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Abstract. We consider the generative problem of sampling from an unknown distri-
bution for which only a sufficiently large number of training samples are available. In
this paper, we build on previous work combining Schrödinger bridges and Langevin
dynamics. A key bottleneck of this approach is the exponential dependence of the
required training samples on the dimension, d, of the ambient state space. We pro-
pose a localization strategy which exploits conditional independence of conditional
expectation values. Localization thus replaces a single high-dimensional Schrödinger
bridge problem by d low-dimensional Schrödinger bridge problems over the available
training samples. As for the original approach, the localized sampler is stable and
geometric ergodic. The sampler also naturally extends to conditional sampling and to
Bayesian inference. We demonstrate the performance of our proposed scheme through
experiments on a Gaussian problem with increasing dimensions and on a stochastic
subgrid-scale parametrization conditional sampling problem.
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1. Introduction

In this paper, we consider the problem of sampling from an unknown probability measure ν(dx)
on Rd for which we only have access to a finite set of training samples x(j) ∼ ν, j = 1, . . . ,M .
This problem has recently attracted widespread interest in the context of score-generative or
diffusion modeling [18, 7, 17, 19, 22]. If the probability measure ν(dx) possesses a probability
density function π(x), then a popular non-parametric approach to generative modeling is to
estimate the score function sθ(x) ≈ ∇ log π(x) by minimizing an appropriate loss function such
as

(1) L(θ) =
∫
Rd

π(x)∥sθ(x)−∇ log π(x)∥2dx

in the parameters θ ∈ Rdθ [8]. This estimate can then be used in combination with overdamped
Langevin dynamics to yield

(2) Ẋ(τ) = sθ(X(τ)) +
√
2 Ẇ (τ),

where W (τ) denotes standard d-dimensional Brownian motion [13]. The stochastic differential
equation is typically discretized by the Euler–Maruyama (EM) method to yield an iterative
update of the form

(3) X(n+ 1) = X(n) + ϵsθ(X(n)) +
√
2Ξ(n), Ξ(n) ∼ N(0, ϵI),

for n ≥ 0, where ϵ > 0 denotes the step size and X(n) provides the numerical approximation to
the solution of (2) at time τn = n ϵ. The EM algorithm is initialized at one of the training data
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points; i.e., X(0) = x(j
∗) with j∗ ∈ {1, . . . ,M} appropriately chosen, and the resulting discrete

trajectory X(n), n ≥ 1, delivers approximate samples from the target distribution ν(dx).
Instead of first estimating the score function from samples and then discretizing (2) in time, it

has been proposed in [5] to employ Schrödinger bridges and to directly estimate the conditional
expectation value

(4) µ(x; ϵ) := E[X(ϵ)|X(0) = x]

from the given samples {x(j)}Mj=1 for given time-step ϵ > 0. We denote the Schrödinger bridge

approximation obtained from the samples by m(x; ϵ) : Rd × R+ → Rd and obtain the iteration
scheme

(5) X(n+ 1) = m(X(n); ϵ) +
√
2Ξ(n), Ξ(n) ∼ N(0, ϵI).

Remark 1. We emphasize that the discrete-time formulation (5) can be considered even in case
the probability measure ν(dx) does not possess a probability density function π(x) with respect
to the Lebesgue measure on Rd; e.g., the measure ν is concentrated on a submanifoldM⊂ Rd,
as long as the conditional expectation value (4) can be defined appropriately. The Schrödinger
bridge approximation to m(x; ϵ) allows for such an extension [5].

While it has been demonstrated in [5] that (5) works well for low-dimensional problems, the
required number of training samples, M , increases exponentially in the dimension, d, of the
samples [21]. In order to remedy this manifestation of the curse of dimensionality, we propose
to utilize conditional independence in order to replace the Schrödinger bridge estimator for
the conditional expectation value m(x; ϵ) ∈ Rd by appropriately localized Schrödinger bridge
estimators in each of the d components of m(x; ϵ). While the proposed localization strategy
resembles localization strategies used in the ensemble Kalman filter (EnKF) [3, 16, 2], it is
fundamentally different in at least two ways: (i) For Gaussian measures with covariance matrix Σ,
the EnKF would localize the empirical estimator of Σ while our approach relies on a localization
of Σ−1 as dictated by conditional independence. (ii) Localized Schrödinger bridge estimators are
not restricted to Gaussian measures as long as conditional independence can be established.

While (5) can be used in the general context of score-generative or diffusion modeling, our
main motivation is in Bayesian inference and conditional sampling with applications to multi-
scale processes. Applications to Bayesian inference, for which π(x) takes the role of the prior for
given likelihood function π(y|x), immediately suggest the modified update

(6) X(n+ 1) = m(X(n); ϵ)− ϵ∇ log π(y|X(n)) +
√
2Ξ(n), Ξ(n) ∼ N(0, ϵI).

Furthermore, a particular choice of π(y|x) can be used for conditional sampling [5].
The paper is organized as follows. The Schrödinger bridge formulation for m(x; ϵ) in (5) is

summarized in the subsequent Section 2. The localized variant is developed in Section 3 first for
a Gaussian distribution for which Σ−1 has a tri-diagonal structure and then for general target
measure ν(dx) for which conditional independence holds. An algorithmic summary is provided in
Algorithm 1 and a discussion of numerical properties is provided in Section 3.3. As an application,
we consider conditional sampling for a closure problem arising from the multi-scale Lorenz-96
model [9] in Section 4. The paper closes with some conclusions and suggestions for further work.

2. Schrödinger bridge sampler

In this section, we briefly recall how to approximate the conditional estimate (4) using
Schrödinger bridges. One first introduces the symmetric matrix T ∈ RM×M of (unnormalized)
transition probabilities

(7) (T )jk = exp

(
− 1

4ϵ
∥x(k) − x(j)∥2

)
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for j, k = 1, . . . ,M . See [5] for a more general definition involving a scaling matrix K(x).
One next introduces the uniform probability vector w∗ = (1/M, . . . , 1/M)⊤ ∈ RM over the

samples {x(j)}Mj=1. The associated Schrödinger bridge problem can be reformulated into finding

the non-negative scaling vector v ∈ RM such that the symmetric matrix

(8) P = D(v)T D(v)

is a Markov chain with invariant distribution w∗, i.e.,

(9) P w∗ = w∗.

Here D(v) ∈ RM×M denotes the diagonal matrix with diagonal entries provided by v ∈ RM .
We remark that the standard scaling used in Schrödinger bridges would lead to a bistochastic
matrix P̃ , which is related to (8) by P̃ =M−1P .

The next step is to extend the discrete Markov chain (8) to all x ∈ Rd. For that purpose one
introduces the vector-valued functions t(x) ∈ RM with entries

(10) t(j)(x) = exp

(
− 1

4ϵ
∥x(j) − x∥2

)
for j = 1, . . . ,M . One then defines the probability vector w(x) ∈ RM using the Sinkhorn weights,
v, obtained in (8), i.e.,

(11) w(x) =
D(v) t(x)

v⊤t(x)
∈ RM

for all x ∈ Rd. This vector gives the transition probabilities from any x to the data samples,
which we collect in the data matrix of samples

(12) X = (x(1), . . . , x(M)) ∈ Rd×M .

Hence, the desired sample-based approximation of the conditional mean is given by

(13) m(x; ϵ) := X w(x),
which provides a finite-dimensional approximation of the conditional expectation value µ(x; ϵ) of
the true underlying diffusion process (2).

It has been found advantageous in [5] to replace the time-stepping method (5) by the split-step
scheme

X(n+ 1/2) = X(n) +
√
2Ξ(n), Ξ(n) ∼ N(0, ϵI),(14a)

X(n+ 1) = X w(X(n+ 1/2)),(14b)

which can be viewed as sequential noising and denoising steps. The key property of the Schrödinger
bridge sampler is that the final step of the Langevin sampler (14)b amounts to a projection into
the convex hull of the samples, independent of the outcome of the noising step (14)a. This
renders the sampling scheme numerically stable for any finite sample size M . This is in contrast
to traditional Langevin samplers such as score generative models which directly solve the typi-
cally stiff Langevin equation (2); e.g., in case the probability measure ν(dx) is concentrated on
a submanifold M ⊂ Rd, simulating the Langevin equation necessitates computationally costly
sufficiently small time steps to resolve the fast attraction toward the submanifold.

While (14) works well for low-dimensional problems, applications to medium- and high-
dimensional problems have remained an open challenge since accurate approximations of the
Schrödinger bridge problem require an increasing number of samples as the dimension d of the
sample space Rd increases (cf. [21]).

The key observation of this paper is that the approximation of conditional expectations (4) via
Schrödinger bridges does not necessarily require an accurate approximation of the Markov chain
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(8) and that localization can be applied provided conditional independence can be established.
This idea will be developed in the following section.

3. Localized Schrödinger bridge sampler

To introduce the main idea of localizing the Schrödinger bridge sampler developed in [5] we
first consider an illustrative example of sampling from a multivariate Gaussian distribution. We
will see that localization allows to significantly reduce the number of samples required to achieve
a certain accuracy. In particular, the number of samples required to achieve a certain accuracy
does not depend on the intrinsic dimension of the samples but rather on the correlation length
which typically is much smaller.

3.1. Motivational example: Gaussian setting. Let ∆h ∈ Rd×d denote the standard discrete
Laplacian over a periodic domain [0, 1] with mesh-size h = 1/d. We assume that the sampling
distribution π(x) is Gaussian with zero mean and covariance matrix

(15) Σ = (I −∆h)
−1.

Instead of the distribution π(x), we are given M samples x(j) ∼ N(0,Σ), j = 1, . . . ,M , and

denote their α-th entry by x
(j)
α for α = 1, . . . , d. The goal is to produce more samples from N(0,Σ)

using the time-stepping scheme (14) without making explicit reference to the unknown covariance
matrix Σ. This particular setting of a generative model can become arbitrarily challenging for
decreasing mesh-sizes h = 1/d.

In order to gain some insight into the problem, we first consider the standard EM sampler in
case the distribution is known; i.e.,

(16) X(n+ 1) = X(n)− ϵ(I −∆h)X(n) +
√
2Ξ(n), Ξ(n) ∼ N(0, ϵI).

Because of the structure of ∆h, we can rewrite the EM update in the components of X(n) in the
form

(17) Xα(n+ 1) = w−1Xα−1(n) + w0Xα(n) + w1Xα+1(n) +
√
2ϵΞα(n), α = 1, . . . , d,

with weights

(18) w±1 =
ϵ

2h2
, w0 = 1− ϵ

(
1 +

1

h2

)
and periodic extension of Xα for α = 0 and α = d+ 1. We assume that the step size ϵ is chosen
such that w0 ≥ 0. The EM update (17) shows the conditional expectation value of Xα(n + 1)
only depends on the value of the neighboring grid points of X(n) with weights w0 and w±1; i.e.,

E[Xα(n+ 1) |X(n)] = E[Xα(n+ 1) | (Xα−1(n), Xα(n), Xα+1(n))](19a)

= w−1Xα−1(n) + w0Xα(n) + w1Xα+1(n).(19b)

It is convenient to introduce the short-hand

(20) X[α] := (Xα−1, Xα, Xα+1)
T ∈ Rdα ,

dα = 3, to denote the set of neighboring grid points of Xα.
To help the reader navigating the various indices and sub- and superscripts we summarize here

our notation. Superscripts (j) are reserved to denote samples j = 1, . . . ,M as well as components
of vectors in RM . For example, the components of the probability vector w ∈ RM are denoted
by w(j). The Greek subscript α with α = 1, . . . , d is reserved to denote components of a vector
x in state space Rd, i.e. yα for α = 1, . . . , d. Subscripts [α] are reserved to denote localisation
around a component α; i.e., x[α] ∈ Rdα .
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The dependency of the conditional expectation value (19) on the neighboring points is to be
exploited in the update step (14b), which we recall here in its component-wise formulation as

(21) Xα(n+ 1) =

M∑
j=1

x(j)α w(j)(X(n+ 1/2)),

for α = 1, . . . , d. We know from our previous considerations that the conditional expectation
value of Xα(n+1) should depend on X[α](n+1/2) only. Hence the question arises if we can find
appropriately localized probability vectors w(x) for the Schrödinger bridge sampler (14)? The
following formal argument can be made. We restrict N(0,Σ) to Rdα and truncate the samples

x(j), j = 1, . . . ,M , accordingly to yield x
(j)
[α]. The covariance matrix Σr ∈ Rdα×dα of the reduced

random variables X[α] ∈ Rdα is simply the restriction of Σ to the corresponding sub-space, which
in this particular example is independent of α. Furthermore, using the Schur complement, one
finds

(22) Σ−1
r =

 ∗ − 1
2h2 ∗

− 1
2h2 1 + 1

h2 − 1
2h2

∗ − 1
2h2 ∗

 ,

where ∗ denotes entries which differ from the matrix which would be obtained by restricting Σ−1

to the corresponding sub-space. The important point is that the central elements remain identical
(cf. (18)) and that only those entries enter the approximation of the conditional expectation value
(19).

We now describe a localized Schrödinger bridge approach for this specific problem. One
replaces the matrix T ∈ RM×M with entries (7) by localized matrices Tα ∈ RM×M with entries

(23) (Tα)jk = exp

(
− 1

4ϵ
∥x(j)[α] − x

(k)
[α]∥

2,

)
, i, j = 1, . . . ,M,

for fixed α ∈ {1, . . . , d}. For each of these localized matrices Tα we employ the Sinkhorn al-
gorithm to obtain the Sinkhorn weights vα ∈ RM for α = 1, . . . , d. The key point is that the
Euclidean inner product in Rd, d ≫ 1, is replaced by an inner product in Rdα with dα = 3.
Furthermore, in this particular example, the corresponding Schrödinger bridge couples the re-
stricted Gaussian distribution N(0,Σr) with itself. Next the single M -dimensional probability
vector (11) is replaced by d M -dimensional probability vectors

(24) wα(x[α]) :=
D(vα) tα(x[α])

v⊤α tα(x[α])
, α = 1, . . . , d,

which depend on x[α] ∈ Rdα and where the vector-valued function tα(x[α]) ∈ RM has entries

(25) t(j)α (x[α]) = exp

(
− 1

4ϵ
∥x(j)[α] − x[α]∥

2

)
, j = 1, . . . ,M.

Note that (24) depends on the restricted vectors x
(j)
[α] ∈ Rdα , j = 1, . . . ,M , only. It can be

verified by explicit calculation that the interpolation property

(26) w(j)
α (x

(i)
[α]) = (Pα)ij , i, j = 1, . . . ,M,

holds.
We finally obtain the localized approximation

(27) mα(x[α]) = Xα wα(x[α]), α = 1, . . . , d,

of the conditional expectation values, where

(28) Xα = (x(1)α , . . . , x(M)
α ) ∈ R1×M ,
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and the update (14b) is replaced by the localized update

(29) Xα(n+ 1) = mα(X[α](n+ 1/2)), α = 1, . . . , d.

In other words, we have replaced a single Schrödinger bridge update in Rd by d Schrödinger
bridge updates in Rdα . We also introduce the localized data matrix

(30) X[α] = (x
(1)
[α] , . . . , x

(M)
[α] ) ∈ Rdα×M ,

which enters into the computation of Tα.

3.1.1. Numerical illustration. To illustrate how well the localized sampling strategy is able to gen-
erate samples from a multivariate Gaussian, we generate M training samples of a d-dimensional
multivariate Gaussian with

x(j) ∼ N(0,Σ)(31)

for j = 1, . . . ,M with a d×d covariance matrix of the form (15) with a tridiagonal precision matrix
with Σ−1

i,i = 2, Σ−1
i,i±1 = −0.5, and periodic conditions Σ−1

1,d = Σ−1
d,1 = −0.5. The corresponding

entries of the covariance matrix are Σi,i ≈ 5.8, Σi,i±1 ≈ 1.6, Σi,i±2 ≈ 0.04, and Σi,i±3 ≈ 0.01.
We employ the localized Schrödinger bridge sampler with a localisation set comprised of four

neighbouring grid points, i.e. dα = 5. We further employ a standard Schrödinger bridge sampler
without localisation. In Figure 1 we compare the generated new samples with the given samples
for both sampling strategies. We show the resulting empirical histograms as well as the rows of
the empirical covariance matrix Σ̂. The rows are centered at the middle point using periodicity.
To achieve reasonable accuracy for the standard sampler we require M = 5, 000 samples and
a bandwidth of ϵ = 0.25 for d = 9. The localised sampler instead achieves superior samples
with only a tenth of the data with M = 500 and ϵ = 0.025. Moreover, the accuracy does not
depend on the dimension for the localized Schrödinger bridge sampler. We show an example with
dimension d = 101 which allows for the same accuracy as the smaller d = 9-dimensional case.
The agreement with the associated entries Σi,i+j , i = 51, j ∈ {0,±1,±2,±3} of the covariance
matrix Σ is remarkable. We remark that d = O(102) is out of range for the standard unlocalised
sampler.

3.2. Localized Schrödinger bridge sampler for general measures. The strategy of con-
structing a dimension-reduced localised Schrödinger bridge sampler as presented in the previous
example of a multivariate Gaussian readily extends to general priors.

We need to introduce some further notation. For each α-th entry in the state vector x ∈ Rd
we introduce a subset Λ(α) ⊂ {1, . . . , d} and the associated restriction x[α] ∈ Rdα of x ∈ Rd
of dimension dα = card (Λ(α)). The complementary part of the state vector is denoted by
x\[α] ∈ Rd−dα . In the example of the multivariate Gaussian introduced in Section 3.1, we have
Λ(α) = {α− 1, α, α+1} with the obvious periodicity extensions for α = 1 and α = d. With this
notation in place, the implementation of the localized Schrödinger bridge sampler proceeds as
described in Section 3.1.

The key assumption we make is that of conditional independence of xα on x\[α], which allows
for the dimension reduction. The conditional expectation value (27) turns out to be a Monte-
Carlo approximation of the conditional expectation under this assumption. More precisely, given
the transition density of overdamped Langevin dynamics, denoted here by p(x′|x; ϵ), we obtain

E[Xα(ϵ)|X(0) = x] =

∫
x′α p(x

′|x; ϵ) dx′ =
∫
x′α pα(x

′
α|x; ϵ) dx′α(32a)

=

∫
x′α pα(x

′
α|x[α]; ϵ) dx′α = E[Xα(ϵ)|X[α](0) = x[α]],(32b)
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Figure 1. Comparison of the samples obtained from the standard and
from the localized Schrödinger bridge sampler and given samples drawn
from a d-dimensional multivariate Gaussian with a localized tridiagonal
precision matrix. We show the centred rows of the empirical covariance
matrix Σ̂ (top row) and empirical histograms obtained from using all
d components (bottom row). The blue markers denote the empirical
covariance for the given samples; the magenta markers show the average
over all d rows. For the d = 9 dimensional multivariate Gaussian we
show results for the standard sampler trained on M = 5, 000 samples
(left column) and the localised sampler trained on M = 500 samples
(middle column). The localised sampler was also run for a d = 101-
dimensional multivariate Gaussian with only M = 500 samples (right
column).

where the second line follows from the conditional independence assumption. Here pα(xα|x; ϵ)
denotes the conditional distribution in xα. It is reasonable to assume that we can construct
a reversible overdamped Langevin process with invariant distribution πα(x[α]) and transition

kernel pα(x
′
[α]|x[α]; ϵ) on Rdα . Here πα(x[α]) denotes the marginal distribution of π(x) in x[α].

Then detailed balance of this dimension-reduced Langevin process is given by

(33) pα(x
′
[α]|x[α]; ϵ)πα(x[α]) = pα(x[α]|x′[α]; ϵ)πα(x

′
[α]).

Note that in our localized Schrödinger bridge sampler detailed balance is ensured by the Sinkhorn
algorithm which renders the Markov chain reversible. Detailed balance then implies for the
conditional expectation value

E[Xα(ϵ)|X[α](0) = x[α]] =

∫
x′α pα(x

′
[α]|x[α]; ϵ) dx

′
[α](34a)

=

∫
x′α

pα(x[α]|x′[α]; ϵ)
πα(x[α])

πα(x
′
[α]) dx

′
[α](34b)

=

∫
x′α ρα(x

′
[α]|x[α]; ϵ)π(x

′
[α]) dx

′
[α],(34c)
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with

(35) ρα(x
′
[α]|x[α]; ϵ) :=

pα(x[α]|x′[α]; ϵ)
πα(x[α])

.

We note that ρα(x
′
[α]|x[α]; ϵ) is a density with respect to the reference measure induced by

πα(x[α]). We finally approximate the integral in (34c) via Monte Carlo approximation using

the restricted data samples x
(j)
[α] ∼ πα, j = 1, . . . ,M ; i.e.,

(36) E[Xα(ϵ)|X[α](0) = x[α]] ≈
M∑
j=1

x(j)α w(j)
α (x[α]), x(j)α ∼ πα,

with w
(j)
α (x[α]) ∝ ρα(x

(j)
[α]|x[α]; ϵ) such that

∑
j w

(j)
α (x) = 1. This expression is of the form

used in the localized Schrödinger bridge sampler (27). However, since the transition kernels
ρα(x

′
[α]|x[α]; ϵ) are not available in general, the weight vector wα(x[α]) ∈ Rdα is approximated by

the Schrödinger bridge approach as in (24). Algorithm 1 summarizes the localized Schrödinger
bridge sampler.

Algorithm 1: Localised Schrödinger bridge sampler

Input: Input: Samples X ∈ Rd×M .
Parameters : Bandwidth ϵ. Localisation dimension dα. Desired number of new samples

N . Number of decorrelation steps nc.

Output: Output: New samples x
(j)
s for j = 1, . . . , N .

1 Step 1: Construct transition Sinkhorn weights v[α]
2 for α← 1 to d do
3 construct localised data X[α];

4 construct kernel matrix Tα ∈ RM×M from localised data;

5 construct Sinkhorn weights vα from Tα;

6 end

7 Step 2: Generate N new samples x
(j)
s using the Sinkhorn weights vα

8 for j ← 1 to N do
9 each new sample is started from a random initial sample

10 X(0)← x(j
⋆) for 1 ≤ j⋆ ≤M and random j⋆;

11 for n← 0 to nc do
12 for α← 1 to d do
13 X[α](n)← X(n) ;

14 Ξ[α](n) ∼ N(0, ϵIdα);

15 X[α](n+ 1/2) = X[α](n) +
√
2Ξ[α](n) ; /* noising step */

16 construct vector tα(X[α](n+ 1/2)) ∈ RM ;

17 construct conditional probability wα(X[α](n+ 1/2)) ∈ RM using vα ;

18 construct localized data Xα ;
19 Xα(n+ 1) = Xα wα(X[α](n+ 1/2)) ; /* projection step */

20 end

21 end

22 x
(j)
s ← X(nc);

23 end
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Remark 2. We have assumed here a strong form of conditional independence by requesting that
(32) holds for all ϵ > 0. In general, such a condition will be satisfied approximately for sufficiently
small ϵ only. Compare the EM sampler (16), which provides an accurate approximation to the
true transition densities p(x′|x; ϵ) of the underlying diffusion process for ϵ > 0 sufficiently small by
ignoring higher-order dependencies. In practice, this requires a careful choice of the dependency
sets Λ(α) which define x[α] ∈ Rdα .

3.3. Algorithmic properties. We briefly discuss a few important results on the stability and
the ergodicity of the proposed localized Langevin samplers, which they essentially inherit from
the unlocalized Schrödinger bridge sampler [5].

The following lemma establishes that, since each wα(x[α]), α = 1, . . . , d, is a probability
vector for any ϵ > 0, the localized update step (29) is stable. In order to simplify notations, we
denote by mloc(x; ϵ) ∈ Rd the vector of localized expectation values with components mα(x[α]),
α = 1, . . . , d, defined by (27).

Lemma 1. Let us introduce the set CM ⊂ Rd defined by

(37) CM = {x ∈ Rd : |xα| ≤ |Xα|∞}.

It holds that the vector mloc(x; ϵ) ∈ Rd of localized expectation value satisfies

(38) mloc(x; ϵ) ∈ CM
for all choices of ϵ > 0 and all x ∈ Rd.

Proof. The lemma follows from the fact that the α-component of mloc(x; ϵ) is given by (27) and
the fact that wα(x[α]) is a probability vector for all ϵ > 0 and all x ∈ Rd. □

Lemma 1 also establishes stability of the general Langevin sampler defined by (5) with localized
mloc(x; ϵ), i.e.

(39) X(n+ 1) = mloc(X(n); ϵ) +
√
2Ξ(n), Ξ(n) ∼ N(0, ϵI),

for all step sizes ϵ > 0. Note that X(n + 1) is no longer in the convex hull of the data as the
original unlocalized Schrödinger bridge (cf. (14)b), but instead is confined to CM in expectation.
The next lemma shows that this Langevin sampler is also geometrically ergodic.

Lemma 2. Let us assume that the data generating density π has compact support. Then the
localized time-stepping method (39) possesses a unique invariant measure and is geometrically
ergodic.

Proof. Consider the Lyapunov function V (x) = 1 + ∥x∥2 and introduce the set

(40) C = {x : ∥x∥ ≤ R}

for suitable R > 0. Since mloc(x; ϵ) ∈ CM and π has compact support, one can find a radius
R > 0, which is independent of the training data X , such that CM ⊂ C and

(41) E[V (X(n+ 1)|X(n)] ≤ λV (X(n))

for all X(n) /∈ C with 0 ≤ λ < 1. Furthermore, because of the additive Gaussian noise in (39),
there is a probability density function ρ(x) > 0 on C and a constant δ > 0 such that

(42) n(x′;mloc(x; ϵ), 2ϵI) ≥ δρ(x′)

for all x, x′ ∈ C. Here n(x;m,Σ) denotes the Gaussian probability density function with mean m
and covariance matrix Σ. In other words, C is a small set in the sense of [12]. Geometric ergodicity
follows from Theorem 15.0.1 in [12]. See also the self-contained presentation in [11]. □
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Remark 3. We emphasize that, contrary to the unlocalized Schrödinger bridge sampler, the
localized mloc(x; ϵ) is not restricted to the linear subspace spanned by the training data X in
case M < d. The localized sampler shares this desirable property for very high-dimensional
problems with the localized EnKF [16, 2, 3].

4. Conditional localised Schrödinger bridge sampler

As for the standard Schrödinger bridge sampler [5] the localized sampler lends itself to con-
ditional sampling. Consider samples x(j) = (z(j), ψ(j))T for j = 1, . . . ,M with ψ = ψ(z). The
localized Schrödinger bridge sampler described in Section 3 and Algorithm 1 allows us to learn
the joint probability p(z, ψ). To draw samples from the conditional probability p(ψ|z) we may
use the localized conditional probability vector tα(x[α]) and the Sinkhorn weights vα obtained

from the samples x(j) , i.e. executing lines 1-6 in Algorithm 1. Conditional sampling is achieved
by ensuring that at each sampling step the z-component of the generated samples X are set to
the value z∗ on which we wish to condition. To achieve this we add the conditioning assignment,
Z(n+1)← z∗, between lines 20 and 21 of Algorithm 1. We demonstrate the performance of the
conditional sampler for the multiscale Lorenz-96 model in the next subsection.

4.1. Conditional sampling for a closure problem. We apply the conditional localized
Schrödinger bridge sampler to the multiscale Lorenz-96 model for K slow variables zk which
are each coupled to J fast variables yj,k with

d

dt
zk = −zk−1(zk−2 − zk+1)− zk + F − hc

b

J∑
j=1

yj,k,(43a)

d

dt
yj,k = −cbyj+1,k(yj+2,k − yj−1,k)− cyj,k +

hc

b
zk.(43b)

with periodic boundary conditions with zk+K = zk, yj,k+K = yj,k and yj+J,k = yj,k+1. This
d = K(J+1)-dimensional model was introduced as a caricature for the mid-latitude atmospheric
dynamics [9]. The degree of time-scale separation is controlled by the parameter c. The ratio
of the amplitudes of the large-scale variables zk and the small-scale variables yj,k is controlled
by the parameter b. The slow and fast dynamics are coupled with coupling strength h. The
parameter F denotes external forcing. As equation parameters we choose K = 12 and J = 24,
i.e. d = 300, and F = 20, c = b = 10 and h = 1 as in [20, 1, 4]. These parameters lead to
chaotic dynamics with a maximal Lyapunov exponent of λmax ≈ 18.29 in which the fast variables
experience temporal fluctuations which are 10 times faster and 10 times smaller than those of
the slow variables. This corresponds to the regime of strong coupling in which the dynamics is
driven by the fast sub-system [6].

In the climate science and other disciplines one is typically only interested in the slow large-
scale dynamics. A direct simulation of the multiscale system (43), however, requires a small time
step adapted to the fastest occurring time scale, making long term integration to resolve the slow
dynamics computationally infeasible. Scientists hence aim to design a computationally tractable
model for the slow variables only in which the effect of the fast dynamics is parameterized. This
is the so called closure or subgrid-scale parameterization problem. In particular, we seek a model
of the form

d

dt
zk = Gk(z) + ψk(z),(44)

with z = (z1, z2, . . . , zK), Gk(z) = −zk−1(zk−2− zk+1)− zk +F . We assume here that scientists
have prior physics-based knowledge about the resolved vector field Gk(z) but lack knowledge
of the closure term ψk(z) which parametrizes the effect of the fast unresolved dynamics. The
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closure term may be deterministic or stochastic, depending on the choice of equation parameters
in (43). We will employ the localized Schrödinger bridge sampler to generate samples of the
closure term ψ(z) conditioned on the current model state z(t). The sampler will be trained on
M samples x(j) = (z(j), ψ(j)), j = 1, . . . ,M .

We obtain M = 40, 000 samples z(j) ∈ RK by integrating (43) using a fourth-order Runge-
Kutta method with a fixed time step ∆t = 5× 10−4. Samples of the closure term ψ(j) ∈ RK are
then determined from the samples z(j) via

ψ(j) :=
z(j+1) − z(j)

∆t
−G(z(j)),(45)

for j = 1, · · · ,M . This defines our M samples x(j) = (z(j), ψ(j)) ∈ R2K for j = 1, . . . ,M to be
used to train the Schrödinger bridge sampler.

To numerically integrate the closure model (44) using an Euler discretization

z(m+ 1) = z(m) + (G(z(m)) + ψ(m)) δt(46)

in terms of the state vector z ∈ RK with a time step δt = 10∆t, we generate at each time
step m ≥ 0 a sample ψ(m) conditioned on the current state z(m). These samples should be
uncorrelated to the samples drawn at the previous time step. This is achieved by running the
localized Schrödinger bridge sampler conditioned on z∗ = z(m) at each time step m for nc = 100
decorrelation steps (cf. Algorithm 1).

For the localized Schrödinger bridge sampler we employ a time step of ϵ = 0.1 and consider a
nearest neighbour localisation with Λ(α) = {α− 1, α, α+1, α,K+α− 1,K+α,K+α+1} with
the obvious periodic extensions for α = 1 and α = d. To account for the varying ranges of z
and ψ when estimating the matrices (23) and (25) for fixed time step ϵ, we replace the standard
Euclidean product with a scaled one where we divide in the inner product the z-variables by σz
and the ψ-variables by σψ, where σ

2
ψ and σ2

x denote the climatic variances of the slow variables

and the closure term, respectively, estimated from the samples x(j).
Figure 2 shows a comparison of the outputs of the localized Schrödinger bridge sampler with

data obtained from simulating the full multi-scale Lorenz-96 system (43). We show results for
the covariance of the slow variables z, obtained from the samples z(j) of the full multi-scale
Lorenz 96 system (43), and of the discretization of the closure scheme (46) over 40, 000 time
steps with time step δt. Samples ψ(m) are generated at each time step using the conditional
sampling algorithm. In particular, we show the entries of the rows of the empirical covariance
matrix, centred about k = 6 employing periodicity of the system. It is seen that our localized
sampler reproduces the covariance structure of the full system very well. We further show a
comparison of the empirical histograms obtained by integrating the closure model (46) with the
original samples z(j) which were obtained from a simulation of the full multi-scale Lorenz 96
system (43). The learned non-stiff stochastic closure model (46) is able to reproduce the actual
histogram well.

5. Conclusions

The construction of the Schrödinger bridge is fraught with an unfavorable dependency on the
dimension d. The required number of samples scales for a desired accuracy exponentially on the
underlying intrinsic dimensionality of the data [21]. This is exactly the advantage of our proposed
localization: Localization requires less samples for a desired accuracy. We have demonstrated
numerically the advantage of localization by means of a Gaussian measure for which the inverse
covariance matrix has tri-diagonal structure and for a nonlinear close problem arising from the
multi-scale Lorenz-96 model. We have also established theoretically that the proposed sampler
is stable and geometric ergodic under relatively mild conditions. The stability of our sampler
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Figure 2. Comparison of the samples obtained from the localized
Schrödinger bridge sampler and given samples drawn from the multi-
scale Lorenz-96 system (43) using nearest neighbour localization with
Λ(α) = {α − 1, α, α + 1K + α − 1,K + α,K + α + 1} with the obvious
periodic extensions for α = 1 and α = d. We consider 40, 000 new and
given samples. Left: Centred rows of the empirical covariance matrix for
z. The magenta line denotes the mean over all rows. The blue markers
denote the empirical covariance for the given samples. Right: Empirical
histograms. The closure model used at ten times larger time step.

allows for applications to data drawn from a singular measure. This sets it apart from score-
generative models which rely on the differentiability of the measure. While this work has focused
on overdamped Langevin dynamics as a mean of sampling from a distribution, the methodology
generalizes to more general formulations of score-generative and diffusion modeling [7, 17, 19, 22].
Further potential applications include sequential data assimilation [16, 2, 3], feedback particle
filter and homotopy methods [23, 15, 14], which are implemented utilizing Schrödinger bridges,
and interacting particle sampling methods, which rely on grad-log density estimators [10].
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