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Abstract. We propose a formal framework based on collective coordinates to reduce infinite-
dimensional stochastic partial differential equations (SPDEs) with symmetry to a set of finite-
dimensional stochastic differential equations which describe the shape of the solution and the dy-
namics along the symmetry group. We study SPDEs arising in population dynamics with multi-
plicative noise and additive symmetry breaking noise. The collective coordinate approach provides
a remarkably good quantitative description of the shape of the travelling front as well as its diffusive
behaviour, which would otherwise only be available through costly computational experiments. We
corroborate our analytical results with numerical simulations of the full SPDE.

1. Introduction

Stochastic partial differential equations (SPDEs) are a standard part of a scientist’s toolbox to
model natural and engineered systems with applications ranging from genetics, epidemic outbreaks,
and population dynamics to chemical engineering to study the effect of fluctuations and to include
mesoscopic effects [1, 2, 3, 4, 5]. The inclusion of noise can have profound impact on the dynamics
of the propagation of coherent structures [6, 7, 8].
We treat here SPDEs where the deterministic part exhibits symmetry; in particular, we study
SPDEs with translational symmetry supporting travelling waves. We set out here to reduce the
complexity of such infinite-dimensional systems and propose a formal framework to reduce the
dynamics of travelling fronts in SPDEs to a set of finite-dimensional stochastic differential equations
(SDEs). For travelling waves such reductions were studied in the limit of small noise amplitudes
for the Fisher-KPP equation and bistable systems by mathematicians and physicists [9, 10, 11,
12, 13, 6]. Rather than employing perturbative expansions to study small noise perturbations
[13, 6, 14, 15] or judiciously chosen moment closure schemes [16], we adopt here the perspective of
decomposing the dynamics into the dynamics on the symmetry group and the dynamics orthogonal
to it, established for deterministic partial differential equations (PDEs) with symmetry (see for
example [17]). This symmetry perspective of spatially extended systems has proved successful in
studying and classifying pattern formation [18, 19], constructing efficient numerical methods for
equivariant systems [20, 21, 22], and in studying Hamiltonian systems such a planetary dynamics
[23] and observed spectra of CO2 molecules [24].

E-mail address: M.Cartwright@maths.usyd.edu.au and georg.gottwald@sydney.edu.au.
1



2 COLLECTIVE COORDINATE FRAMEWORK FOR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

Within the symmetry perspective PDEs are cast into a skew product of ordinary differential equation
whereby the dynamics on the symmetry group is driven by the so-called shape dynamics. In the
case of a travelling wave with underlying translational symmetry this amounts to the following
standard situation: the shape dynamics is an equilibrium solution in the frame of reference moving
with constant wave speed, and the dynamics on the translation group orbit describes the linear drift
of the reference frame in physical space. In PDEs with translational symmetry in a d-dimensional
physical space, the skew product reduces to

v̇ = g(v)(1)

φ̇ = h(v),(2)

where φ ∈ Rd represents the translation variables. If the shape dynamics (1) consists of an equi-
librium v(t) ≡ v0 we obtain φ(t) = ct with c = h(v0). This includes the case of a travelling wave
moving with constant speed c mentioned above.

This paper is concerned with employing this framework to SPDEs with weak noise. The main
idea of this work is that the effect of the noise will be controlled in the shape dynamics which is
dominated by strong contraction to the travelling wave solution; along the neutral direction on the
group orbit, however, the noise is unconstrained, leading to diffusive behaviour of the location of
the front. Employing this idea we will express the solution of the SPDE in terms of judiciously
chosen collective coordinates, describing the shape and the group dynamics, respectively, the dy-
namics of which will be described by SDEs. This reduction of an infinite-dimensional SPDE to
a system of finite-dimensional SDEs describes the dynamics of travelling fronts remarkably well
as we will demonstrate in numerical simulations. As an explicit example we study the bistable
Nagumo equation [25, 26] subjected to multiplicative noise as well as spatially localized additive
noise. In the case of multiplicative noise, we show how the collective coordinate approach quan-
titatively describes the speed of the front propagation and the shape of the front. We find that
the addition of noise leads to a slowing down and a steepening of the front. Further, we consider
the collective coordinate approach in situations where the translational symmetry is broken and
study cases where the noise is confined to a bounded interval in space. The collective coordinate
approach can be applied inside the noisy spatial region with again remarkably good quantitative
skill in describing the dynamics of front propagation.

The paper is organised as follows. In Section 2 we introduce the stochastic partial differential
equations. We propose in Section 3 the framework of stochastic collective coordinates, and apply
it to the bistable equation with multiplicative in Section 4 and with additive noise in Section 5.
We present numerical results illustrating the ability of our approach to capture the effect of mul-
tiplicative noise and of localized additive noise on the dynamics. We conclude in Section 6 with a
discussion and an outlook.

2. Models

We study here SPDEs for a single component u(x, t) in one spatial dimension of the form

∂tu = D∂xxu+ f(u) + η̇(u, x, t),(3)
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where the noise has zero mean E [η(x, t)] = 0. Here the expectation is taken with respect to
realizations of the driving noise process. As an explicit example, frequently considered in population
dynamics, we consider a bistable reaction term

f(u) = u(1− u)(u− b) ,(4)

with b > 0, modelling the Allee effect when at low densities individual fitness increases with density
[15, 4]. The resulting SPDE is known as the bistable equation or, in the context of action potential
propagation on nerve fibres, as the Nagumo equation [25, 26]. The Nagumo equation supports in
the noise-free case travelling waves with stable asymptotic states u = 0 and u = 1. We consider
additive and multiplicative noise. As multiplicative noise we consider noise which vanishes at the
asymptotic states u = 0 and u = 1. This prevents nucleation phenomena outside of the front
interface. A biologically motivated example of such a noise is a fluctuating Allee threshold b+ Ḃ(t).
In this case the noise is given as

dη(x, t) = σu(1− u) dB(t),(5)

with one-dimensional Brownian motion B(t) [27]. Note that the noise respects the underlying
translational symmetry. As additive noise we consider white in time noise with spatial correlations
prescribed by a covariance operator, Q, with kernel C(x, x′) = exp(−|x − x′|/`) with finite trace.
Then there exists a complete orthonormal basis {ϕk}∞k=1 with Qϕk = λkϕk, and we can construct
a Q-Wiener process

η(x, t) = σs(x)
∞∑
k=1

√
λkϕk(x)Bk(t)(6)

with independent one-dimensional Brownian motions Bk(t) satisfying E [η] = 0 and
E [η̇(x, t) η̇(x′, t′)] = σ2s(x)s(x′)Qδ(t, t′) [28, 29]. We further assume that the noise is localized
in space in a region x ∈ [−1

2Lnoise,
1
2Lnoise], thereby breaking the translational symmetry, which we

model by

s(x) =
1

2
(1 + tanh(κ(x− Lnoise

2 ))− tanh(κ(x+ Lnoise
2 ))(7)

with κ� 1.

3. Stochastic collective coordinates

Initially developed for conservative deterministic nonlinear wave dynamics [30, 31], the theory of
collective coordinates has since been extended to dissipative deterministic systems such as reaction
diffusion systems [32, 33, 34, 35, 36] and recently to phase oscillators [37, 38, 39]. Here we apply
the method to the stochastic partial differential equations introduced in the previous section.

Consider a parabolic semilinear SPDE of the form

∂tu(x, t) = D∆u+ f(u) + η̇(u, x, t),(8)

with noise dη(u, x, t) =
∑M

k=1 gk(u, x) dBk(t) with one-dimensional Brownian motion Bk(t) and
x ∈ D. M can be finite or infinite. We assume that the solution can be approximated by some ansatz
function û(x, t; p) for some time-dependent, so called collective coordinates p ∈ Rn. The particular
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functional form of the ansatz function has to be judiciously chosen to capture the character of the
solution of the SPDEs and can, for example, be inferred from numerical simulations of the SPDE.
The dynamics of the infinite-dimensional SPDE is then encoded in the temporal evolution of the
finite-dimensional collective coordinates p(t), which we write in a general form as

dp = ap(p) dt+ σp(p) dW(t),(9)

where W(t) is m-dimensional Brownian motion. Here the subscripts in the drift term ap and in
the n×m diffusion matrix σp(p) refer to the collective coordinates, i.e. apj denotes the drift term
for the collective coordinate pj and

∑
k σpjk(p)dWk(t) denotes the diffusive terms for the collective

coordinate pj . The aim is to find expressions for the drift term ap and the diffusion matrix σp(p).

The ansatz function û(x, t) does not satisfy the SPDE (8) and inserting it into the SPDE defines
a stochastic process via

dE = dû− [D∆û+ f(û)] dt− gk(û) dBk(t)

which quantifies the error made by restricting the solution space to the ansatz function (9) spanned
by the collective coordinates. We remark that our definition of the error is different to the definition
of the error as the (weighted) L2 norm of the difference u(x, t)− û(x, t) which is typically used in
the literature on stochastic travelling fronts. Employing Itô’s formula on the smooth û we write

dE(x, t; p) =
∂û

∂pj
dpj +

1

2
dpl

∂2û

∂pl∂pj
dpj − [D∆û+ f(û)] dt− gk(û) dBk(t),

where we used Einstein’s summation convention. Substituting (9) and collecting only terms up to
order dt we obtain, using the independence of the Brownian motion,

dE(x, t; p) =

[
∂û

∂pj
apj +

1

2
σplk

∂2û

∂pl∂pj
σpjk −D∆û− f(û)

]
dt+

[
∂û

∂pj
σpjk dWk(t)− gk(û) dBk(t)

]
.

To maximize the degree to which the collective coordinates approximate solutions of the SPDE, we
require that the stochastic process defined by dE does not project onto to the subspace spanned by
the collective coordinates. We therefore require that the error dE is orthogonal to the tangent space
of the solution manifold which is spanned by ∂û

∂pi
, i = 1, · · · , n. Projecting the error eliminates the

spatial dependency and yields a system of n algebraic equations for the drift and diffusion coeffi-
cients. We separate these conditions in terms corresponding to drift and to diffusion, respectively.
The n drift contributions are given by

〈 ∂û
∂pi

∂û

∂pj
〉apj +

1

2
〈 ∂û
∂pi

∂2û

∂pl∂pj
〉σplkσpjk −D〈

∂u

∂pi
∆û〉 − 〈 ∂u

∂pi
f(û)〉 = 0(10)

for i = 1, · · · , n and the n diffusion contributions, which balance the Brownian motion of the SPDE
with the Brownian motion of the collective coordinate system, are given by

〈 ∂û
∂pi

∂û

∂pj
〉σpjk dWk(t) = 〈 ∂û

∂pi
gk(û)〉 dBk(t)(11)

for i = 1, · · · , n. Here the angular brackets denote integration over the spatial domain as in
〈A(x)〉 =

∫
D A(x)dx. For m = M and Wk(t) = Bk(t) for all k = 1, · · · ,M we can achieve pathwise
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matching provided

σpjk =
〈 ∂û∂pi gk(û)〉
〈 ∂û∂pi

∂û
∂pj
〉
.(12)

The n equations for the drift coefficients api (10) and the nm = nM diffusion coefficients (12) deter-
mine the drift and diffusion coefficients in the evolution equation for the collective coordinates (9).
Note that the noise in the system of SDEs for the collective coordinates is typically multiplicative
since the diffusion coefficients depend on the collective coordinates p.

In the case when M is infinite, one may want to consider finite m to reduce the complexity of the
system of SDEs (9) for the collective coordinates. Rather than achieving pathwise approximation of
the solutions with Wk(t) = Bk(t) for all k, one may require instead that the statistical behaviour of
the solution is reproduced. The left hand-side of (11) defines the vector-valued stochastic process

Pi(t) =
∫ t

0 SikdWk(t) and the right-hand side the stochastic process Ni(t) =
∫ t

0 GikdBk(t) with

Sik = 〈 ∂û∂pi
∂û
∂pj
〉σpjk and Gik = 〈 ∂û∂pi gk(û)〉. Both processes are mean-zero. Moreover, for

SST = GGT

with E
∫
|S|2dt < ∞ and E

∫
|G|2dt < ∞, the respective covariances of the two processes are also

equal with E[PP T ] = E[NNT ]. The condition SST = GGT then allows for a unique solution
(up to the sign) of the diffusion matrix σp of the collective coordinates as a matrix square root.
Again, together with the n equations for the drift coefficients api (10) this determines the drift and
diffusion coefficients in the evolution equation for the collective coordinates (9).

If the SPDE is invariant under the action of some symmetry group, we expect deterministic
behaviour of the collective coordinates associated with the shape dynamics for sufficiently small
noise amplitudes; this is due to the shape dynamics being strongly contracting. On the other hand,
the noise is unrestricted along the neutral direction of the group dynamics resulting in diffusive
behaviour of the collective coordinates associated with the symmetry group.
We remark that the collective coordinate approach is different to the variational approach adopted
in [40] or those aimed at solving only for the wave speed [6, 41, 15] or the interface location [42].

In the following we apply this general framework to the bistable stochastic partial differential
equation introduced in the previous section.

4. Collective coordinate approach for the bistable Nagumo equation with
multiplicative noise

Consider the bistable SPDE with multiplicative noise defined by (5)

∂tu = D∂xxu+ u(1− u)(u− b) + u(1− u)Ḃ(t).(13)
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In order to find a dimension reduced description of the bistable Nagumo SPDE (13) we make the
following ansatz u(x, t) = û(x;w, φ) with

û(x, t) =
1

2
(1− tanh(w(t)(x− φ(t)))) ,(14)

which defines the collective coordinates p = (w(t), φ(t)). In the deterministic case this is an exact

solution with w = w0 = 1/
√

8D and φ = c0 t with c0 =
√
D/2(1 − 2b). We remark that it was

shown in [43, 44, 45, 46, 47] that such front solutions are stable in the bistable SPDE (13). The
inverse front width w(t) constitutes the shape dynamics whereas the location of the front interface
φ(t) denotes the dynamics on the group orbit. Figure 1 shows a snapshot of a travelling front for the
bistable equation with multiplicative noise (5) for one realization of the noise. The travelling front
is smooth in space and is well fitted by a tanh-profile supporting the assumption that the solution
is close to an ansatz function (14) in the presence of noise. The actual shape of the front is inde-
pendent of the realization of the noise and is fixed in time. The location of the front interface, on
the other hand, depends on the noise realization. The location of the front interface φ (numerically
determined as the unique location φ = ξ such that the fitted smooth tanh-profile has û(ξ) = 0.5)
exhibits diffusive behaviour in time. This supports the notion that the noise is able to diffuse along
the neutral direction of the group orbit, but does little to the strongly contracting shape dynamics.
The framework of collective coordinates will allow us to reduce this infinite-dimensional model to a
finite dimensional model for the front interface width 1/w and the spatial location of the interface φ.

The collective coordinates encode the dynamics and are propagated via the system of SDEs

dw = aw(w, φ) dt+ σw(w, φ) dW(15)

dφ = aφ(w, φ) dt+ σφ(w, φ) dW,(16)

with one-dimensional Brownian motions W (cf. (9)). To determine the unknown drift and diffusion
coefficients of the evolution equations (15)–(16) for the collective coordinates we require that the
error made by restricting the solutions of the SPDE to be described by the ansatz function (14)
is minimized. The stochastic process E , which quantifies this error, is defined by substituting the
ansatz (14) into the SPDE, employing Itô’s formula for the smooth û to evaluate time-derivatives.
For the bistable equation (13) with multiplicative noise we obtain

dE =

[
∂u

∂w
aw +

∂u

∂φ
aφ +

1

2

∂2u

∂w2
σ2
w +

1

2

∂2u

∂φ2
σ2
φ +

∂2u

∂w∂φ
σwσφ

]
dt

+ (
∂u

∂w
σw +

∂u

∂φ
σφ) dW − [Duxx + f(u)] dt− d η(x, t),

where we omit for ease of notation the hat to denote the ansatz function (14), and where f(u) is
given by (4) for the bistable SPDE. To maximize the degree to which the collective coordinates
approximate the solution of the SPDE we set, as outlined in Section 3, the projection of the
stochastic differential of the error dE onto the tangent space of the solution manifold (14) —
spanned here by ∂u/∂w and ∂u/∂φ — to zero. Projecting the error onto ∂u/∂w and ∂u/∂φ yields
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Figure 1. Plot of a travelling front solution for the bistable equation (13) with
D = 0.2 and b = 0.5 driven by multiplicative noise with σ = 1. Top: Space-
time plot; the black line denotes the contour u = 0.5. Bottom Left: Solution for
one realization of the noise at fixed time t > 10; the inset shows a zoom into the
interface where the crosses depict the solution of the SPDE and the continuous line
is a fit to a tanh-profile. Bottom Right: Time series of the location of the interface
φ(t) defined as φ = ξ such that u(ξ) = 0.5 together with an inset showing the mean
square displacement demonstrating the diffusive character.

drift contributions given by

〈
(
∂u

∂w

)2

〉aw + 〈 ∂u
∂w

∂u

∂φ
〉aφ +

1

2
〈 ∂u
∂w

∂2u

∂w2
〉σ2
w + 〈 ∂u

∂w

∂2u

∂w∂φ
〉σwσφ +

1

2
〈 ∂u
∂w

∂2u

∂φ2
〉σ2
φ

= 〈 ∂u
∂w

(Duxx + u(1− u)(u− b))〉(17)
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and

〈∂u
∂φ

∂u

∂w
〉aw + 〈

(
∂u

∂φ

)2

〉aφ +
1

2
〈∂u
∂φ

∂2u

∂w2
〉σ2
w + 〈∂u

∂φ

∂2u

∂w∂φ
〉σwσφ +

1

2
〈∂u
∂φ

∂2u

∂φ2
〉σ2
φ

= 〈∂u
∂φ

(Duxx + u(1− u)(u− b))〉 ,(18)

as well as diffusion contributions given by(
〈
(
∂u

∂w

)2

〉σw + 〈 ∂u
∂w

∂u

∂φ
〉σφ

)
dW = σ〈 ∂u

∂w
u(1− u)〉 dB(19)

and (
〈∂u
∂φ

∂u

∂w
〉σw + 〈

(
∂u

∂φ

)2

〉σφ

)
dW = σ〈∂u

∂φ
u(1− u)〉 dB .(20)

The integrals can be explicitly calculated for the tanh-ansatz function (14) (see A). In particular
the diffusion contributions (19)–(20) become

σw dW = 0(21)

σφ dW =
σ

2w
dB,(22)

which is solved by σw = 0 (i.e. no noise in the equation of the shape parameter w (cf. (15)), and
by setting σφ = σ/2w. This solution allows for pathwise approximation with dW = dB in the
case when the stochastic forcing of the underlying SPDE (13) is known, or for the matching of the
statistics of the stochastic forcing of the SPDE for unknown forcing of the SPDE with dW 6= dB.

Evaluating the projections (17)–(18) determines the drift coefficients, and the evolution equation
for the collective coordinates becomes the following skew-product system

dw = −3

4

w

w2
0(π2 − 6)

(
w2 − (1 + σ2)w2

0

)
dt(23)

dφ = c0
w0

w
dt+

σ

2w
dW (t),(24)

with w0 = 1/
√

8D and c0 =
√
D/2(1−2b) = (1−2b)/(4w0) being the stationary inverse width and

constant front velocity of the deterministic bistable partial differential equation, and with Brownian
motion W (t). The noise only enters the equation for the group variable and does not affect the
shape variable w, consistent with the symmetry perspective of strongly contracting dynamics of
the shape and neutral direction along the group orbit. The equation for the inverse width w is
deterministic and supports a stable steady state

w̄ =
√

1 + σ2w0.(25)

The inclusion of a fluctuating Allee threshold leads to a sharper interface 1/w̄ < 1/w0 when
compared to the deterministic travelling wave. This, maybe counter-intuitive, decrease in the
interface width in the presence of noise can be explained by considering that fluctuations will push
the front interface to the asymptotic values u = 0 and u = 1 with a high probability near the edges
of the interface leading to a decreased width. After some transient allowing the shape parameter
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to acquire its equilibrium value w = w̄, the front interface propagates according to (24) subject to
a mean drift with speed

c̄0 =
c0√

1 + σ2
,(26)

with superimposed fluctuations with constant variance σ2/4w̄2. The inclusion of noise hence leads
to a slowing down of the front when compared to the deterministic speed c0 > c̄0.

We remark that, upon expanding in σ and letting t → ∞, we recover the result obtained in [6]
at order O(σ) with w̄ = w0 and dφ = c0dt + σ/(2w̄) dW (t). Our approach captures higher order
effects and allows for the study of the temporal evolution.
Furthermore, our results confirm previous detailed numerical results performed in [48] where it was
found that the wave becomes steeper with increasing noise and that the speed decreases linearly
with σ2. This is consistent with our analytical results, which at O(σ) reduce to w̄ = (1 + σ2/2)w0

and dφ = c0(1− σ2/2)dt+ σ/(2w0) dW (t).

4.1. Numerical results. We now present numerical results demonstrating that the stochastic
collective coordinate approach is capable of quantitatively describing the diffusive behaviour of
travelling fronts. We present results for D = 0.2, b = 0.1 and σ = 0.75. We solve the SPDE
(13) with multiplicative noise using an Euler-Maruyama scheme whereby the diffusion operator
is treated implicitly to allow for larger time steps. We choose as the domain x ∈ [−60, 60] with
domain length L = 120 using Dirichlet boundary conditions, and employ a temporal discretization
step of ∆t = 0.01 and a spatial discretization with grid spacing ∆x = 0.05. We perform simulations
with a total length of T = 5000 time units. The width of the travelling front and the location of the
interface φ(t) where the front assumes the value u ≡ 0.5 are determined via nonlinear least square
regression using the Matlab function lsqnonlin [49] for the ansatz function (14). We have checked
that linear interpolation yields similar results when used to determine the location of the interface
φ(t).

Figure 2 shows a comparison of the phase of a travelling front of a simulation of the bistable
SPDE (13) (defined as φ = ξ such that the fitted û(ξ) = 0.5) and its collective coordinate approx-
imation provided by the system of SDEs (23)–(24) when we use the same stochastic forcing for
both systems with W (t) = B(t), demonstrating the effectiveness of our approximation to provide
pathwise approximation.

We now consider the case when the stochastic forcing of the SPDE is different to the stochastic
forcing of the equations for the collective coordinates and W (t) 6= B(t). We estimate the statistical
behaviour of the inverse width of the travelling wave and its speed by computing temporal averages.
We have checked that the chosen integration time T = 5000 time units is sufficiently long to allow
for converged statistics. To ensure that the travelling wave remains within the domain during the
time of integration we solve the SPDE (13) with the additional term −c̄0 = c0/

√
1 + σ2 on its right

hand side, thereby moving into the approximately co-moving frame of reference.
Figure 3 shows the empirical histogram of the inverse width of the travelling wave front of the
bistable SPDE (13) with multiplicative noise. The mean E[w] = 0.9878 is approximated by the
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collective coordinate solution w̄ =
√

1 + σ2w0 = 0.9882 (cf. (25)), remarkably well with a relative
error of 0.046%. The inverse width w experiences small fluctuations with V[w] = 1.9 10−4. We have
checked that the variance decreases with increasing length of the time series T , consistent with the
analytical result V[w] = 0 obtained from the collective coordinates.

The average speed of the front is estimated as limt→∞ φ/t ≈ 0.2036 and matches the result of the

collective coordinates with its prediction limt→∞ φ/t = c0/
√

1 + σ2 = 0.2024 up to a relative error
of 0.59%. The fluctuations around the linear drift can be estimated via the variance of ∆φ (after
subtracting the mean linear drift). We find V[∆φ]/τ = 0.143 is well approximated by the collective
coordinate prediction V[∆φ]/τ = σ2/(2w̄)2 = 0.144 with a relative error of 0.04%. We have also

estimated the mean-square displacement MSD(t) = limT→∞
1
T

∫ T
0 φ(t + s)φ(s) ds = σ2

φφt + o(1),

confirming the accuracy of the collective coordinate approach (not shown). Figure 3 shows the
empirical histogram of ∆φ = φ(t + τ) − φ(τ) for τ = dt. Recall that we solve the SPDE (13) in

the frame of reference moving with speed c̄0 = c0/
√

1 + σ2. The histogram is then centred at zero
by subtracting the residual linear drift of the location of the front using linear regression. The
figure clearly shows that the empirical histogram is very well approximated by the prediction of
the collective coordinates with a Gaussian with mean zero and variance σ2/(4w̄2).

For b = 0.5 the deterministic speed is c0 = 0; the collective coordinate ansatz predicts that the
noise does not induce any non-zero speed corrections and has c̄0 = 0 (cf (26)). This is confirmed
in simulations of the full SPDE with an average speed of 0.005; the estimated value of the average
speed decreases with the length T of the simulation time.

0 50 100 150
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Figure 2. Time series of the location of the interface φ(t) for a travelling front
solution for the bistable equation (13) with D = 0.2 and b = 0.5 driven by multi-
plicative noise with σ = 1. Shown are φ(t) of the solution of the bistable SPDE
(13) defined as φ = ξ such that the fitted û(ξ) = 0.5 (blue continuous line) for one
realization of the stochastic forcing B(t) as well as the solution of the collective
coordinate equation for the phase φ(t) given by (24) with W (t) = B(t) (red circles;
evaluated at every 50 time steps to allow for better comparison).
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Figure 3. Left: Empirical histogram of the inverse front width w for the bistable
SPDE (13) with multiplicative noise. The deterministic equilibrium inverse width
of the collective coordinates approach (25) is indicated in red. Right: Empirical
histogram of the difference ∆φ between the interface location φ at successive times =
n∆t. The implied analytical probability density function according to the collective
coordinate approach (24) is depicted in red. The histograms were obtained from a
long simulation of 5000 time units with parameters D = 0.2 and b = 0.1, σ = 0.75.

5. Collective coordinate approach for the bistable Nagumo equation with
additive noise

Consider the bistable SPDE with additive noise defined in (6)

∂tu = D∂xxu+ u(1− u)(u− b) + σs(x)
∞∑
j=1

√
λjϕj(x)Ḃj ,(27)

driven by a Q-Wiener process with kernel of the covariance operator C(x, y) = e−|x−y|/` supported
on a finite domain with s(x) = 1 for x ∈ [−1

2Lnoise,
1
2Lnoise] and s = 0 otherwise (which we

approximate by the smooth function for s(x) given by (7) using κ � 1). λj and ϕj represent the
eigenvalues and eigenfunctions of the covariance operator, satisfying∫

C(x, y)ϕj(y) dy = λjϕj(x).(28)

For C(x, y) = e−|x−y|/` the eigenvalue problem can be solved analytically on a finite domain of
length L [50], and we have

ϕj(x) =


√

2pj
pjL−sin(pjL) sin (pjx) if j is even√

2qj
qjL+sin(qjL) cos (qjx) if j is odd

(29)

with eigenvalues

λj =


2`

1+`2p2j
if j is even

2`
1+`2q2j

if j is odd
,(30)
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where pj and qj are the solutions of the transcendental equations

` p+ tan(pL2 ) = 0 for even j

1− ` q tan(qL2 ) = 0 for odd j.

The addition of spatially localized noise breaks the translational invariance. We employ again
the tanh-ansatz function (14) as for the case of multiplicative noise and assume that the dynamics
of the collective coordinates is given by the system of SDEs

dw = aw(w, φ) dt+
∞∑
k=0

σwk(w, φ) dWk(t)(31)

dφ = aφ(w, φ) dt+

∞∑
k=0

σφk(w, φ) dWk(t).(32)

This is only justified for small noise amplitude σ and sufficiently small noise regions Lnoise, where
the probability of noise induced nucleation of new fronts is small. We obtain again the projections
(17) and (18), determining the drift coefficients aw and aφ, which we can evaluate (using the explicit
integrals given in A) as

aw = −3

4

w

w2
0(π2 − 6)

(
w2 − w2

0

)
+

3

4w

∞∑
k=1

σ2
wk +

3w3

π2 − 6

∞∑
k=1

σ2
φk,(33)

aφ =
1

4w
(1− 2b)− 1

2w

∞∑
k=1

σwkσφk.(34)

The projections onto the stochastic terms yield, upon using 〈 ∂u∂w
∂u
∂φ〉 = 0,

〈
(
∂u

∂w

)2

〉
∞∑
k=1

σwk dWk(t) = σ
∞∑
j=1

√
λj〈s

∂u

∂w
ϕj〉 dBj(t)(35)

〈
(
∂u

∂φ

)2

〉
∞∑
k=1

σφk dWk(t) = σ
∞∑
j=1

√
λj〈s

∂u

∂φ
ϕj〉 dBj(t).(36)

Again pathwise matching can be achieved for Wk = Bk with diffusion coefficients

σwk = σ
√
λk
〈s ∂u∂wϕk〉

〈
(
∂u
∂w

)2〉 and σφk = σ
√
λk
〈s∂u∂φϕk〉

〈
(
∂u
∂φ

)2
〉
.(37)

Note that when the front interface is well outside of the domain [−1
2Lnoise,

1
2Lnoise], where s ≡ 0,

the collective coordinates satisfy essentially deterministic evolution equations with σwk = σφk = 0
for all k. The breaking of the translational symmetry by the localized additive noise now allows
for non-deterministic diffusive behaviour of the shape variable w.

To avoid having to deal with infinitely many diffusion coefficients, we now present the calcu-
lations when truncating to k ≤ 2 in (31)–(32), matching the mean and the variance of the now
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two-dimensional Brownian motion W1,2 of the collective coordinates with the statistics of the ∞-
dimensional Q-Wiener process. The truncation to k ≤ 2 is justified for Gaussian or near-Gaussian
stochastic forcing, which we will see is indeed the case for our example of the bistable equation (27)
driven by additive noise. We introduce

S =

〈( ∂u∂w)2〉σw1 〈
(
∂u
∂w

)2〉σw2

〈
(
∂u
∂φ

)2
〉σφ1 〈

(
∂u
∂φ

)2
〉σφ2


and

G =

(√
λ1〈s ∂u∂wϕ1〉

√
λ2〈s ∂u∂wϕ2〉 · · ·√

λ1〈s∂u∂φϕ1〉
√
λ2〈s∂u∂φϕ2〉 · · ·

)
,

and, as outlined in Section 3, require that the implied diffusion coefficients of the two stochastic
processes in (35)–(36) are equal with

SST = GGT .(38)

The diffusion coefficients of the collective coordinates can then be determined as a square root, and
give rise to multiplicative noise. From (38) we can immediately derive

σ2
w1 + σ2

w2 =
σ2

〈
(
∂u
∂w

)2〉2
∞∑
j=1

λj〈s
∂u

∂w
ϕj〉2(39)

σ2
φ1 + σ2

φ2 =
σ2

〈
(
∂u
∂φ

)2
〉2

∞∑
j=1

λj〈s
∂u

∂φ
ϕj〉2(40)

σw1σφ1 + σφ2σw2 =
σ2

〈
(
∂u
∂w

)2〉〈(∂u∂φ)2
〉

∞∑
j=1

λj〈s
∂u

∂w
ϕj〉〈s

∂u

∂φ
ϕj〉,(41)

which affect the drift coefficients (33)–(34) and also determine the variance of increments of the
collective coordinates with V[dw]/dt = σ2

w1 + σ2
w2 and V[dφ]/dt = σ2

φ1 + σ2
φ2 (upon subtracting the

linear drift from φ).

Since the diffusion coefficients depend on w and φ we are not able to find an explicit solution
for the expected value of the inverse width E[w] by solving for aw ≡ 0 in (33). However, for σ � 1
we can approximate E[w] ≈ w0. Similarly we find that E[φ] ≈ φ0 + c0t (cf (34)) in the small noise
limit. Recall that we required σ � 1 in order to prevent nucleation of new fronts within the noise
region during the time of the front passing through.

5.1. Numerical results. We now present the numerical results for the case of additive noise and
compare results from simulating the Nagumo equation (27) with additive noise with the analyti-
cal results from the collective coordinate approach where we employ here the expressions for the
diffusion coefficients (37) yielding pathwise approximation. We present results for D = 0.1 and
b = 0.25. To define the Q-Wiener process we choose σ = 0.022 and a spatial correlation length of
` = 0.25. The noise is located in a region centred around x = 0 of spatial extension Lnoise = 5 and
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we choose κ = 5 for the localization function s(x) (cf. (7)). The Q-Wiener process is constructed
employing a circulant embedding of the covariance following the construction in [51]. This method
produces complex valued noise, of which the real and imaginary part are independent and identi-
cally distributed (only the real part is used in our simulations). The infinite-sum of the Q-Wiener
process in (27) is truncated to M = 191 where λ191 = 0.069. An outline of the method is included
in B. The SPDE (27) with additive noise is then solved using an Euler-Maruyama scheme whereby
the diffusion operator is treated implicitly. We choose as the domain x ∈ [−30, 30] of length L = 60
and employ a temporal discretization step of ∆t = 0.0025 and a spatial discretization with grid
spacing ∆x = 0.05. The width of the travelling front and the location of the interface φ(t) where
the fitted tanh-profile assumes the value û ≡ 0.5 are determined using the same method as for
multiplicative noise. We remark that, unlike in the case of multiplicative noise, for additive noise
the front solution of the SPDE is stochastically perturbed around u = 0 and u = 1 and the location
of the front interface with u(ξ) = 0.5 is not necessarily unique. We perform a total of 500 indepen-
dent realizations for the SPDE (27). Each realization of the SPDE simulates a full traverse of the
front across the noise region [−1

2Lnoise,
1
2Lnoise]. We checked that no additional fronts have nucle-

ated within this time. We further perform a total of 500 realizations of the collective coordinate
SDEs (31)–(32) with drift coefficients (33)–(34) and diffusion coefficients estimated from (37) with
k ≤ 191. We have also performed simulations of the system of SDEs for the collective coordinates
(31)–(32) with diffusion coefficients estimated from (38) (i.e. k ≤ 2), assuming Gaussian stochastic
forcing (not shown). The two expressions of the diffusion matrix using either k ≤ 191 to obtain
pathwise correspondence or k ≤ 2 yield very similar results.

Each realization of the SPDE simulates a full traverse of the front across the noise region
[−1

2Lnoise,
1
2Lnoise]. We checked that no additional fronts have nucleated within this time.

Figure 4 shows the phase φ(t) and the inverse width w(t) of a travelling front obtained from a
simulation of the bistable SPDE (27) with additive noise as well the respective collective coordinate
approximations provided by the system of SDEs (31)–(32) with the drift coefficients given by (33)–
(34) and diffusion coefficients given by (37) when the same stochastic forcing is used for both
systems with W (t) = B(t). Results are shown during a full traverse of the noisy region; the
entrance of the front is marked by setting t = 0 and the exit occurs at t ≈ 95. It is seen that the
pathwise approximation is very good when the front is entering the noisy region close to t = 0 as
well as when it is exiting the noisy region close to t = 95; at exit w(t) is very well approximated
and the difference in the phase is a constant shift induced by the previously accumulated error (see
the inset in Figure 4). The maximum relative errors for w and in φ over the whole traverse are 4%
and 0.7%, respectively, and the average relative error between is only 1.6% for w and 0.2% for φ.
Near t = 0 and t = 95 where the unperturbed trailing and leading tail of the front is conducive
to fitting a tanh-profile to the stochastically modified front solution, the approximation is much
better, suggestive of the effectiveness of our approximation to provide pathwise approximation. The
error inside the domain can be explained by the deficiency of the employed nonlinear least square
fitting routine for tanh profiles which are contaminated by spatially correlated noise with a finite
correlation length `. This is consistent with the remarkably good agreement near the entrance and
near the exit of the front.
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Figure 4. Comparison of the time series of the location of the interface φ(t) (left)
and the inverse front width w (right) for a travelling front solution for the bistable
equation (27) with D = 0.1 and b = 0.25 driven by additive noise with σ = 0.022,
Lnoise = 5, ` = 0.25 and κ = 5. Shown are solutions obtained from a simulation of
the bistable SPDE for one realization of the stochastic forcing B(t) (blue continuous
line) as well as the solution of the collective coordinate equations in the pathwise
case W (t) = B(t) using (33)–(34) and (37) (red circles; evaluated at every 100 time
steps to allow for better comparison).

We consider now the case when the stochastic forcing of the SPDE is different to the stochastic
forcing of the equations for the collective coordinates and W (t) 6= B(t). The mean inverse width
of the full SPDE is estimated as E[w] = 1.116, and is well approximated by the deterministic limit
of the collective coordinates approach E[w] ≈ w0 = 1.118. The approximation is accurate with a
relative error of only 0.18%. Similarly, the average front propagation speed is estimated from the
SPDE with E[φ] = φ0+0.1123 t whereas the collective coordinate formulae yield E[φ] = φ0+0.1116 t
with a relative error of 0.7%. We found that due to the localized nature of the noise, the nonlinear
least square fitting is not adequate to determine the inverse front width w, when fitting solutions
of the form û(x;w, φ) = 1

2(1− tanh(w(x−φ))). We have checked this against artificially generated
fronts with randomly chosen w and φ and found that V[w] is approximately ten times larger than
the specified variance of the artificially generated front ensemble when using a nonlinear least square
fit. The mean E[w], however, was correctly estimated. We therefore present in Figure 5 and in
Figure 6 the empirical histograms for the increments ∆w of the inverse width, as well as for ∆φ,
conditioned on the position of the front being within the region of noise with−1

2Lnoise ≤ φ ≤ 1
2Lnoise.

The marginal distributions are depicted in Figure 5 and the fluctuations around the mean inverse
width w and around the linear drift of the front location as functions of w and φ are depicted in
Figure 6. The marginal distributions of the increments of the inverse width and the front location
are very well approximated by the collective coordinate approach (see Figure 5). The variance
of the increments of the inverse width are estimated with V[∆w] = 2.482 · 10−3 ∆t for the SPDE
and with V[∆w] = 2.499 · 10−3 ∆t for the collective coordinates, with a relative error of 0.7%.
Similarly, the variance V[∆φ] = 5.834 · 10−4 ∆t for the SPDE is reproduced well by the collective
coordinate approach which predicts V[∆φ] = 5.793 ·10−4 ∆t, implying a relative error of 0.7%. The
fluctuations around the mean inverse width w and around the linear drift of the front location φ,
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V[dw/
√
dt] = σ2

w1+σ2
w2, V[dφ/

√
dt] = σ2

φ1+σ2
φ2 as well as σw1σφ1+σw2σφ2, are shown in Figure 6 as

functions of w and φ. It is seen that the predictions (39)–(41) of the collective coordinate approach
captures the nontrivial dependency on w and φ of the diffusive behaviour of the travelling front
very well.

Figure 5. Marginal distributions for the bistable SPDE (27) with additive noise
and their predictions from the collective coordinate approach. The distributions for
the full SPDE are given in blue and the distributions of the collective coordinates
approach are superimposed in red. Left: Empirical histograms for the inverse width
increments ∆w. Right: Empirical histogram of the difference ∆φ between the in-
terface location φ at successive times. The mean drift c0 t is subtracted from φ(t)
to centre the histogram at 0. The histograms were obtained from 500 realizations,
recording w and φ when the front is passing through the noisy region. Parameters
are as in Figure 4.

6. Discussion and outlook

Employing a symmetry perspective whereby the dynamics of a travelling front is split into the
shape dynamics and the dynamics along the symmetry group, we introduced a collective coordinate
framework to reduce an infinite dimensional SPDE to a system of finite dimensional SDEs. This
allowed us to quantitatively describe the behaviour of travelling fronts in the presence of noise. A
crucial assumption was that the shape dynamics is strongly contracting, which prevents the noise
from strongly affecting the shape of the travelling front with respect to its deterministic solution.
We studied the particular example of a stochastic bistable Nagumo equation. In the case of mul-
tiplicative noise, the effective reduced SDE describes a deterministic front shape with a constant
width and diffusive behaviour along the translational group of the spatial location of the front.
We found that multiplicative noise slows down the travelling front and leads to a sharper front
interface. We further investigated the ability of the collective coordinate framework to capture the
diffusive behaviour of travelling waves when the translational symmetry is broken, as in the case
of additive spatially localized noise. In both cases the collective coordinate approach allowed a
quantitative description of the statistical features of the dynamics of the travelling front remark-
ably well. Whereas in the case of multiplicative noise only the dynamics along the neutral group is
found to be diffusive, the collective coordinate approach finds diffusive behaviour of both the group
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Figure 6. Variances V[∆w]/∆t and V[∆φ]/∆t as well as E[∆w∆φ]/∆t, as func-
tions of w and φ. The results estimated from the bistable SPDE (27) with additive
noise are shown in orange. The corresponding analytical results σ2

w1 +σ2
w2, σ2

φ1 +σ2
φ2

and σw1σφ1 + σw2σφ2 respectively calculated from (39)–(41) using the collective co-
ordinate approach are shown in purple/blue. Parameters as in Figure 4.

and the shape dynamics in the case of the symmetry breaking additive noise.

It is pertinent to mention that the actual form of the ansatz function (14) is not relevant. We
have also performed the calculation for an ansatz function û(x, t) = 1/(1 + exp(w(x−φ)))2 and an
ansatz function û(x, t) = erfc(w(x− φ)); the accuracy was tested against simulations of the SPDE
exhibiting the same order of magnitude in relative errors. The resulting equations for the evolution
equation of the collective coordinates, however, for these two test functions are very cumbersome.
The method introduced here is not limited to travelling fronts. By choosing bell-shaped test func-
tions rather than the front solutions explored in this work, one may study the front selection
problem and propagation failure in systems supporting pulse solutions using collective coordinates
as was done in the deterministic context [36].
The symmetry perspective is not restricted to models with translational symmetry but can also be
applied to pattern forming systems on the plane exhibiting Euclidean symmetry involving transla-
tions and rotations supporting spiral waves. This is relevant to stochastically perturbed excitable
media. Spiral waves in excitable media can exhibit meandering of the spiral tip. Here the shape
dynamics is periodic and the group dynamics evolves quasiperiodically. To apply the collective
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coordinate framework to this case is planned in further research.

The symmetry perspective has been successfully used in a numerical algorithm to simulate trav-
elling waves in SPDEs [48]. Their algorithm, however, does not involve explicit expressions for the
dynamics on the group, but the dynamics is determined numerically. To explicitly incorporate the
dynamics of the collective coordinates within the freezing method introduced in [20] might lead to
a more efficient numerical method to simulate SPDEs with symmetry.

Our work poses important theoretical questions. Whereas the symmetry perspective is well
studied in the case of deterministic PDEs and conditions on its validity are well established (see
for example [17] and references therein), the extension into the stochastic realm of SPDEs with
symmetry is only now developing with first promising rigorous results on front propagation with
translational symmetry where a phase equation is sought to control the neutral direction [46, 47].
In the case of multiplicative noise for the Nagumo equation this leads to the same equations for
the equilibrium shape and the phase we found in (25)–(26).
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Appendix A. Explicit formulae for the collective coordinate projections

We list here several integrals which appear in the evaluations of the projection when using the
tanh-ansatz function

û(x, t) =
1

2
(1− tanh(w(t)(x− φ(t)))) .

Using ux = −∂u
∂φ and uxx = ∂2u

∂φ2
, we evaluate

∂u

∂w
= −1

2
(x− φ) sech2 (w(x− φ)) ,

∂u

∂φ
=

1

2
w sech2 (w(x− φ)) ,

∂2u

∂w2
= (x− φ)2 sech2 (w(x− φ)) tanh (w(x− φ)) ,

∂2u

∂φ2
= w2 sech2 (w(x− φ)) tanh (w(x− φ)) ,

∂2u

∂w∂φ
= −w2 sech2 (w(x− φ)) tanh (w(x− φ)),

u(1− u) =
1

2w

∂u

∂φ
=

1

4
sech2 (w(x− φ)) .
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The following integrals, which appear in the projections, can be analytically determined:

〈
(
∂u

∂w

)2

〉 = − 3

2w
〈 ∂u
∂w

∂2u

∂w2
〉 =

π2 − 6

36w3

〈
(
∂u

∂φ

)2

〉 = 2〈u
(
∂u

∂φ

)2

〉 =
w

3

〈 ∂u
∂w

∂2u

∂φ2
〉 = −〈∂u

∂φ

∂2u

∂w∂φ
〉 = −1

6

〈u ∂u
∂w

∂u

∂φ
〉 =

1

24w

〈∂u
∂φ

∂u

∂φ
〉 = 〈∂u

∂φ

∂2u

∂φ2
〉 = 〈 ∂u

∂w

∂2u

∂w∂φ
〉 = 〈∂u

∂φ

∂2u

∂w2
〉 = 0.

Appendix B. Construction of Q-Wiener noise

Following closely [51], we briefly describe how to generate a Q-Wiener process, denoted in this
section by η(t), with kernel of the covariance operator C(x, x′) = exp(−|x− x′|/`) with finite trace.
That is we need to find a complete orthonormal basis {ϕk}∞k=1 as eigenfunctions of the covariance
operator with Qϕk = λkϕk, to construct a Q-Wiener process as

η(x, t) =
∞∑
k=1

√
λkϕk(x)Bk(t)

with independent one-dimensional Brownian motions Bk(t).

Denote by C = V TV the N ×N covariance matrix with C = (cij) with cij = e|xi−xj |/`, approxi-
mating the covariance operator Q and denote by dη̂ the numerical approximation of the increments
dη(x, t) of the Q-Wiener process. We seek dη̂ ∼ N (µ,C) (in the main text we have µ = 0); then
samples can be generated by

dη̂ = µ+ V T ξ,

where ξj ∼ N (0, 1). Suppose further that the spectral decomposition of C is C = UΛUT , where
U is the orthonormal matrix with columns ϕj being the eigenvectors of C, and Λ is the diagonal

matrix with eigenvalues λj . Let V = UΛ
1
2 . Then

dη̂ = µ+
N∑
j=1

√
λjϕjξj .

A straightforward method to generate dη̂ would be to find the eigenvectors and associated eigen-
values of the covariance matrix C, and truncate to M eigenvectors and corresponding eigenvalues.
However, this has complexity of O(N3) to compute the eigen-decomposition. Computationally
even more expensive is that at each time step a matrix multiplication of complexity O(NM) is re-
quired (see for example [52]). We note that as the correlation length ` decreases, the eigenvalues of
C decay more slowly so large values ofM are required to reliably approximate theQ-Wiener process.
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We now describe a more efficient way to reduce the numerical complexity to O(N logN) op-
erations using the fast Fourier transform (FFT) by embedding the covariance matrix C into a
higher-dimensional circulant 2(N − 1) × 2(N − 1) matrix. Let us define the following classes of
matrices:

Definition (Toeplitz matrix). A Toeplitz matrix is an N ×N real valued matrix C = (cij) where
cij = ci−j for some real numbers c1−N , . . . , cN−1.

Definition (Circulant matrix). A Toeplitz matrix C = (cij) is circulant if cij = ci−j for 1 ≤ j ≤ i
and cij = ci−j = c1−j+N for i+ 1 ≤ j ≤ N .

Symmetric Toeplitz matrices have ci−j = cj−i, and symmetric circulant matrices have cN−j =
cj , j = 1, 2, . . . , N − 1. Circulant matrices C are of the following general form

C =


c0 cN−1 cN−2 · · · c2 c1

c1 c0 cN−1 · · · c3 c2
...

. . .
. . .

. . .
. . .

...
cN−2 cN−3 · · · c1 c0 cN−1

cN−1 cN−2 · · · c2 c1 c0

 .

One can diagnonalize a real-valued circulant N × N circulant matrix C with first column c1 as
C = FDF ∗, where F is the complex Fourier matrix (equivalent to the FFT) with entries f`m =

ω(`−1)(m−1)/
√
N where ω = e−2πi/N , and D is a diagonal with diagonal elements d =

√
NF ∗c1.

For details the interested reader is referred to [51].

In our application the covariance matrix for the Q-Wiener noise is cij = e−|xi−xj |/` = e−|i−j|∆x/`

and we have cij = ci−j = cj−i and cN−j 6= cj . Therefore the covariance matrix C is sym-
metric and Toeplitz, but it is not circulant. By embedding C inside a larger circulant matrix
C̃ ∈ R2(N−1)×2(N−1), with

C̃ =

(
C BT

B D

)
where B and D are such that C̃ is circulant (i.e. of the form (B)). The larger circulant matrix C̃

has the decomposition C̃ = F̃ D̃F̃ ∗. Q-Wiener increments dη̃ with mean 0 can be generated by dη̃ =

F̃ D̃
1
2 ξ, where ξ is a complex normal random variable, with Re (ξ) , Im (ξ) ∼ N (0, 1). Note that dη̃

has independent identically distributed real and imaginary parts Re (dη̃) , Im (dη̃) ∼ N (0, C), and so
two independent samples can be generated simultaneously, which constitutes another computational
advantage.

Finally, we truncate dη̃ to its first N entries, and define dη̂ = [dη̃1, dη̃2, . . . , dη̃N ]T . The covariance
matrix of dη̂ is therefore C, and we have the required Q-Wiener increment.
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