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Abstract

The integrable 3rd-order Korteweg-de Vries (KdV) equation emerges uniquely at linear order in
the asymptotic expansion for unidirectional shallow water waves. However, at quadratic order, this
asymptotic expansion produces an entire family of shallow water wave equations that are asymptotically
equivalent to each other, under a group of nonlinear, nonlocal, normal-form transformations introduced
by Kodama in combination with the application of the Helmholtz-operator. These Kodama-Helmholtz
transformations are used to present connections between shallow water waves, the integrable 5th-order
Korteweg-de Vries equation, and a generalization of the Camassa-Holm (CH) equation that contains
an additional integrable case. The dispersion relation of the full water wave problem and any equation
in this family agree to 5th order. The travelling wave solutions of the CH equation are shown to agree
to 5th order with the exact solution.

1 Introduction

We study the irrotational incompressible flow of a shallow layer of inviscid fluid moving under the
influence of gravity as well as surface tension. Previously Dullin et al. [11] studied the case without
surface tension, which in the shallow water approximation leads to the Camassa-Holm equation (CH).
CH is the following 1+1 quadratically nonlinear equation for unidirectional water waves with fluid
velocity u (x, t) ,

mt + c0mx + umx + 2mux + Γuxxx = 0 . (1)

Here m = u − α 2uxx is a momentum variable, partial derivatives are denoted by subscripts, the
constants α 2 and Γ/c0 are squares of length scales and c0 =

√
gh is the linear wave speed for

undisturbed water at rest at spatial infinity, where u and m are taken to vanish. The limit α2 → 0
recovers the KdV equation, [24].

Equation (1) was first derived by using asymptotic expansions directly in the Hamiltonian for
Euler’s equations for inviscid incompressible flow in the shallow water regime. It was thereby shown
to be bi-Hamiltonian and integrable by the inverse scattering transform in the work of Camassa &

Holm [5]. Its periodic solutions were treated by Alber et al (see [1], [2] and references therein).
Before [5], families of integrable equations similar to (1) were known to be derivable in the general
context of hereditary symmetries by Fokas & Fuchsteiner [16]. However, equation (1) was not
written explicitly, nor was it derived physically as a water wave equation and its solution properties
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were not studied before [5]. See [17] for an insightful discussion of how the integrable shallow water
equation (1) relates to the mathematical theory of hereditary symmetries.

Equation (1) was recently rederived as a shallow water equation by using asymptotic methods in
three different approaches by Fokas & Liu [14], by Dullin et al. [11] and also by Johnson [22].
These three derivations used different variants of the method of asymptotic expansions for shallow
water waves in the absence of surface tension. We shall derive an entire family of shallow water
wave equations that are asymptotically equivalent to equation (1) at quadratic order in the shallow
water expansion parameters. This is one order beyond the linear asymptotic expansion for the KdV
equation. The asymptotically equivalent shallow water wave equations at quadratic order in this family
are related amongst themselves by a continuous group of nonlocal transformations of variables that
was first introduced by Kodama [23].

Dullin et al. [11] focused on the integrability of equation (1) and its spectral properties. Its
derivation from Euler’s equation in the case without surface tension was briefly described. Here we
present the necessary details of this calculation. The present derivation also adds surface tension. In
view of the many papers which have appeared recently on weakly nonlinear shallow water models (i.e.
[15, 22]) we see our contribution to be the following. By combining a nonlocal Kodama transformation
with the application of the smoothing Helmholtz operator, we derive several integrable water wave
equations in the same asymptotically equivalent family. This family includes the CH equation (1),
the fifth-order Korteweg de Vries equation (KdV5) and the equation of Degasperis & Procesi [8]
which was recently discovered to be integrable in [9]. All these integrable equations are then explicitly
related to each other, again by means of a Kodama transformation. We clarify the differences among
the previous derivations of these equations. The equations are discussed with respect to their linear
dispersion properties.

In the context of water waves subject to surface tension, interest has recently focused on the KdV5
equation and its solitary wave solutions. See [10] for a review. For Bond numbers 0 < σ < 1/3 it has
been shown that these solutions are not true solitary waves which decay to zero at spatial infinity but
instead they are generalized solitary waves which are characterized by exponentially small ripples on
their tail. See for example [4] for more explanation. It has been shown by Lombardi [26] that these
ripples are exponentially small in terms of F − 1 where F = c/c0 is the Froude number. Numerical
experiments by Champneys [7] suggest that in the full nonlinear water wave problem there are no real
solitary waves bifurcating for Bond numbers 0 < σ < 1/3. For Bond numbers larger than 1/3, one
obtains depressions with negative velocity, rather than elevations with positive velocity.

One may ask whether yet another model equation is needed, if the more rigorous, exact, or numerical
results described above are already available. Or in more general terms: Which is preferred? An exact
solution of an approximate model equation, or an approximate solution of an exact equation? Our
point of view is: If the added cost is small, why not take both? It might be useful to have an equation
that gives, e.g., more accurate travelling waves than KdV, without the need to go to much more
elaborate models. Although we shall obtain less information and accuracy than the sophisticated,
beyond-all-order methods, we shall also pay less. Thus, one can improve the description of the shape
and speed of the travelling wave without having to resort to these more complicated models. That
they are still only an approximation to the true solution is, of course, taken for granted.

Our inclusion of surface tension has a similar motivation. Although the equation (30) that we shall
derive has some drawbacks concerning the global properties of its dispersion relation for large k , it
still gives improved descriptions for small k and small σ . Moreover, the improved solutions are easily
obtained and analyzed.

Outline Section 2 recalls the standard dynamics for the shallow water wave elevation following
Whitham [29]. We then use an approach based on the Kodama transformation to derive equation
(1) with surface tension in section 3. Section 4 explores the transformations employed to derive wa-
ter wave equations. We discuss the class of equations which may be related to each other via such
transformation, and are, hence, asymptotically equivalent. As examples, we discuss the relations of
equation (1) to KdV and other integrable equations. We particularly discuss the relations to KdV5,
the fifth-order integrable equation in the KdV hierarchy, and to another integrable nonlinear equation
recently proposed by Degasperis & Procesi [8] and discovered to be integrable in [9]. Section 5
compares the dispersion relation of (1) with that of the full water wave equation. Finally section 6
shows that the travelling wave solutions of (1) agree to fourth order with the exact travelling waves
solutions of the full water wave problem.
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2 The η equation

Our derivation of equation (1) proceeds from the physical shallow water system along the lines of
Whitham [29]. Consider water of depth h = h0 + η(x, t) where z = −h0 is the flat bottom and h0

the mean depth, so that z = 0 at the free surface in equilibrium. Denote by uh and uv the horizontal
and vertical velocity components, respectively. The z -momentum equation is

Duv

Dt
= −g − 1

ρ
∂zp with p = σ̃

hxx

(1 + h2
x)3/2

, (2)

where g is the constant of gravity and σ̃ is the surface tension. At the free surface, the boundary
condition is

Dη

Dt
= uv where z = η . (3)

The irrotational velocity u(x, z, t) = ∇ϕ has horizontal and vertical velocity components uh = ϕx

and uv = ϕz . The velocity potential ϕ must satisfy Laplace’s equation in the interior. Eq. (3) yields
the kinematic boundary condition at the free surface,

ηt + ϕxηx = ϕz .

Eq. (2) can now be integrated to yield the dynamic boundary condition,

ϕt +
1

2
(ϕ2

x + ϕ2

z) = −gh − 1

ρ
p .

The equations for a fluid are non-dimensionalized by introducing x = lxx′ , z = h0z
′ , t = (lx/c0)t

′ ,
η = aη′ and ϕ = (glxa/c0)ϕ

′ , where c0 =
√

gh0 . Being interested in weakly nonlinear, small-amplitude
waves in a shallow water environment, we introduce the small parameters ε = a/h0 and δ2 = (h0/lx)2

where ε ≥ δ2 > ε2 ≥ εδ2 ≥ δ4 . When we talk about the linear approximation we lump together the
terms or order ε and δ2 , because they are allowed to be of the same order. Similarly, quadratic order
means quadratic in ε and δ2 , hence includes terms of order ε2, εδ2, δ4 . Contrary to this convention
the traditional designations 3rd or 5th order KdV refer to the power of δ , and hence also the maximal
number of derivatives in the linear terms. Upon omitting the primes and expanding the pressure term
up to order ε2δ2 , the Euler equations and the boundary conditions at the free surface and at the
bottom are expressed as,

δ2ϕxx + ϕzz = 0 in −1 < z < εη (4)

ηt + εϕxηx − 1

δ2
ϕz = 0 at z = εη (5)

η + ϕt +
1

2
(εϕ2

x +
ε

δ2
ϕ2

z) − σδ2ηxx = 0 at z = εη (6)

ϕz = 0 at z = −1 , (7)

where σ = σ̃/(h0ρc2

0) is the dimensionless Bond number. The ordering of ε and δ2 is as specified,
provided that O(σ) = 1.

It is well known that variable transformations of the water wave problem yield the following de-
coupled equation for the elevation, η ,

ηt + ηx +
3

2
εηηx +

1

6
δ2(1 − 3σ)ηxxx − 3

8
ε2η2ηx + εδ2

( 1

24
(23 + 15σ)ηxηxx

+
1

12
(5 − 3σ)ηηxxx

)
+ δ4 1

360
(19 − 30σ − 45σ2)ηxxxxx = 0. (8)

The derivation up to this order appears, for example, in [27], or more recently in [22] without surface
tension.

3 Transformation to an integrable equation

Before embarking on its derivation, we shall discuss the transformation properties of equation (1). First,
it is reversible, i.e., it is invariant under the discrete transformation u(x, t) → −u(x,−t) . Equation (1)
is also Galilean covariant. That is, it keeps its form under transformations to an arbitrarily moving
reference frame. This includes covariance under transforming to a uniformly moving Galilean frame.
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However, equation (1) is not Galilean invariant, even assuming that the momentum, m , Galileo-
transforms in the same way as velocity, u . In fact, equation (1) transforms under

t → t + t0 , x → x + x0 + ct , u → u + c + u0 , m → m + c + u0 , (9)

to the form
mt + umx + 2ux m + (c0 + u0)mx + 2ux(c + u0) + Γuxxx = 0 . (10)

Thus, equation (1) is invariant under space and time translations (constants x0 and t0 ), covariant
under Galilean transforms (constant c), and acquires linear dispersion terms under velocity shifts
(constant u0 ). The dispersive term u0mx introduced by the constant velocity shift u0 6= 0 breaks the
reversibility of equation (1).

Under scaling transformations of x , t and u , the coefficients of equation (1) may be changed.
However, such scaling leaves the following coefficient ratios invariant,

C(uxuxx) : C(uuxxx) = 2 : 1 , (11)

C(uxxt)C(uux) : C(uuxxx)C(ut) = 3 : 1 , (12)

where C(f) stands for the coefficient of f in the scaled equation. It is pertinent to mention that the
above ratios are crucial in the integrability of equation (1). See [5] and [11] for discussions of this point.

Equation (1) will emerge as being asymptotically equivalent to equation (8) after two steps. First,
we shall perform a near-identity transformation

η = η(u) = u + εf [u] + δ2g[u] , (13)

relating the wave elevation and a “velocity-like” quantity, u . One should not regard u as the original
fluid velocity, because we will use a non-local term in f which is difficult to interpret in this context.
Instead, we consider u as an auxiliary quantity in which the equation becomes particularly simple. The
quantity u agrees at leading order with the fluid velocity and it transforms as a velocity under time
reversal, spatial reflection and Galilean boosts. To obtain the physically more meaningful quantity η
one has to transform back, see below. The functionals f and g in the transformation (13) are to be
chosen so that they generate the terms proportional to uux , uxuxx , uuxxx and uxxx in equation (1).
Afterwards, we shall apply the Helmholtz operator H = 1 − νδ2∂2

x , which generates the uxxt term.
As in [23] the functional g[u] is proportional to uxx and f [u] is a linear combination of u2 and a
non-local term ux∂−1 , where ∂−1 denotes integration over x . Thus, including the parameter ν , there
are four coefficients in this Kodama-Helmholtz transformation (KH-transformation). These shall be
chosen so that equation (1) emerges, after a rescaling of u , x and t .

With these choices, (13) becomes the Kodama transformation, which depends on three parameters
α1 , α2 and β ,

η = η(u) = u + ε(α1u
2 + α2ux∂−1u) + δ2βuxx . (14)

Terms of degree n in the expansion parameters ε and δ2 start contributing at degree n + 1 in
the transformed equation. Therefore, no terms of quadratic order in ε and δ2 are needed in the
transformation. Inserting the Kodama transformation (14) into equation (8) for the height field η
leads to the following terms in asymptotic order.

O(1) : ut + ux

O(ε) : 2α1uut + 2α1uux + α2(uxt∂
−1u + uxx∂−1u + ux∂−1ut + uux) +

3

2
uux

O(δ2) : βuxxt + uxxx(β +
1

6
− 1

2
σ) (15)

O(ε2) :
9

2
α1u

2ux +
3

2
α2(u

2ux + uuxx∂−1u + u2

x∂−1u) − 3

8
u2ux

O(εδ2) : (
23

24
+

5

8
σ +

1

3
(3α1 + 2α2)(1 − 3σ) +

3

2
β)uxuxx +

+(
5

12
− 1

4
σ +

1

6
(2α1 + 3α2)(1 − 3σ) +

3

2
β)uuxxx +

1

6
α2(1 − 3σ)uxxxx∂−1u

O(δ4) : (
1

6
β(1 − 3σ) +

1

360
(19 − 30σ − 45σ2))uxxxxx .
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As before, we expand the time derivatives to linear order as

ut = −ux − 3

2
εuux − 1

6
δ2(1 − 3σ)uxxx , (16)

uxt = −uxx − 3

2
εu2

x − 3

2
εuuxx − 1

6
δ2(1 − 3σ)uxxxx ,

uxxt = −uxxx − 9

2
εuxuxx − 3

2
εuuxxx . (17)

This expansion generates higher order terms, leading to

O(1) : ut + ux

O(ε) :
3

2
uux

O(δ2) :
1

6
(1 − 3σ)uxxx (18)

O(ε2) : (
3

2
α1 +

3

4
α2 −

3

8
)u2ux (19)

O(εδ2) : Ãuxuxx + B̃uuxxx (20)

O(δ4) :
1

360
(19 − 30σ − 45σ2)uxxxxx . (21)

where in (20) we defined

Ã =
23

24
+

5

8
σ +

1

2
(2α1 + α2)(1 − 3σ) − 3β and B̃ =

5

12
− 1

4
σ +

1

2
α2(1 − 3σ) .

The first step of the derivation is now complete. In the second step, applying the Helmholtz operator
H = 1 − νδ2∂2

x introduces the coefficient ν and creates terms with two more x derivatives. However,
the terms of order O(ε2) are left unchanged. These terms are proportional to u2ux and they must
vanish for equation (1) to emerge. Thus, the application of the Helmholtz operator restores the needed
uxxt term that had previously been eliminated. Alternatively, the same equation (1) can be obtained
by splitting the time derivative, that is, by partially substituting the time derivative uxxt in (15) by
its asymptotic approximations (17), along the lines of Benjamin et al. [3] in their study of the BBM
equation.

The order O(ε2) coefficient in expression (19) will vanish, provided the parameters α1 and α2 are
chosen to satisfy

4α1 + 2α2 = 1 . (22)

The order O(δ4) terms receive an additional contribution that arises from applying the Helmholtz
operator H = 1 − νδ2∂2

x to the terms of order O(δ2) . The entire combination at order O(δ4) must
vanish, for the final equation to possess no fifth-order derivative term, uxxxxx . This requirement
determines ν as

ν =
1

60

19 − 30σ − 45σ2

1 − 3σ
. (23)

In what follows, we shall consider the coefficient ν to be given by this function of surface tension,
σ . Note: this removal of the highest order term was made possible by introducing the additional
parameter ν via the Helmholtz operator. The remaining terms containing free parameters α2 and β
are of order εδ2 and they combine additively as

(Ã − 9

2
ν)uxuxx + (B̃ − 3

2
ν)uuxxx .

To ensure equivalence to (1) except for scaling we need the relative coefficients to appear in the ratio
(11), so that

(Ã − 9

2
ν) : (B̃ − 3

2
ν) = 2 : 1 . (24)

In addition we also need to satisfy (12), so that

3

2
ν : (B̃ − 3

2
ν) = 3 : 1 .

These two conditions imply B̃ = 2ν and Ã = 11ν/2. As a result we finally obtain the equation

ut − νδ2uxxt + ux +
3

2
εuux − 1

2
εδ2ν(uuxxx + 2uxuxx) + δ2(

1

6
− ν − 1

2
σ)uxxx = 0 , (25)

5



which can be rewritten in terms of m = u − νδ2uxx as

mt + mx +
ε

2
(umx + 2mux) + δ2(

1

6
− 1

2
σ)uxxx = 0 . (26)

Thus, the coefficients in the Kodama transformation (14) that yield this equation are,

α1 =
7

20
− σ

1

5

2 − 3σ

(1 − 3σ)2
, (27)

α2 = −1

5
+ σ

2

5

2 − 3σ

(1 − 3σ)2
, (28)

β =
1

30
− σ

1

30

17 − 30σ

1 − 3σ
. (29)

Returning to physical variables, where u and ϕx have units of ga/c0 = c0a/h0 , followed by an
additional scaling of u → 2u , gives equation (26) the canonical CH form,

mt + c0mx + umx + 2mux + Γuxxx = 0 , (30)

in which m = u − νh2uxx and Γ = c0h
2(1 − 3σ)/6. The parameters α2 and Γ in CH (1) are now

understood in terms of physical variables as

α2 = νh2 = h2 1

60

19 − 30σ − 45σ2

1 − 3σ
, Γ =

c0h
2

6
(1 − 3σ) . (31)

The parameter Γ changes sign when the Bond number σ crosses the critical value, 1/3. For later
reference, we record the value of σ > 0 for which α2 vanishes, as

σα = −1

3
+

2

15

√
30 ' 0.39696 >

1

3
. (32)

In the special case c0 = Γ = 0 equation (30) is called “the peakon equation.” This equation
supports peakons as solitary wave solutions whose derivative is discontinuous at the extremum. These
solutions were introduced and discussed by Camassa & Holm [5]. The peakon equation has many
exceptional mathematical properties that arise from its interpretation as geodesic motion in the Euler-
Poincaré variational framework, as explained in [20]. However, the peakon equation cannot be derived
as a water wave equation in a weakly nonlinear shallow approximation from the Euler equation by the
present technique. This is because neither a Galilean transformation, nor an appropriate splitting can
eliminate both of the linear dispersive terms in equation (30) simultaneously. One is always left with
a residual linear dispersion.

Johnson [22] has recently derived the dispersive CH equation (30) as a shallow water wave equation
by using the same asymptotic expansion. However, two key steps in the asymptotic derivation are
addressed in quite different ways in [22] and here. Firstly, the ratios of the coefficients of the equation
must be adjusted to ensure integrability. In [22], this is achieved by using the height at which the
velocity potential is evaluated as a free parameter. Instead of the height, we use the free parameters
in the Kodama transformation (14) to obtain the desired ratios.

Secondly, the fifth-derivative term uxxxxx of order O(δ4) must be removed. The present approach
allows the value of the free parameter ν in the Helmholtz operator to be chosen to cancel out this
term. In [22], this term is simply omitted. In Section 4 we shall use our approach to show that the CH
equation is asymptotically equivalent to the KdV5 equation, which involves this fifth-order derivative.

In order to compare predictions in terms of physically measurable quantities, the solutions for the
velocity-like variable u must be transformed back to the elevation field η by using (14). However, the
derivation not only used the transformation (14), it also involved applying the Helmholtz operator.
Therefore, one should verify that it is sufficient to simply invert (14). Fortunately, when the inverse
transformation u = u(η) of the same form as (14) with u and η interchanged is substituted into
the final equation (26), we find that the coefficients just reverse their signs. We conclude that (1) is
equivalent to the shallow water wave equation (8) up to and including terms of order O(δ4) .

4 The Kodama-Helmholtz transformation

In the previous section, we transformed the shallow water wave equation (8) into the CH-equation (1)
by means of a Kodama transformation (14) and an application of the Helmholtz-operator. Now we
describe the class of equations that can be derived from the shallow water wave equation (8) by any
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such sequence of transformations, which we will refer to as KH-transformation. This class contains
(at least) four integrable equations, one of which is the CH-equation. Moreover, all equations in this
class are not only related to (8); they are also related to each other by such transformations and are
therefore asymptotically equivalent.

Similar transformations have been used by Fokas & Liu [14] that included an additional term of
the form xut , but no Helmholtz-operator. In this case, the class of equations even includes the (3rd
order) KdV equation. Unfortunately, though, this term is not uniformly bounded, so we shall decline
to use it. Its unboundedness is a problem when transforming travelling wave solutions which move
towards x = ±∞ . Moreover, use of the term xut changes the dispersion relation.

4.1 Invariance of the dispersion relation

The Kodama transformation (14) does not change the dispersion relation. To see this, one may observe
that only terms linear in η or its derivatives produce linear terms in the transformed equation. Simi-
larly, applying (14) to nonlinear terms in an equation produces only nonlinear terms in the transformed
equation. Therefore, in proving invariance of the linear dispersion relation under (14), we may restrict
to a transformation η = u+εL(u) in which L is a linear differential operator with constant coefficients
and the linear equation to be transformed is ηt = M(η) . To first order, we then have ut = M(u) and
the full transformation gives

ut + εL(ut) = M(u + εL(u)) .

Now the first order equation may be used to eliminate the time derivatives which are not of order zero,
thereby yielding

ut + εL(M(u)) = M(u) + εM(L(u)) .

If M and L commute, as they always do when they have constant coefficients, the final answer is
ut = M(u) . Consequently, the Kodama transformation (14) leaves a linear equation unchanged. Note
that including the xut term in the transformation would in general cause the operators to no longer
commute, so that the dispersion relation would be changed, as previously claimed.

The second step of the transformation is the application of the Helmholtz operator H = 1−νδ2∂2

x .
As we have just seen, the Kodama transformation leaves the linear part of the equation unchanged.
Applying the Helmholtz operator to an equation does change the linear part, but it still leaves the
dispersion relation unchanged. To see this, let the linear part of the equation be given by ut = M(u) .
The new equation is H(ut) = H(M(u)) . If H and M are linear with constant coefficients this gives
H(u)t = M(H(u)) so that with the definition m = H(u) we obtain mt = M(m) , which has the same
dispersion relation. This does not hold, however, if we truncate higher order terms in H(M(u)) . If
we truncate, then the dispersion relation will agree up to the order of truncation. For example, the
dispersion relation for (1) is a rational function, which differs from the polynomial dispersion relation
obtained from (8). However, by the above argument the two dispersion relations agree up to the desired
order.

4.2 Range of the KH-transformation

We now investigate which equations may be transformed into each other by a KH-transformation. The
class of equations that (under some additional conditions to be derived) may be transformed into each
other by KH-transformations is given by

F (ut, ux, uxxx, uxxt, uxxxxx, uux) + G(u2ux, uuxxx, uxuxx) = 0 , (33)

where F and G are linear and the coefficients of ut , ux , uux , uxxx are nonzero. This means that
each equation has a KdV-kernel. In addition, we assume that the terms are ordered as in the previous
section: Every u has weight ε and every x (or t) derivative has weight δ . However, for simplicity,
we do not explicitly display the weights in the following, even though they are used for truncation at
the usual order. The general procedure consists of two parts. In the first part the coefficients in F are
normalised in three steps. In the second part the Kodama transformation is used to adjust the terms
in G . The details of the calculation are similar to those of the previous section and are therefore not
given.

Equations are considered to be equivalent when they differ only by a transformation of the form

(t, x, u) → (τt, ξx − κt, νu) . (34)
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Scaling of u , t , and the equation allow one to set the coefficients of ux , ut , and uux to arbitrary
non-zero values. After such a scaling, the equation takes the form,

ut + ux + uux + f3uxxx + f4uxxt + f5uxxxxx + g1u
2ux + g2uuxxx + g3uxuxx = 0 . (35)

The next step is to remove the uxxt term by eliminating the t derivatives using the equation itself.
This operation produces an equation of the form,

ut + ux + uux + (f3 − f4)uxxx + (f5 − f4(f3 − f4))uxxxxx +

g1u
2ux + (g2 − f4)uuxxx + (g3 − 3f4)uxuxx = 0 . (36)

In the third step, the coefficients of uxxx and uxxxxx are normalised using (34) again, while keeping
the coefficients of ut , ux , uux all fixed at unity. First ξ is used to normalize the ratio between the
coefficients of uxxx and uxxxxx to ±1, assuming that both are non-zero. The relative sign of these
coefficients cannot be changed. Dividing the equation by τ allows both coefficients to be set to unit
magnitude. In order to keep the other coefficients in the linear function F equal to unity, the special
transformation of the form (34) reads (t, x, u) → (τt, ξx + (τ − ξ)t, ξu/τ ) . The above three steps
(transformation (34) to find (35), elimination of uxxt to find (36) and again transformation (34) to
find (37)) can be performed for any equation in the class (33). Therefore, we shall only be concerned
with the equivalence under Kodama transformation of equations of the form

ut + ux + f̃6uux + f̃3uxxx + f̃5uxxxxx + g̃1u
2ux + g̃2uuxxx + g̃3uxuxx = 0 , (37)

where f̃6 = 1, f̃3 = 1, or 0, and f̃5 = ±1, or 0. f̃3 = 0 appears when f3 = f4 in (35). The parameter
f̃6 is kept in the notation to trace the influence of the uux term. The terms in the linear function
F are unchanged by the Kodama transformation because such linear terms are unchanged by a near
identity transformation and uux is the lowest order nonlinearity. Therefore two equations can only
be equivalent if their normalised coefficient f̃5 agrees. Recall that uxxt has already been eliminated,
so that if, e.g., the above steps are applied to the CH-equation, the resulting equation does possess a
non-zero fifth derivative term.

The terms in the linear function G in (33) can be adjusted by the Kodama transformation. This
generates coefficients,

ĝ1 = g1 + f̃6(2α1 + α2)/2 ,

ĝ2 = g2 + 3α2f̃3 , (38)

ĝ3 = g3 + 3f̃3(2α1 + α2) − 2βf̃6 .

The ĝi are linear in the coefficients α1 , α2 , and β of the Kodama transformation. A sufficient
condition for the solvability of this linear system is f̃3f̃

2

6 6= 0 . Hence, if the coefficients of uxxx and uux

in (37) are non-zero, then any value of ĝi can be achieved by some Kodama transformation. Since the
coefficient of uux in (33) is assumed to be non-zero the only additional condition is f̃3 = f3 − f4 6= 0
in (35). Note that this condition was already necessary in order to obtain (37). For example, any
equation with positive relative sign of f̃3 and f̃5 in (37) is equivalent to the water wave equation (8)
with σ = 0. In particular, this shows that the integrable KdV5 can be obtained, see [25]. Similarly,
different higher-order, but non-integrable, extensions of the KdV equation can also be obtained, e.g.,
those introduced by Champneys & Groves [6]. Notice that the relative sign of f̃3 and f̃5 in (37) is
negative for 1/3 < σ < σα , see (32). The condition f̃3 = 0 appears for σ = 1/3, while f̃5 = 0 for
σ = σα ' 0.39696.

To arrive at equations with a uxxt term, the Helmholtz operator is applied. The Helmholtz operator
fits nicely into the above procedure, because it is the inverse of the elimination of the uxxt term, at the
order considered. More precisely, if the Helmholtz operator 1 − f4∂

2

x is applied to (36) then equation
(35) is recovered. Therefore, each of the three steps leading to the normalised form (37) can also be
inverted, and any two equations with equal f̃5 are asymptotically equivalent. The CH-equation has
f̃5 = sign(α2Γ), even though f5 = 0 originally. Moreover, f̃3 = sign(Γ), so that the relative sign is
that of α2 . From these equations, it follows that the vanishing of f̃3 implies the vanishing of f̃5 . This
is not true in the water wave equation. That is, σ = 1/3 does not make the coefficient of uxxxxx

vanish. This explains why the CH-equation is not a good model for σ = 1/3.

In general, all the terms in the linear function G in equation (33) may be removed by a Kodama
transformation. However, it is not possible in general at the same time to remove the fifth order
derivative. One may, however, trade the fifth order derivative for the uxxt term. Therefore, possibly
the simplest representative equation in the class (33) has the form

ut + ux + uux + uxxx + κuxxt = 0 ,
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where small positive/negative κ gives the different signs for f̃5 . The case with positive κ results from
the BBM equation of Benjamin et al. [3] by a Galilean transformation and velocity shift (which is
not included in the transformation group (34)). It is known that the BBM equation is not integrable.
Thus, the integrable CH equation arises as a Kodama-Helmholtz near-identity transformation of the
non-integrable BBM equation, after a Galilean transformation and velocity shift.

4.3 Examples

4.3.1 Asymptotic equivalence of CH and KdV5 equation

The previous section constructs a transformation from the water wave equation to the CH equation.
The general argument of this section shows that it is also possible to transform the CH equation, for
example, into the KdV5 equation. To this end, we first expand the time derivative in the uxxt -term
using the equation itself and then apply a transformation of the form

u = v + ε(α1v
2 + α2vx∂−1v) + δ2βvxx . (39)

Choosing the values in this Kodama transformation as

α1 =
α2

Γ
, α2 = 2

α2

Γ
, β = 2α2 , (40)

transforms the CH equation (1) into the integrable KdV5 equation

vt + c0vx + 3vvx + 5 (vvxxx + 2vxvxx) α2 +
15

2

α2v2vx

Γ
+ Γ

(
α2vxxxxx + vxxx

)
= 0 . (41)

We conclude that (1) is asymptotically equivalent to the integrable KdV5 equation, and both of
them are equivalent to (8) at order O(δ4) . However, the equivalence of (1) to the KdV5 equation
breaks down in the limit Γ → 0, because both the transformation and the resulting equation are
singular in the limit Γ → 0. Therefore, the peakon equation cannot be transformed into KdV5.

Using the additional parameter ν supplied by the Helmholtz operator allows for the removal of the
highest order term while preserving the dispersion relation, which is unchanged by applying a linear
operator to the equation. One advantage of the CH equation over the asymptotically equivalent KdV5
equation is that it is numerically easier to integrate because it does not contain the fifth derivative.
This is in accordance with the general smoothing effect of the Helmholtz operator.

Different variants of higher order KdV equations have been derived in the literature.In this context,
we mention [6], who obtained a 5th order KdV equation by expanding the variational formulation of the
water wave problem. Again, their equation is asymptotically equivalent to CH by a certain Kodama
transformation. From our point of view, however, the virtue of the power of the Kodama-transformation
is that it allows one to select integrable equations as the model equation. The equation derived in [6]
is not known to be integrable.

4.3.2 Asymptotic equivalence to the b-equation

Recently a new variant of (1) has been introduced by Degasperis & Procesi [8] as

mt + umx + buxm = c0ux − Γuxxx , (42)

where b is an arbitrary parameter. The cases b = 2 and b = 3 are special values for this equation.
The case b = 2 restricts it to the integrable CH equation. The case b = 3 is the DP equation of
Degasperis & Procesi [8], which was shown to be integrable in [9]. The two cases CH and DP
exhaust the integrable candidates for (42), as may be shown using either Painlevé analysis, as in [9],
or the asymptotic integrability test, as in [8]. The b-family of equations (42) was also shown in [28] to
admit the symmetry conditions necessary for integrability only in the cases b = 2 for CH and b = 3
for DP.

We shall show here that the new integrable DP equation can also be obtained from the shallow
water elevation equation (8) by an appropriate Kodama transformation. The derivation in the previous
section is essentially unchanged up to equation (24). The two scaling relations (11,12) now read

(Ã − 9

2
ν) : (B̃ − 3

2
ν) = b : 1,

3

2
ν : (B̃ − 3

2
ν) = b + 1 : 1 .
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Figure 1: Normalised dispersion relations for σ = 0.0, 0.25, 0.35, 0.8 as a function of hk . The full line is
the exact phase speed (44); the dashed line is the approximation (43) and the short dashed line is that of
KdV5.

These two conditions imply

B̃ = ν
3

2

b + 2

b + 1
and Ã = ν

3

2

4b + 3

b + 1
.

The resulting Kodama transformation of the form (14) with coefficients α′

1 , α′

2 , and β′ are

α′

1 = α1 + 3Λ

α′

2 = α2 − 6Λ

β′ = β − (1 − 3σ)Λ where

Λ =
b − 2

b + 1

45σ2 + 30σ − 19

360
.

Therefore any b 6= −1 can be achieved by an appropriate Kodama transformation. Note that when
σ = σα , see (32), then α2 = 0, hence Λ = 0 is independent of b . After this transformation (42) is
obtained by further scaling the new dependent variable u by the factor b + 1. See [21] for discussions
of equation (42) in which b is treated as a bifurcation parameter when c0 = 0 and Γ = 0.

The value b = −1 is excluded, not from a deficiency of the KH-transformation, but because the
term uux is not removable in the linear function F in equation (33). As we have shown above, the
KH-transformation does not affect this term, and so it cannot be removed from the η equation (8).
That is, the case b = −1 is not within the range of the KH-transformation.

We conclude that the detailed values of the coefficients of the asymptotic analysis at quadratic order
hold only modulo the KH-transformations, and these transformations may be used to advance the anal-
ysis and thereby gain insight. Thus, the KH-transformations may provide an answer to the perennial
question “Why are integrable equations found so often, when one uses asymptotics in modelling?”
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5 Dispersion relation

The interplay between the local and nonlocal linear dispersion in the CH equation (30) is evident in
the relation for its phase velocity,

ω

k
= c0 − Γk2

1 + α2k2
, (43)

for waves with frequency ω and wave number k linearized around u = 0. For Γ < 0, short waves and
long waves both travel in the same direction. Long waves travel faster than short ones (as required
in shallow water), provided Γ < 0. Then the phase velocity lies in ω/k ∈ (c0 − Γ/α2, c0] . At low
wave numbers, the constant dispersion parameters α2 and Γ both perform rather similar functions.
At high wave numbers, however, the parameter α2 properly keeps the phase velocity of the wave from
becoming unbounded, and the dispersion relation is similar to the original dispersion relation for water
waves, provided that the surface tension vanishes σ = 0. The remarkably accurate linear dispersion
properties close to k ≈ 0 give the CH equation a clear advantage over the KdV equation (provided σ
is not close to 1/3, see Fig. 1).

For the peakon equation, c0 = Γ = 0 and linear dispersion is absent. For nonvanishing surface
tension, the true dispersion relation for shallow water waves is unbounded for large wave numbers,
whereas the dispersion relation of equation (1) saturates to the asymptotic value c0 − Γ/α2 .

Consequently, (1) is inferior to KdV5 for non-zero surface tension, with respect to traveling wave
solutions exhibiting small tail waves. Unboundedness of the linear dispersion relation of KdV5 for high
wave numbers allows resonances to occur between a supercritical solitary wave and high-wavenumber
linear waves. These resonances give rise to exponentially small ripples at the tails of the solitary wave,
in accord with the water wave solution of the full Euler equation. See, for example, [4, 19, 10] and [26]
for more discussion and analysis of these fascinating resonances. Nonetheless, traveling wave solutions
of CH and KdV5 are asymptotically equivalent, and they both agree asymptotically with traveling
wave solutions of the full water wave problem, see sec. 6.

The connections to the physical parameters α = α(σ) and Γ = Γ(σ) are defined in equations
(31). The asymptotic equation (30) was derived from the water wave equation by means of the KH-
transformation. As explained in sec. 4.1, the dispersion relation (43) matches the dispersion relation
for water waves up to quintic order. In comparison, the dispersion relation for water waves, when
developed for small wave number k yields

ω

c0k
=

√
1 + σh2k2

hk
tanhhk (44)

≈ 1 − 1

6
(1 − 3σ)h2k2 +

1

360
(19 − 30σ − 45σ2)h4k4 (45)

≈ 1 − 1

6
(1 − 3σ)h2k2(1 − νh2k2) . (46)

Therefore, the dispersion relations are in agreement up to 5th order in dimensionless wavenumber hk .
For the particular value σ ≈ 0.069, the dispersion relations agree up to 7th order.

6 Travelling wave solutions

One may also ask how the solutions of equation (1) compare to the usual KdV solitons and to real
water solitary waves. An expansion of the form of the traveling wave in the full Euler equations is
given by Grimshaw [18], and to higher order by Fenton [12]. 1 The result given in [18] is normalised
so that the highest point of the wave at s = 0 is unity.

By direct substitution of a series in sech2 into (26), one finds

u(s) = asech2bs +
19

20
εa2sech4bs ,

where b2 = 3aε/(4δ2) and c = 1 + εa/2 + 19

40
ε2a2 in s = x − ct . Applying the (inverse) Kodama

transformation gives

η(s) = a(1 +
1

2
εa)sech2bs +

3

4
εa2sech4bs .

For simplicity, we restrict the calculation to the case without surface tension, i.e., σ = 0. After
normalising the height at the crest to unity, we find perfect agreement up to order εa2 with the exact

1For only moderately steep waves, and for the corresponding cnoidal waves, Fenton has shown that the 1972 approach
gives a very poor approximation to the velocity field, see Fenton (1990) [H. Peregrine (private communication)].
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result by Grimshaw [18]. This shows that the travelling wave solutions of (1) agree with those of the
exact Euler equations up to the order we are considering, which is the optimal result. In particular,
the traveling waves are narrower and slower (in this normalisation) than the KdV soliton, in agreement
with experimental findings of Weidman & Maxworthy [30]. The solution also agrees with the one
found in [25] by solving the 5th order KdV equation.
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