)-(5.4). The crosses are results from simulations with δt=0.01ε
and the circles are results from simulations with δt=1.99ε. The dashed lines are linear

regression lines with a slope of 1.00 and 1.03, respectively.

variables on the approximate slow manifold with |d0,0|=0. Figure 5.1 illustrates
the linear scaling of |En

d | with ∆t. System parameters are a=1, b=0.1. The scale
separation parameter is ε=10−5. We used M =90 microsteps with microstep size
δt=0.1ε and δt=1.6ε. The number of iterations n varied from 48 to 918 to keep
T =nt∆=1 fixed for all values of ∆t. Initial conditions are chosen to lie on the
approximate slow center manifold with y0=1, x0=sin2(0.1). The Lipschitz constants
are Lg =2 and Lf =0.2, the bound on the vector field of the slow dynamics is Cg =1,
and the maximal second derivative of the reduced slow dynamics is C∗=2.

We now present results for the scaling of |En
d | with the time scale parameter

ε. To focus on the linear scaling suggested by the term LgLfCgε in (5.1), we will
have to control the term proportional to |dn| and the C∗t∆ term. The |dn|-term is
controlled by setting initial conditions on the center manifold and employing M≫1,
allowing for relaxation to the center manifold. The C∗t∆ term we control by choosing
t∆<ε, violating Assumption (A6) (note that this implies δt<ε). System parameters
are a=0.1, b=1. Initial conditions are y0=5, x0=sin2(5), i.e. |d0,0|=0. We used
M =100 microsteps with microstep size δt=10−6, macrostep size ∆t=10−4, for n=50
iterations of PI with T =0.01. The Lipschitz constant for the slow dynamics is Lg =2
and for the center manifold is Lf =1, the bound on the vector field of the slow
dynamics is Cg =7, and the maximal second derivative of the reduced slow dynamics
is C∗=6. Figure 5.2 illustrates the linear dependence of |En

d | on ε in this situation.

We now illustrate the linear scaling of |En
d | with the maximal distance |dn| of

the fast variable from the approximate center manifold after a macrostep. To ensure
that the error is not dominated by the initial initialization error |d0,0|, we choose
parameters which render the scheme unstable and violate Assumption (A8), allowing
for divergence of the fast variables from the center manifold over the macrosteps, i.e.
|dn,0|> |d0,0|. Figure 5.3 shows clearly the linear dependence of |En

d | on |dn|. System
parameters are a=1, b=1. Initial conditions are y0=1, x0∈ [sin2(1)+0.01,sin2(1)+
0.5]. The scale separation is ε=10−4. We used M =100 microsteps with microstep
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size δt=0.01ε and δt=1.99ε, and n=5 macrosteps with macrostep size ∆t=10−3,
implying T =0.0055 or T =0.1. The Lipschitz constants are Lg =1 and Lf =1, the
bound on the vector field of the slow dynamics is Cg =290, and the maximal second
derivative of the reduced slow dynamics is C∗=6.

6. Discussion

We have established bounds on the error of a numerical approximation of the
solution of a multiscale system by Projective Integration. The error contains terms
stemming from the inherent error made by reducing the full dynamics on the center
manifold as well as errors specific to the numerical discretization. In particular, the
order of the numerical scheme features, as well as errors due to inaccurately approxi-
mating the dynamics on the center manifold. Although the constants involved in our
error estimates are not optimal, the numerical simulations suggest that the scaling
obtained is correct.

In future work it is planned to use the analytical results obtained here as well
as a trivial extension of our results to seamless HMM and the results obtained for
the non-seamless version of HMM (see [2]) to shed light on the important question in
what circumstances one method or the other may lead to better performance. These
methods exhibit different error bounds due to their different weights as well as due to
differing reinitialization procedures for the fast variables.

Acknowledgments. We are grateful for discussions with Daniel Daners and
Tony Roberts. GAG acknowledges support from the Australian Research Council.
John Maclean is supported by a University of Sydney Postgraduate Award.

REFERENCES

[1] J. Carr, Applications of Center Manifold Theory, Appl. Math. Sci., Springer, 35, 1981.
[2] W. E, Analysis of the heterogeneous multiscale method for ordinary differential equations,

Commun. Math. Sci., 1(3), 423–436, 2003.
[3] W. E and B. Engquist, The heterogeneous multiscale methods, Commun. Math. Sci., 1, 87–132,

2003.
[4] W. E, D. Liu, and E. Vanden-Eijnden, Analysis of multiscale methods for stochastic differential

equations, Commun. Pure Appl. Math., 58, 1544–1585, 2005.
[5] W. E, D. Liu, and E. Vanden-Eijnden, Nested stochastic simulation algorithm for chemical

kinetic systems with disparate rates, J. Chem. Phys., 123, 194107, 2005.
[6] W. E, B. Engquist, X. Li, W. Ren, and E. Vanden-Eijnden, Heterogeneous multiscale methods:

A review, Commun. Comp. Phys., 2(3), 367–450, 2007.
[7] B. Engquist and Y.-H. Tsai, Heterogeneous multiscale methods for stiff ordinary differential

equations, Math. Comput., 74(252), 1707–1742, 2005.
[8] C.W. Gear and I. Kevrekidis, Projective methods for differential equations, SIAM J. Sci. Com-

put., 24, 1091–1106, 2003.
[9] D. Givon, R. Kupferman, and A. Stuart, Extracting macroscopic dynamics: model problems

and algorithms, Nonlinearity, 17(6), R55–127, 2004.
[10] D. Givon, I.G. Kevrekidis, and R. Kupferman, Strong convergence of projective integration

schemes for singularly perturbed stochastic differential systems, Commun. Math. Sci., 4(4),
707–729, 2006.

[11] A. Iserles, A First Course in the Numerical Analysis of Differential Equations, Cambridge
University Press, Cambridge, 2009.

[12] I. Kevrekidis and G. Samaey, Equation-free multiscale computation: Algorithms and applica-

tions, Ann. Rev. Phys. Chem., 60, 321–344, 2009.
[13] I.G. Kevrekidis, C.W. Gear, J.M. Hyman, G.K. Panagiotis, O. Runborg, and C. Theodoropou-

los, Equation-free, coarse-grained multiscale computation: Enabling microscopic simula-

tors to perform system-level analysis, Commun. Math. Sci., 1(4), 715–762, 2003.
[14] R.Z. Khasminsky, On stochastic processes defined by differential equations with a small param-

eter, Theo. Prob. Appl., 11, 211–228, 1966.



J. MACLEAN AND G. A. GOTTWALD 255

[15] T.G. Kurtz, A limit theorem for perturbed operator semigroups with applications to random

evolutions, Journal of Functional Analysis, 12(1), 55–67, 1973.
[16] S.L. Lee and C.W. Gear, On-the-fly local error estimation for projective integrators, UCRL,

2006.
[17] D. Liu, Analysis of multiscale methods for stochastic dynamical systems with multiple time

scales, SIAM Multiscale Model. Simul., 8, 944–964, 2010.
[18] A.J. Majda, I. Timofeyev, and E. Vanden-Eijnden, A mathematical framework for stochastic

climate models, Commun. Pure Appl. Math., 54(8), 891–974, 2001.
[19] G.A. Pavliotis and A.M. Stuart, Multiscale Methods: Averaging and Homogenization, Springer,

New York, 2008.
[20] A.J. Roberts, Normal form transforms separate slow and fast modes in stochastic dynamical

systems, Physica A, 387(1), 12–38, 2008.
[21] A.J. Roberts, Slow manifold of stochastic or deterministic multiscale differential equations,

http://www.maths.adelaide.edu.au/anthony.roberts/sdesm.php, 2008.
[22] E. Vanden-Eijnden, On HMM-like integrators and projective integration methods for systems

with multiple time scales, Commun. Math. Sci., 5, 495–505, 2007.


