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Appendix A. Singular perturbation expansion for linear problem

In this Appendix, we apply singular perturbation theory to obtain one order higher than the usual averaging
limit. We recall the linear model (2.1)–(2.2)

dx = (a11x + a12y) dt + σxdWx, (A 1)

dy =
1

ǫ
(a21x + a22y) dt +

σy√
ǫ
dWy, (A 2)

for a slow variable x ∈ R and fast variable y ∈ R. Here, Wx, Wy are independent Wiener processes and
the parameter ǫ characterizes the time scale gap. We assume throughout that σx, σy 6= 0 and that the
eigenvalues of the matrix

A =

(

a11 a12
1
ǫ
a21

1
ǫ
a22

)

are strictly negative, to assure the existence of a unique invariant joint density. Furthermore we require
ã = a11 − a12a

−1
22 a21 < 0 to assure that the leading order slow dynamics supports an invariant density

(cf.(A 11)). The probability density function of the system (A 1)-(A 2) satisfies a Fokker-Planck equation,

∂

∂t
ρ(x, y, t) =

1

ǫ
L⋆

0ρ(x, y, t) + L⋆
1ρ(x, y, t), (A 3)

where

L⋆
0ϕ = − ∂

∂y
((a21x + a22y)ϕ) +

1

2
σ2

y

∂2

∂y2
ϕ,

L⋆
1ϕ = − ∂

∂x
((a11x + a12y)ϕ) +

1

2
σ2

x

∂2

∂x2
ϕ. (A 4)

The probability density function is expanded according to

ρ(x, y, t) = ρ0 + ǫρ1 + ǫ2ρ2 + · · · . (A 5)

Substituting the series (A 5) into the Fokker-Planck equation (A 3), and collecting orders of ǫ, we obtain
at lowest order, O(1/ǫ),

L⋆
0ρ0 = 0. (A 6)

Since the fast dynamics is ergodic, there exists a unique solution to (A 6),

ρ0(x, y, t) = ρ∞(y; x)ρ̂(x, t),
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2 Gottwald and Harlim

with ρ∞(y; x) given by,

ρ∞(y; x) ∝ exp
(a22ỹ

2

σ2
y

)

, ỹ ≡ y +
a21

a22
x, (A 7)

At the next order, O(1), we obtain

L⋆
0ρ1 =

∂

∂t
ρ0 − L⋆

1ρ0. (A 8)

To assure boundedness of ρ1 (and thereby of the asymptotic expansion (A 5)) a solvability condition has to
be satisfied prescribed by the Fredholm alternative. Equation (A 8) is solvable only if the right-hand-side
is in the space orthogonal to the (one-dimensional) null space of the adjoint L0 of L⋆

0. The adjoint to the
Fokker-Planck equation is called the backward-Kolmogorov equation and propagates expectation values;
hence ergodicity of the fast dynamics implies that the infinitesimal generator L0 has constants as the only
kernel modes. The solvability condition for (A 8) therefore reads as

∫

dy
( ∂

∂t
ρ0 − L⋆

1ρ0

)

= 0, (A 9)

which yields the evolution equation for ρ̂

∂

∂t
ρ̂ = − ∂

∂x
(ãxρ̂) +

1

2
σ2

x

∂2

∂x2
ρ̂ . (A 10)

The associated averaged Langevin equation

dX = ãXdt + σxdWx, (A 11)

supports an invariant measure provided ã < 0. The solution of the reduced Fokker-Planck equation (A 10)
is

ρ̂(x, t) ∝ exp

(

− x2

2σ(t)2

)

, (A 12)

where

σ2(t) = −σ2
x

2ã
(1 − e2ãt).

To capture diffusive effects of the fast variable we perform here the perturbation theory one order
higher. The solvability condition (A 9) assures that the O(1) equation (A 8) can be solved for ρ1. In order
for ρ0 + ǫρ1 to be a density we require the necessary condition on ρ1

∫

dx dy ρ1 = 0. (A 13)

After lengthy algebra, we find

ρ1(x, y, t) =
(

([2a11a21

σ2
ya22

− 2a12a
2
21

σ2
ya2

22

]

xỹ +
[a12a21

σ2
ya22

− a2
21σ

2
x

a22σ4
y

]

(ỹ2 +
σ2

y

2a22
)
)

ρ̂(x, t)

+
[a12

a22
− 2a21σ

2
x

a22σ2
y

]

ỹ∂xρ̂(x, t) + R(x, t)
)

ρ∞(y; x), (A 14)

where R(x, t) lies in the kernel of L⋆
0 and will be chosen to satisfy the condition in (A 13), which reduces

to.
∫

dxR(x, t) = 0. (A 15)
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The function R can be determined by requiring that the solution ρ1 satisfies the solvability condition of
the next order, O(ǫ),

L⋆
0ρ2 =

∂

∂t
ρ1 − L⋆

1ρ1, (A 16)

that is,

∫

dy
( ∂

∂t
ρ1 − L⋆

1ρ1

)

= 0. (A 17)

Substituting (A 14) to (A 17), we obtain

∂

∂t
R +

∂

∂x
(ãxR) − 1

2
σ2

x

∂2

∂x2
R =

a12a21

a2
22

ã∂x(xρ̂) +
(a2

12σ
2
y

2a2
22

− a12a21σ
2
x

a2
22

)

∂xxρ̂, (A 18)

the solutions of which can be found by a self-similarity ansatz, R(x, t) = σ(t)−1f(ξ), where ξ ≡ xσ(t)−1.
After some algebra, we find a solution that satisfies the condition in (A 15),

R(x, t) =
a12

σ2
xa2

22

(−a21σ
2
x +

a12σ
2
y

2
− a21ãσ2(t))(

x2

σ2(t)
− 1)ρ̂(x, t). (A 19)

It is not too difficult to check that (A 14) with (A 19) satisfies the constraint in (A 13). Furthermore, we have
Eρ1

(x) =
∫

dx dy x ρ1(x, y) = 0, which implies that the O(ǫ)-correction does not contribute a correction to
the mean of x when compared to the averaged system (A 11).

Appendix B. Convergence of solutions for the linear system

We formulate the following convergence result.

Theorem 0.1. Consider the linear multi-scale system (A 1)-(A 2). Assume that the matrix A has negative
eigenvalues and that ã = a11 − a12a

−1
22 a21 < 0. Let xǫ be the solution of (A 1)-(A 2) and X̃ be the solution

of the reduced equation,

dX̃ = ãX̃ dt + σxdWx −
√

ǫσy

a12

a22
dWy, (B 1)

corresponding to the same realizations Wx, Wy and the same initial condition xǫ(0) = X̃(0). Then the error

e(t) = xǫ(t) − X̃(t) is bounded for finite time T by

E

(

sup
0≤t≤T

|e(t)|2
)

≤ cǫ2. (B 2)

Proof. We follow the general line of proof as outlined in Pavliotis and Stuart (2008), and extend the results
of Zhang (2011) to the next order. Consider the slow drift term f(x, y, t) = a11x+a12y and the averaged slow
vector field F (x) = ãx where we recall ã = a11 − a12a

−1
22 a21 < 0. Introducing the infinitesimal generators

L0 and L1 as the formal L2-adjoints of the operators (A 4), consider the following Poisson equation,

L0φ(x, y, t) = f(x, y) − F (x) = a11x + a12y − ãx, (B 3)

for smooth functions φ satisfying 〈φ〉ρ∞
≡

∫

φ(x, y, t)ρ∞(y; x) dy = 0. The existence of solutions to the
Poisson equation is assured by a Fredholm alternative since 〈f − F 〉ρ∞

= 0. Using Itô’s formula we write

dφ

dt
=

1

ǫ
L0φ + L1φ + σx∂xφẆx +

σy√
ǫ
∂yφẆy . (B 4)
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4 Gottwald and Harlim

Combining (B3) and (B 4), we deduce that

f(x, y) = F (x) −
√

ǫσy∂yφẆy + ǫ
(dφ

dt
− L1φ − σx∂xφẆx

)

(B 5)

and substituting this equality into the slow equation (A 1), we obtain

dx = F (x) dt + σxdWx −
√

ǫσydWy + ǫ
(dφ

dt
− L1φ − σx∂xφẆx

)

dt. (B 6)

In the case of our linear system (A1)-(A 2) we find φ(y) = a12

a22

y as a solution of the Poisson equation (B 3)
and find

dxǫ = ãxǫ dt + σxdWx −
√

ǫσy

a12

a22
dWy + ǫ

dφ

dt
dt. (B 7)

Note that this equation is simply a rewrite of (A 1) where we replace the fast variable y using (A 2). We
have

∫ t

0

dφ

ds
ds = φ(t) − φ(0) = −a12

a22
(yǫ(t) − yǫ(0)).

Integrating (B 7) and (B1), we obtain the solution of the full system

xǫ(t) = xǫ(0) + ã

∫ t

0

xǫ(s)ds + σx

∫ t

0

dWx −
√

ǫσy

a12

a22

∫ t

0

dWy − ǫ
a12

a22
(yǫ(t) − yǫ(0)) (B 8)

and of the reduced system

X̃(t) = X̃(0) + ã

∫ t

0

X̃(s)ds + σx

∫ t

0

dWx −
√

ǫσy

a12

a22

∫ t

0

dWy , (B 9)

respectively. Defining the error e(t) = xǫ(t) − X̃(t) with e(0) = 0, we have

e(t) = ã

∫ t

0

e(s)ds − ǫ
a12

a22
(yǫ(t) − yǫ(0)),

such that upon using the triangle inequality we obtain the bound

E

(

sup
0≤t≤T

|e(t)|2
)

≤ 2
(

∫ T

0

E

(

sup
0≤t≤T

|e(s)|2
)

ds + ǫ2E

(

sup
0≤t≤T

|yǫ(t) − yǫ(0)|2
))

. (B 10)

The upper bound in (B2) is obtained upon using the Gronwall lemma and by applying the result in Zhang
(2011),

E

(

sup
0≤t≤T

|yǫ(t)|2
)

≤ O(log(T ǫ−1)). (B 11)

We remark that extensions to the multi-dimensional case can be readily made provided there are suitable
non-degeneracy conditions for the noise.
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Appendix C. First and second order statistics of the reduced model with

additive and multiplicative noises

In this Appendix we compute the first and second order statistics of the reduced stochastic model in (D 1)
with initial condition U(t0) = U0. Define

J(s, t) =

∫ t

s

λ̂ds′ +
√

ǫ
σγ

dγ

dWγ(s′) = λ̂(t − s) +
√

ǫ
σγ

dγ

(Wγ(t) − Wγ(s)) ≡ λ̂(t − s) + JW (s, t),

where

JW (s, t) =
√

ǫ
σγ

dγ

(Wγ(t) − Wγ(s))

〈JW (s, t)〉 = 0

V ar(JW (s, t)) = 〈JW (s, t)2〉 = ǫ
σ2

γ

d2
γ

(t − s).

The explicit solution for (D 1) can be written as follows,

U(t) = e−J(t0,t)U0 +

∫ t

t0

(b̂ + f(s))e−J(s,t)ds + σu

∫ t

t0

e−J(s,t)dWu(s) +
√

ǫ
σb

λb

∫ t

t0

e−J(s,t)dWb(s)

= A + B + C + D.

Therefore, we can compute the mean, the variance and the covariance

〈U(t)〉 = 〈A〉 + 〈B〉, (C 1)

V ar(U(t)) = 〈|U(t)|2〉 − |〈U(t)〉|2

Cov(U(t), U(t)∗) = 〈U(t)2〉 − 〈U(t)〉2,

where

〈|U(t)|2〉 = 〈|A|2〉 + 〈|B|2〉 + 〈|C|2〉 + 〈|D|2〉 + 2Re[〈A∗B〉] (C 2)

〈U(t)2〉 = 〈A2〉 + 〈B2〉 + 2〈AB〉. (C 3)

Now we are going to compute each term in the right hand side of (C 1), (C 2), and (C 3). In all of these
computations, we will use the fact that

〈zebx〉 = 〈z〉eb〈x〉+ b2

2
V ar(x)

〈zwebx〉 =
(

〈z〉〈w〉 + cov(z, w∗)
)

eb〈x〉+ b2

2
V ar(x),

for any constant b, assuming that the real valued Gaussian random variable x is independent of both
complex valued Gaussian random variable z and w.

We find that

〈A〉 = e−λ̂(t−t0)〈U0e
−JW (t0,t)〉 = e−λ̂(t−t0)〈U0〉〈e−JW (t0,t)〉

= 〈U0〉e−λ̂(t−t0)+ 1

2
V ar(JW (s,t)) = 〈U0〉e

(

−λ̂+ ǫ
2

σ2
γ

d2
γ

)

(t−t0)

〈B〉 =

∫ t

t0

(b̂ + f(s))e−λ̂(t−t0)〈e−JW (s,t)〉ds =

∫ t

t0

(b̂ + f(s))e

(

−λ̂+ ǫ
2

σ2
γ

d2
γ

)

(t−s)
ds

〈|A|2〉 = e−2γ̂(t−t0)〈|U0|2e−2JW (s,t)〉 =
(

|〈U0〉|2 + V ar(U0)
)

e
2
(

−γ̂+ǫ
σ2

γ

d2
γ

)

(t−t0)
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6 Gottwald and Harlim

〈|B|2〉 =

∫ t

t0

∫ t

t0

〈(

(b̂ + f(s))e−J(s,t)
)(

(b̂ + f(r))e−J(r,t)
)∗〉

ds dr,

=

∫ t

t0

∫ t

t0

(

|b̂|2 + b̂f(r)∗ + b̂∗f(s) + f(s)f(r)∗
)

e−2γ̂t+λ̂s+λ̂∗r〈e−JW (s,t)−JW (r,t)〉 ds dr,

=

∫ t

t0

∫ t

t0

(

|b̂|2 + b̂f(r)∗ + b̂∗f(s) + f(s)f(r)∗
)

e−2γ̂t+λ̂s+λ̂∗re
ǫ
2

σ2
γ

d2
γ

[

2t−r−s+2 min(t−r,t−s)
]

ds dr,

Using the Itô lemma, we deduce:

〈|C|2〉 = σ2
u

∫ t

t0

e−2γ̂(t−s)〈e−2JW (s,t)〉ds = − σ2
u

2(−γ̂ + ǫ
σ2

γ

d2
γ
)

(

1 − e
2(−γ̂+ǫ

σ2
γ

d2
γ

)(t−t0))

〈|D|2〉 = − ǫσ2
b

2|λb|2(−γ̂ + ǫ
σ2

γ

d2
γ
)

(

1 − e
2(−γ̂+ǫ

σ2
γ

d2
γ

)(t−t0)
)

〈A∗B〉 = e−λ̂∗(t−t0)〈U∗
0 〉

∫ t

t0

(b̂ + f(s))e−λ̂(t−t0)〈e−JW (t0,t)−JW (s,t)〉ds, (C 4)

where

〈e−JW (t0,t)−JW (s,t)〉 = e
1

2
V ar(J(t0,t))+ 1

2
V ar(J(s,t))+Cov(J(t0,t)J(s,t))

= e
ǫ
2

σ2
γ

d2
γ

[

(t−t0)+(t−s)+2 min(t−t0,t−s)
]

= e
ǫ
2

σ2
γ

d2
γ

[

(t−t0)+3(t−s)
]

, (C 5)

since t0 ≤ s ≤ t. Substituting (C 5) into (C 4), we obtain

〈A∗B〉 = e

(

−2γ̂+ ǫ
2

σ2
γ

d2
γ

)

(t−t0)〈U∗
0 〉

[

∫ t

t0

(b̂ + f(s))e
3ǫ
2

σ2
γ

d2
γ

(t−s)
ds

]

. (C 6)

Following the same procedure, we obtain

〈A2〉 = e−2λ̂(t−t0)〈U2
0 e−2JW (s,t)〉 =

(

〈U0〉2 + Cov(U0, U
∗
0 )

)

e
2
(

−λ̂+ǫ
σ2

γ

d2
γ

)

(t−t0)

〈AB〉 = e−λ̂(t−t0)〈U0〉
∫ t

t0

(b̂ + f(s))e−λ̂(t−t0)〈e−JW (t0,t)−JW (s,t)〉ds

= e

(

−2λ̂+ ǫ
2

σ2
γ

d2
γ

)

(t−t0)〈U0〉
[

∫ t

t0

(b̂ + f(s))e
3ǫ
2

σ2
γ

d2
γ

(t−s)
ds

]

〈B2〉 =

∫ t

t0

∫ t

t0

〈(

(b̂ + f(s))e−J(s,t)
)(

(b̂ + f(r))e−J(r,t)
)〉

ds dr

=

∫ t

t0

∫ t

t0

(

b̂2 + b̂f(r) + b̂f(s) + f(s)f(r)
)

e−2λ̂t+λ̂s+λ̂r〈e−JW (s,t)−JW (r,t)〉 ds dr

=

∫ t

t0

∫ t

t0

(

b̂2 + b̂f(r) + b̂f(s) + f(s)f(r)
)

e−2γ̂t+λ̂s+λ̂re
ǫ
2

σ2
γ

d2
γ

[

2t−r−s+2min(t−r,t−s)
]

ds dr.

Appendix D. Convergence of solutions for the nonlinear system

Theorem 0.2. Consider the SPEKF model in (3.1). Assume that f(t) is bounded, Ξn ≡ −nγ̂ + ǫ
n2σ2

γ

2d2
γ

< 0

for 1 ≤ n ≤ 4, and γ̃ has sufficient decay of correlations. Let uǫ be a solution of (3.1) and U be a solution
of

dU

dt
= −(λ̂ +

√
ǫ
σγ

dγ

Ẇγ)U + b̂ + f(t) + σuẆu +
√

ǫ
σb

λb

Ẇb, (D 1)
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where λ̂ = γ̂ − iω, corresponding to the same realizations Wu, Wb, Wγ and the same initial condition

uǫ(0) = U(0). Then there is a constant C̃(ǫ, T ) such that the error e(t) = uǫ(t)−U(t) is bounded for finite
time T by

E

(

sup
0≤t≤T

|e(t)|2
)

≤ cǫ2
(

C̃(ǫ, T ) + C
σ2

uσ2
γ

d3
γ

T log(1 + ǫ−1dγT )
)

e
c(1+ǫ

σ2
γ

d2
γ

)T
. (D 2)

Proof. Following the proof of Theorem 0.1, we solve the following Poisson problem for φ,

L0φ = F1(u, b̃, γ̃) − F̄1(u) = −γ̃u + b̃, (D 3)
∫ ∫

φ(u, b̃, γ̃)p∞(b̃, γ̃) db̃ dγ̃ = 0, (D 4)

where F1(u) = −(γ̃ + λ̂)u+ b̂+ b̃+f(t) and F̄1(u) = −λ̂u+ b̂+f(t) are the drift terms of the slow dynamics
in (3.1) and of the reduced model in (D 1), respectively. One can verify that

φ(u, b̃, γ̃) =
γ̃u

dγ

− b̃

λb

(D 5)

is a solution for the Poisson problem in (D3)-(D 4). Applying the Itô-formula we obtain

dφ

dt
=

1

ǫ
L0φ + L1φ +

γ̃

dγ

σuẆu − σb√
ǫλb

Ẇb + u
σγ√
ǫdγ

Ẇγ ,

and subsequently, we can rewrite (D 3) as follows

F1(u, b̃, γ̃) = F̄1(u) + L0φ = F̄1(u) + ǫ
(dφ

dt
− L1φ

)

− ǫ
γ̃

dγ

σuẆu +
√

ǫ
σb

λb

Ẇb −
√

ǫu
σγ

dγ

Ẇγ .

Substituting into the slow equation in (3.1), we have

duǫ

dt
= F̄1(u

ǫ) + σuẆu +
√

ǫ
(σb

λb

Ẇb − uǫ σγ

dγ

Ẇγ

)

+ ǫ
(

(dφǫ

dt
− L1φ

ǫ
)

− γ̃

dγ

σuẆu

)

. (D 6)

The solutions of the full model (D 6) is given by

uǫ(t) = uǫ(0) +

∫ t

0

(−λ̂uǫ(s) + b̂ + f(s)) ds + σu

∫ t

0

dWu(s) +
√

ǫ
σb

λb

∫ t

0

dWb(s) −
√

ǫ
σγ

dγ

∫ t

0

uǫ(s)dWγ(s)

+ ǫ(φǫ(t) − φǫ(0)) − ǫ

∫ t

0

F̄1(u
ǫ(s))

γ̃ǫ(s)

dγ

ds − ǫ
σu

dγ

∫ t

0

γ̃(s)ǫdWu(s),

and the solution of the approximate model (D 1) is given by

U(t) = U(0) +

∫ t

0

(−λ̂U(s) + b̂ + f(s)) ds + σu

∫ t

0

dWu(s) +
√

ǫ
σb

λb

∫ t

0

dWb(s) −
√

ǫ
σγ

dγ

∫ t

0

U(s)dWγ(s).

Defining e(t) ≡ uǫ(t) − U(t) and e(0) = 0, we obtain upon using the triangle inequality

E

(

sup
0≤t≤T

|e(t)|2
)

≤ 4
(

∫ T

0

E|e(s)|2 ds + ǫ
σ2

γ

d2
γ

E

∣

∣

∣

∫ T

0

∫ T

0

e(s)e(s′)dWγ(s)dWγ(s′)
∣

∣

∣

+ ǫ2θ(T ) + ǫ2
σ2

u

d2
γ

E

∣

∣

∣

∫ T

0

∫ T

0

γ(s)γ(s′)dWu(s)dWu(s′)
∣

∣

∣

)

, (D 7)

where

θ(T ) ≡ E

(

sup
0≤t≤T

∣

∣

∣
φ(t) − φ(0) −

∫ t

0

F̄1(s)
γ̃(s)

dγ

ds
∣

∣

∣

2)

. (D 8)
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By Itô isometry, (D 7) becomes

E

(

sup
0≤t≤T

|e(t)|2
)

≤ c
(

(1 + ǫ
σ2

γ

d2
γ

)

∫ T

0

E|e(s)|2 ds + ǫ2θ(T ) + ǫ2
σ2

u

d2
γ

∫ T

0

E|γ(s)|2ds
)

≤ c
(

(1 + ǫ
σ2

γ

d2
γ

)

∫ T

0

E|e(s)|2 ds + ǫ2θ(T ) + Cǫ2
σ2

uσ2
γ

d3
γ

T log(1 + ǫ−1dγT )
)

)

,

where we use Lemma 3.5 in Zhang (2011),

E

(

sup
0≤t≤T

|γ(t)|2
)

≤ C
σ2

γ

dγ

log(1 + ǫ−1dγT ). (D 9)

Provided γ̃(t) decorrelates sufficiently fast and additionally Ξn ≡ −nγ̂ + ǫn2σ2
γ/(2d2

γ) < 0 is satisfied,
moments up to order-n are bounded (see Appendix D in Branicki and Majda 2013). Since θ in (D 8) is a
function of as high as fourth order moments, our assumptions guarantee that there is a constant C̃(ǫ, T )
such that θ(T ) ≤ C̃(ǫ, T ). Subsequently, the main result in (D 2) is obtained upon employing the Gronwall
lemma.

The upper bound in (D 2) is not tight since we don’t have an explicit expression for C̃ as a function of
ǫ. Figure 5 suggests that (at least for the parameters chosen therein) that C̃ ≈ O(ǫ−1).
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