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Abstract

We study the behaviour of reacting tracers in a chaotic flow. In particular, we look at

an autocatalytic reaction and at a bistable system which are subjected to stirring by

a chaotic flow. The impact of the chaotic advection is described by a one-dimensional

phenomenological model. We use a non-perturbative technique to describe the

behaviour near a saddle node bifurcation. We also find an approximation of the

solution far away from the bifurcation point. The results are confirmed by numerical

simulations and show good agreement.
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1 Introduction

In recent years, interest has risen in the dynamics of reacting tracers in a complex flow
environment. Apart from the purely theoretical challenge, this is due to the environmental
and industrial applications. Examples are ubiquitous in nature and industry, and include
mixing of reactants within continuously fed or batch reactors [1, 2], the development of
plankton blooms and occurrence of plankton patchiness [3, 4, 5, 6], and increased depletion
of ozone caused by chlorine filaments [7].

In typical chaotic flows, fluid parcels are deformed. Chaotic advection gives rise to re-
gions of stretching and folding, causing fluid parcels to form filamental structures. Tracers
are advected with these filaments, which leads to an increased surface area of the tracers.
In the case of reacting tracers, this has strong implications on the reaction kinetics and
gives rise to new phenomena which are not observed in a non-stirred flow. For example,
differential fluid flow can generate a non-Turing mechanism for pattern formation [8],
chaotic flow can determine synchronization in oscillatory media [9, 10] or cause clustering
[11]. Chaotic stirring also implies a dependence of mixing results on the initial condition
[12].

In principle, these phenomena can be studied directly in a 2D or 3D reaction-advection-
diffusion system with huge computational effort. An analytical treatment of the full sys-
tem is prohibited by the complicated nature of the underlying equations, which involve
multiple-scale processes. Simplified models are needed to capture essential features of the
influence of the stirring on the reaction kinetics. Such a model was first introduced in [4, 5].
They replaced the two-dimensional problem of reacting tracers by a one-dimensional one
of the form

∂

∂t
ci − λx

∂

∂x
ci = Di

∂2

∂x2
ci + Fi(ci, ki) , (1)

for n reacting tracers, ci, with diffusion coefficients Di, reaction rates ki and stirring rate
λ. A single reacting tracer with F(c) = c and F(c) = c(1 − c) was studied in [4] and [5],
but the idea has been taken up by several authors and was applied to more interacting
tracers in bistable and excitable media in several physical, chemical and biological contexts
[13, 14, 15, 16, 17, 18]. The phenomenological model (1) can be justified by the following
consideration: The chaotic advection causes filaments to be stretched in one direction
and compressed in another. In the stretched direction, the concentration is homogenized
and gradients along the filaments can be neglected. This motivates a one-dimensional
reduction for the concentration in the direction transverse to the filament, subject to the
effect of stirring and compression. The parameter λ can be thought of as the Lagrangian
mean strain in the contracting direction, and is given by the absolute value of the negative
Lyapunov exponent. For a different approach to this problem see [19].

In [13, 14, 15, 16, 17, 18], it was numerically shown that the behaviour of the one-
dimensional filament model (1) qualitatively describes the behaviour of the respective
full 2D reaction-advection-diffusion system. In particular, a saddle node bifurcation was
observed. The saddle node can be phenomenologically understood as the competition of
stirring and reaction. If the stirring is too strong, i.e. it occurs on a faster time scale
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than the reaction, the filaments become thin and (in the case of a closed flow) soon cover
the whole fluid container, or (in the case of an open flow) leave the fluid container. Con-
sequently, perturbations are either carried out of the container, or filaments are too thin
to cause spread of reaction. In some cases, an asymptotic theory could be developed for
slow stirring rates, λ, far away from the saddle node [14]. However, the bifurcation point
and the pulse behaviour close to the saddle node has not been previously described. We
use a non-perturbative, non-asymptotic technique developed for excitable media in [20] to
describe the behaviour near the saddle node. We consider a bistable and an autocatalytic
system, and determine the critical bifurcation parameter and the pulse shape close to the
bifurcation point, as a function of the equation parameters. Moreover we apply the same
technique to describe the form of the solution far away from the bifurcation point going
beyond the asymptotic analysis of [14].

In the next Section, we present the two models which under consideration. In Section 3
we review the perturbation technique developed in [20], and in Section 4 we show results of
our perturbation technique for the models presented in Section 2 close to the saddle node
bifurcation, and compare with numerical results. In Section 5 we find an approximate
solution for the front solutions far away from the bifurcation point.

2 The models

We use two different one-component models to illustrate our method. We study the same
models used in [14]. Therein also, the behaviour of the full 2D reaction-advection-diffusion
systems for closed and open chaotic flows was investigated. We follow their notation and

rescale Eq. (1) by introducing non-dimensional variables t′ = λt and x′ =
√

λ/Dx to

obtain (omitting the primes)

∂

∂t
c − x

∂

∂x
c =

∂2

∂x2
c + Da F(c) , (2)

where the Damköhler number Da = k/λ measures the ratio of the time scales of
fluid motion and reaction, respectively. Small Damköhler numbers correspond to fast
stirring/slow reaction. For large Damköhler numbers, the system behaves asymptotically
like an unstirred system.

For the reaction term F(c), we use the Fisher-Kolomogorov-Petrovsky-Piscounoff (F-
KPP) type [21, 22]

∂

∂t
c − x

∂

∂x
c =

∂2

∂x2
c + Da c(1 − c) . (3)

This equation has two equilibrium points: an unstable fixpoint, c = 0, and a stable one,
c = 1. It describes the propagation of an unstable phase into a stable phase. The reaction
term arises naturally for autocatalytic reactions A + B → 2B, and was first introduced
in the context of population dynamics in [21] and in the context of combustion in [22].
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Eq. (3) has recently been used as a caricature to model plankton blooms [4].

As a second model we introduce a generic bistable model

∂

∂t
c − x

∂

∂x
c =

∂2

∂x2
c + Da c(α − c)(c − 1) , (4)

where 0 < α < 1. This system has two stable fixed points, c = 0 and c = 1, which are
separated by an unstable fixed point at c = α. it is well known that in the unstirred
case an initial perturbation which is larger than α over a finite range will spread over the
whole domain if 0 < α < 0.5. If 0.5 < α < 1, an initial perturbation will decay to the
stable state c = 0.

For the non-stirred case, both systems are well known and well described in textbooks
such as [23, 24, 25, 26]. The stirred cases were investigated numerically in [14, 5]. In the
stirred case stationary fronts exist for large enough values of the Damköhler number for
both models. The existence of stationary fronts in systems (3) and (4) is due to a balance
of the x-dependent stirring and the counterpropagating fronts. An initial sufficiently large
perturbation seeded at x = 0 spreads as a front driven by its reaction kinetics and diffusion
until it reaches the location x? where its velocity equals the ambient spatially dependent
velocity of the chaotic stirring −x?.

It has been observed for both models in [14] that there is a critical Damköhler number
such that no stationary pulses exist for Da < Dac, i.e. when the time scale of the chaotic
advection, τf = 1/λ, becomes too fast with respect to the time scale of the reaction,
tr = 1/k. For large Damköhler numbers, an asymptotic expression for the scaling of the
total concentration was developed in [14]. However, these techniques cannot describe the
behaviour close to the bifurcation point. It is this saddle node bifurcation we are mainly
concerned with in this work.

3 Nonperturbative method

A method was developed in [20] to study critical wave propagation of single pulses and
pulse trains in excitable media in one and two dimensions. It was based on the observation
that close to the bifurcation point the pulse shape is approximately a bell-shaped function.
Numerical simulations show that this is the case for both systems, (3) and (4), close to
the bifurcation point at Dac. A test function approximation that optimises the two free
parameters of a bell-shaped function, i.e. its amplitude and its width, allows us to find the
actual bifurcation point, Dac, and determine the pulse shape for close-to-critical pulses
at Damköhler numbers near Dac. We note that the framework of asymptotic techniques,
such as inner and outer expansions where the solution is separated into a steep narrow
front and a flat plateau, are bound to fail close to the bifurcation point as the pulse
is clearly bell-shaped, and such a separation is not possible anymore. We shall make
explicit use of the shape of the pulse close to the critical point and parameterise the pulse
appropriately, as is done in the method of collective coordinates in the studies of solitary
waves [26].
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We choose c of the general form

c(x) = f0C(η) with η = wx , (5)

where C(η) is a symmetric, bell-shaped function (a Gaussian, for example) of unit width
and height, and f0 is the amplitude of the pulse. Numerical simulations reveal that close
to the saddle node, the solution is asymptotically given by a Gaussian. However, our
result does not depend on the specific choice of the test function, and the numerical
values differ only marginally when sech-functions are used. We restrict the solutions to
a subspace of a bell-shaped function C(η), which is parameterised by the amplitude, f0,
and the inverse pulse width, w. These parameters are determined by minimizing the error
made by the restriction to the subspace defined by (5). This is achieved by projecting
Eq. (3) (or (4)), onto the tangent space of the restricted subspace, which is spanned by
∂c/∂f0 = C and ∂c/∂w = ηCη/w. This assures that the error made by restricting the
solution space to the test functions is minimized. We set the integral of the product of
Eq. (3) (or (4)) with the basis functions of the tangent space (over the entire η-domain)
to zero. This will lead to algebraic equations for the amplitude, f0, and the inverse pulse
width, w, and also yield the critical Damköhler number Dac.

Moreover, for the solution behaviour at large Damköhler numbers far way from the
bifurcation point, where the solution takes the shape of a well defined front, we may use
a superposition of tanh-functions for the test function C(η). Here the free parameters are
the inverse width of the interface and the total width of the front. We can apply the same
technique to determine these two free parameters. This will be attempted in Section 5.

4 Behaviour close to the saddle node bifurcation

In this Section we apply the technique described in the previous Section to describe the
behaviour near the saddle node bifurcation where the solution is well approximated by a
bell-shaped function with two free parameters, namely the amplitude f0 and the inverse
pulse width w. This is a purely numerical observation and has no further analytical
justification.

4.1 Autocatalytic system

We first investigate the autocatalytic system (3). As has been first observed numerically
in [14], steady solutions to the one-dimensional problem can be obtained for values of
Da > Dac. As we approach the bifurcation point the amplitudes of the solutions to the
autocatalytic reaction decrease to zero (see Fig. 1). Conversely, with increasing Damköhler
number the pulse width increases and the maximal amplitude saturates around c(x) = 1.
Here, the solution is a regular front solution with a well defined plateau and a narrow
steep front.
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Figure 1: The steady solutions of the autocatalytic reaction for logarithmically spaced
values of Da between Da = Dac(= 1) and Da=100.

We are interested in steady-state solutions and set ∂c/∂t = 0 in (3). We obtain the
ordinary differential equation

w2
∂2C

∂η2
+ η

∂C

∂η
+ Da C(1 − f0C) = 0 , (6)

where η = wx. As described in Section 3 we need to project equation (6) onto the tangent
space of the restricted solution submanifold. We require

〈w2Cηη + ηCη + Da C(1 − f0C) | C〉 = 0, (7)

〈w2Cηη + ηCη + Da C(1 − f0C) | ηCη〉 = 0, (8)

where the brackets indicate integration over the whole η-domain. Using 〈CηηC〉 =
−〈C2

η〉 = 2〈ηCηηCη〉, and 〈ηCηC
a〉 = −〈Ca+1〉/ (a + 1), we can simplify the set of equa-

tions to get an expression for the amplitude of the form

f0 =
1

〈C3〉
3

5Da

(

〈C2〉
(

4Da − 1

2

)

− 2〈η2C2

η〉
)

.

Choosing a Gaussian test function C = exp (−η2), this reduces further to

f0 =
3
√

6

5

(

Da − 1

Da

)

. (9)

This immediately yields the critical Damköhler number Dac = 1 which is verified by
numerical simulation of the full autocatalytic system (3) (see Fig. 2b).
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Using the result (9) for the amplitude f0 we can calculate the inverse pulse width w
from either (7) or (8). We obtain

w =

√

7 − 2Da

10
. (10)

For values of Da > 3.5 equation (10) yields purely imaginary values indicating that our
method breaks down, and that at these Damköhler numbers the solution cannot be ap-
proximated by a bell-shaped function anymore. We note that the value of the Damköhler
number where the solution has ’saturated’ to become a front-like solution (see Fig. 1) is at
Da ≈ 10. However, the solution looses its bell-shaped character before that ’saturation’
point.

Fig. 2 shows a comparison of our analytical results (9,10) with numerical simulations
of (3). The analytical results for the amplitude fit progressively better as we approach
the saddle node, corresponding to the fact that the solution is well approximated by a
bell-shaped function the closer it is to the saddle node.
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Figure 2: Comparison of numerical simulations of our analytical results (continuous lines)
with the autocatalytic model equation (3). (a): Pulse c(x) at Da = 1.35. (b): Pulse
amplitude f0 versus Damköhler number Da. The continuous line is our analytical result
for the stable branch of the saddle node bifurcation (9).

4.2 Bistable system

We can apply the same methodology used in Sec. 4.1 to the bistable system (4). The
steady solutions of the bistable system have the same behaviour as those in the autocat-
alytic system (3). Close to the bifurcation point at Dac the solution takes the form of a
bell-shaped function (see Fig. 3). Whereas the solution approaches a front solution for
higher values of the Damköhler number as is evidenced in Fig. 3.
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Figure 3: The steady solutions of the bistable reaction with α = 0.2 for logarithmically
spaced values of Da between Da = Dac and Da = 1000.

As in Sec. 4.1, we look at stationary front solutions and study of (4), and consider

w2
d2C

dη2
+ η

dC

dη
+ Da C(α − f0C)(f0C − 1) = 0 . (11)

Integrating the product of (11) with C and with η∂C/∂η over the η-domain leads to
expressions for the amplitude f0 and the inverse width w.

We obtain a quadratic equation for the amplitude,

Af 2

0 + Bf0 + C = 0, (12)

where, as before, the coefficients can be obtained explicitly for a specific choice of test
function. Choosing a Gaussian test function, we have

A =
3

4
, B =

−5 (1 + α)

3
√

3
, C =

√
2 (1 + Da α)

Da
. (13)

This yields two solutions for the amplitude f0, one corresponding to a stable branch
and one corresponding to an unstable branch. These two branches collide at the critical
Damköhler number and disappear via a saddle node bifurcation. An expression for the
critical Damköhler number for any given value of α can be obtained from (12), with the
condition B2 − 4AC = 0. We find that

Dac =
1

q(1 + α)2 − α
with q =

25

81
√

2
.
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This poses an upper bound for α

αmax =
1 − 2q −√

1 − 4q

2q
,

which is approximately αmax ≈ 0.4744. Hence the chaotic stirring changes the Maxwell
point which in the non-stirred case is at α = 0.5.
As in Section 4.1 the inverse width can be calculated as well.

In Fig. 4 we show a comparison of our analytical results (12,13) with numerical simu-
lations of (11). In Fig. 4 we see that the correspondence of our analytical results with the
numerical simulation of the full system (11) is much better for the unstable branch than
for the stable branch. As a matter of fact, the unstable solutions obtained by integrating
(11) by means of a shooting method stay close to a bell-shaped function even far away
from the bifurcation point at Da = Dac.
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Figure 4: Comparison of numerical simulations of our analytical results (continuous lines)
with the bistable model equation (11) solved by a shooting method. (a): Pulse c(x) at
Da = 9. (b): Pulse amplitude f0 versus Damköhler number Da. The continuous line and
the dashed line show the stable and the unstable branch, respectively, of the saddle node
bifurcation according to our analytical result (12).

5 Behaviour far away from the bifurcation

In this Section we apply the technique described in Section 3 to describe the behaviour
far away from the saddle node bifurcation. For large Damköhler numbers the solution is
not bell-shaped anymore but instead becomes a front solution with a well defined plateau
(see Fig. 1 and Fig. 3). Numerical simulations show that the solution in this regime is
well approximated by a test function of the following form

C(x) =
1

2
(tanh (w(x + ν)) − tanh (w(x − ν))) . (14)
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Again we have two free parameters, namely the total width ν and the inverse interface
width w. This, in principle, provides two conditions by projecting onto the tangent space
of the restricted solution space spanned by ∂C/∂w and ∂C/∂ν. These two conditions
allow us to determine w and ν.

In the literature of lamellar one-dimensional model equations one encounters the fol-
lowing phenomenological argument for the location of the front. We recall that a station-
ary front is given through a balance of the front velocity v with the velocity of the chaotic
stirring x. The front has a zero velocity when v = x, which implies v = ν. If we now
approximate the front velocity v by its unstirred value, we can calculate v as a function
of the Damköhler number.

Our non-perturbative technique is able to deduce this phenomenological formula for
the front width ν for both cases, the autocatalytic and the bistable case. The agreement
between our theory and the phenomenological formulae is accurate up to 0.1%. For sim-
plicity we therefore use in the following Sections the phenomenological argument to close
the equations.

5.1 Autocatalytic system

For the autocatalytic system (3), the front velocity for the unstirred case is given by
v = 2

√
Da (provided that the initial condition is of a form such as (14) [23, 24]). Hence

the phenomenological argument yields

ν = 2
√

Da . (15)

Fig. 5(a) shows that the phenomenological argument indeed is a good approximation.
We note again, that our non-perturbative theory shows very good agreement with the
phenomenological formula (15).

Equation (15) can now be used to close one of the two conditions of the projection
method. Without loss of generality, we choose the projection onto ∂C/∂w. The resulting
equation is

〈w2Cηη + ηCη + Da C(1 − C) | ηCη〉 = 0 . (16)

Here we choose (14) as a test function and express ν by (15). The resulting equation for
w is transcendental and we need to evaluate it numerically.

In Fig. 5(b) a comparison of our result with the numerical simulation of (3) is shown.
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Figure 5: Solution behaviour for large Damköhler numbers Da far away from the saddle
node bifurcation. Numerical simulations of the full autocatalytic system (3) are depicted
by stars; the analytical results are depicted by continuous lines. (a): Total width ν as
a function of the Damköhler number. The continuous line shows the phenomenological
formula (15). (b): Inverse interface width w as a function of the Damköhler number. The
continuous line shows our analytical result.

5.2 Bistable system

For the bistable system, the front velocity for the unstirred case is given by v =
√

2Da
(

1

2
− α

)

[23, 24]. Hence our phenomenological argument now yields

ν =
√

2Da
(

1

2
− α

)

. (17)

Fig. 6(a) shows again good agreement of the phenomenological argument with the actual
dynamics of the full system.

Again, equation (17) can be used to calculate the inverse interface width w from the
condition that the projection of equation (4) onto ∂C/∂w vanishes. This condition is
given by

〈w2Cηη + ηCη + Da C(α − C)(C − 1) | ηCη〉 = 0, (18)

where, as above, we use (14) as a test function, and express ν by (17). As for the
autocatalytic system, the inverse width w can only be given by numerically evaluating
(18).

In Fig. 6(b) a comparison of our result with the numerical simulation of (4) is shown.
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Figure 6: Solution behaviour for large Damköhler numbers Da far away from the saddle
node bifurcation. Numerical simulations of the full bistable system (4) are depicted by
stars; the analytical results are depicted by continuous lines. (a): Total width ν as a
function of the Damköhler number. The continuous line shows the phenomenological
formula (17). (b): Inverse interface width w as a function of the Damköhler number. The
continuous line shows our analytical result (18).

6 Summary and discussion

We studied the solution behaviour near the saddle node bifurcation which occur in one-
dimensional simplified models of reaction-diffusion equations subjected to chaotic advec-
tion. The interplay of reaction dynamics with the chaotic stirring leads to stationary
fronts in the one-dimensional model equation corresponding to filaments with a well-
defined width in the full two-dimensional system. Depending on the Damköhler number
which measures the ratio of the time scales of the chaotic fluid motion and the reaction
kinetics, the system undergoes a saddle bifurcation when the fluid motion is much faster
than the reaction kinetics.

We applied a technique originally developed for excitable media [20] to study this sad-
dle node bifurcation. We determined the critical Damköhler number and described the
solution close to the bifurcation point with good agreement with numerical simulations
of the full partial differential equations.

By choosing a front-shaped test function we were able to apply the technique origi-
nally developed to study behaviour close to the saddle node bifurcation to describe fully
developed fronts far away from the bifurcation point. The two conditions given by the
variational technique for the two free parameters of such a stationary front, i.e. its in-
verse interface width w and its total width ν, reproduced accurately the numerical results.
Moreover, we were able to reproduce a widely used phenomenological argument, relating
the front-width to the front velocity of the unstirred case. A comparison with numerical
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simulations justified our approach.
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