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Abstract

We demonstrate that a system of linearly coupled Korteweg—de Vries equations, which inter alia is a general model of
resonantly coupled internal waves in a stratified fluid, can give rise to broad envelope solitons produced by a double phase-
and group-velocity resonance between the fundamental and second harmonics for certain wavenumbers. We derive asymptotic
equations for the amplitudes of the two harmonics, which are identical to the second-harmonic-generation equations in a
diffractive medium, that have recently attracted a lot of attention in nonlinear optics and give rise to the so-called parametric
solitons. To check if the predicted solitons are close to exact solutions of the coupled Korteweg—de Vries equations, we
perform direct numerical simulations, with initial conditions suggested by the above-mentioned parametric-soliton solution
to the asymptotic equations. Since the latter is known only in 2 numerical form, we use for them a recently developed
analytical variational approximation. As a result, we observe very long-lived steadily propagating wave packets generated by
these initial conditions. Thus we find a physical system that may allow experimental observation of propagating parametric
solitons, while in nonlinear optics they are observed only as spatial solitons.

1. Introduction

Envelope solitons supported by parametric inter-
actions [1], i.e., quadratic nonlinear interactions
coupling three underlying harmonic waves, or only
two waves in the case of second-harmonic generation
(SHG) in diffractive media, have recently attracted
a lot of attention in nonlinear optics [2-4], after
being introduced long ago in the pioneering paper
by Karamzin and Sukhorukov [S5]. These solitons
were observed experimentally in the form of sta-
tionary self-supported localized beams in a three- or
two-dimensional bulk (in the former case, the beam
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is cylindrical) [6]. However, they have never been
observed in the temporal domain, i.e., as propagating
solitons. A principal difficulty is that it is virtually
impossible to fabricate a sufficiently long optical fibre
with a quadratic nonlinearity, which would be a natu-
ral medium to support a temporal-domain soliton. In
this work we aim to demonstrate that such parametric
solitons in the time-domain can be easily launched in
other physical systems, where they may be interesting
objects in their own right.

The model which will be considered in this work is
a system of two coupled Korteweg-de Vries (KdV)
equations,

Uy + Uy — Oty = Uy, (L1)
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Ut + OUxux + MUx — OULUL = KUy, (1.2)

where 7 is the long wave phase speed mismatch be-
tween the two components, § and u are relative dis-
persion and nonlinear coefficients, respectively, and
the coupling constant « is normalized to unity in the
sequel.

This system appears in a theory describing near-
resonant interaction of internal waves in a stratified
fluid [7], and also for the analogous near-resonant
interaction of planetary waves [8]. The relative dis-
persion & plays a crucial role. In principle, it may be
either positive or negative. When 6 < 0, there is a
gap in the spectrum of the phase speeds of the lin-
earized system, in which envelope gap-solitons, very
different from the classical KdV solitary waves, may
stably exist [9]. It is also noteworthy that for the case
of negative relative dispersion (& < 0) but with op-
posite sign of the linear coupling (i.e. x = —1) in-
tersection of the dispersion curves of the correspond-
ing uncoupled KdV subsystems may give rise, instead
of the above-mentioned gap in the phase-speed spec-
trum, to a gap in the wavenumber spectrum, which
actually implies a novel fundamental instability in the
coupled-wave system [ 10]. If, on the other hand, the
relative dispersion is positive (which is the more typi-
cal case for applications to internal waves), the gap is
not opened, and strictly speaking solitons do not exist
at all in this model, since, whatever the velocity of a
wave packet, one can always find a linear wave with
the same phase velocity, which can be expected to give
rise to the emission of these linear waves by the non-
linear wave packet. Nevertheless, we will show below
that this model can support, through the SHG pro-
cess, very long-lived approximate envelope solitons
of a new type. They can exist as stationary solutions
within the framework of an asymptotic expression for
the envelope amplitudes, very slowly decaying into
linear waves.

Before proceeding to analysis of the SHG resonance
in (1.1) and (1.2), it is relevant to note that the same
system can generate a sort of a parametric soliton in
a simpler way, viz., through the interaction between a
fundamental and zero (rather than second) harmonic.
Indeed, let us take, for simplicity, a purely symmetric
system with 6 = i = 1, 7 = 0 and we recall that « =
1. In this case, the spectrum of the linearized system
is very simple, ¢ = +1 — k%, where c is the phase

velocity, & is the wavenumber, and the alternate signs
correspond to two different branches of the dispersion
curve. The corresponding group velocity as a function
of k is

v=41 - 3k% (1.3)

If we now start the analysis with a harmonic with
wavenumber k, its quadratic self-interaction generates
the zero harmonic. For the latter one, the group ve-
locity is £1 (see (1.3)). Picking up the lower sign,
one notices that it coincides with the group velocity
of the fundamental harmonic belonging to the other
branch at k> = % Thus, the fundamental harmonic
at this wavenumber can be resonantly coupled to the
zero harmonic (“mean field”). After a straightforward
analysis, the system of asymptotic equations for the
slowly varying complex envelope U, of the fundamen-
tal and the real-valued mean field Uy take the form

(U + 3(U)  + UoUs =0, (14)
(Up): + o(JU )< =0, (1.5)

where the variables x and ¢ are scaled versions of the
original variables in a frame moving with the com-
mon group velocity, and o is a constant. These equa-
tions are exactly integrable and support an obvious
soliton solution similar to the soliton of the nonlin-
ear Schrodinger equation [11]. In this work we will
consider within the framework of the general system
(1.1) and (1.2), another way to support a paramet-
ric soliton, which is based on the resonance between
the fundamental and second harmonics (SH). In the
lowest-order approximation, this resonance demands
that the phase and group velocities of the fundamental
and second harmonics coincide for certain wavenum-
bers, which proves to be possible in general, but inci-
dentally is not possible in the above-mentioned sym-
metric system.

The rest of the paper is organized as follows. In
Section 2, we analyze the dispersion curves for the
general system and find the wavenumbers where this
double resonance can occur. In Section 3, which is the
technical core of this work, we derive by means of a
standard multiscale technique, an asymptotic system
for the fundamental and secondary envelopes (similar
to (1.4) and (1.5) for the resonance with the zero har-
monic). In their eventual form, these equations coin-



G. Gotrwald et al./Physics Letters A 227 (1997) 47-54 49

cide with “canonical” equations that give rise to para-
metric solitons in nonlinear optics [2,3]. Therefore,
we can expect existence of the known one-parametric
family of stationary soliton solutions [3,4]. However,
as we mentioned above, the coupled KdV equations
with dispersions of the same sign (i.e. § > 0), which
is the case under consideration, cannot strictly speak-
ing have exact soliton solutions because there is no
gap in the spectrum of the linear waves. Usually, the
solitons obtained as exact solutions to the asymptotic
amplitude equations exist for very long times as al-
most exact solitons to the underlying system (here the
coupled KdV equations (1.1) and (1.2)), suffering
from an extremely slow radiative decay (see, e.g., Ref.
{9]). In order to understand the meaning of these so-
lutions, in Section 4 we report results of direct numeri-
cal simulations of these coupled KdV equations, (1.1)
and (1.2). As an initial state, we take wave forms
suggested by the soliton solutions of the asymptotic
equations. The result is that, over fairly long times,
these initial wave forms undergo practically no evolu-
tion except for translation at a constant velocity (an
arbitrary localized wave packet completely decays on
the same time scale).

An important practical problem in doing these
simulations is representing the soliton solutions to
the asymptotic amplitude equations, because they are
known in an exact analytical form for only a single
parameter value [S], while at all other parameter val-
ues they were found numerically. However, in Ref.
[4] it was demonstrated that one can approximate the
general soliton solutions to a very reasonable accu-
racy by analytical expressions based on a variational
approximation. This is exactly the form in which we
take solutions to the asymptotic equations in order to
generate the initial states for our direct simulations.
The final result is that we indeed obtain “almost
genuine” envelope solitons governed by the linearly
coupled KdV equations (1.1) and (1.2). Concluding
remarks are collected in Section 5.

2. Dispersion curves and the double resonance

The condition for second-harmonic resonance (i.e.
equality of the phase-velocities of the fundamental and
second harmonics) requires that

2w (k) = w(2k), (2.1)

where k, is the resonant wavenumber. Here w (k) is the
dispersion relation, generally multi-valued with two or
more branches, which may depend on several param-
eters. In order to guarantee a sufficiently strong inter-
action the group velocities must also coincide so that

dw w

In general, the two resonance conditions impose a cer-
tain relation between the parameters. For the coupled
Korteweg~de Vries equations (1.1) and (1.2) the lin-
ear dispersion relation is

(0 + k) (w+ 8k —qk) — k> =0. (2.3)

The two solution branches are given by

2w=—(1+ 8K +nk+ k/[(1 —8)k*+75)%+4,
(2.4)

where we recall that here x = 1 in the system (1.1) and
(1.2). We shall assume that § > 0, so that each KdV
component in the coupled system (1.1) and (1.2) has
the same-signed dispersion. The resonance conditions
(2.1) and (2.2) can be met if the first and second
harmonics belong to the lower and upper branches
respectively. We find that the resonant wavenumber &;
is given by

_ /5 m*+4
k=\3re-" (2.5)

provided that the parameters satisfy the condition

36+1 / 16 72
ol =41 == , 2.6
5016-1| 2572+ 4 (26)

and we require that 7(8 — 1) > 0, which is possible
only for a nonzero value of 7, and for 6 # 1. A
typical example of the dispersion curves is shown in
Fig. 1 at the same parameter values which we will use
in Section 4 for the numerical simulations.

3. Derivation of the amplitude equations

To investigate the dynamics of the interaction of a
fundamental harmonic with the wavenumber &, with
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Fig. 1. Dispersion curves, ¢ as a function of k, where ¢ = w/k, for
the parameter values 4 = n = | and the corresponding resonant
value of the relative dispersion & = 4.6. The resonant wavenumber
is k- =0.9.

its second harmonic with wavenumber 2k, in the sys-
tem (1.1) and (1.2), we will perform a multiscale
perturbation analysis for the resonant waves. Thus, in-
troducing a small parameter € and setting X = ex, T} =
et,T» = €2t, we write

u=eA(X, T+ B(X, T)e'" +’us+e*us+c.c.,

v=€e?6AX, T)e + €26,B(X, T)el"
+e303 +6404 +c.c., (3.1)

where

O =kix—wit, 6r=kx— wst,

with the carrier-wavenumbers ., k; and w; = w(k%;),
i=1,2and T = (T|,T5,...). Recall that we choose
the lower (upper) branch, respectively, for i = 1 and
i =2. Here k| = k; + €Ak and ky = 2(k, + €Ak) =
2k, where Ak allows a small deviation from the ex-
act resonance-condition (2.2). The system (1.1) and
(1.2) can be written as

E(l:) =N(u,v), (3.2)

where the linear operator matrix is

ﬁuu =0; + Fxxxs
ﬁz'u = —dy,

ﬁuz' = —d;,

cl‘l' =0+ mdx + &?xxx

and the nonlinear right-hand-side is

Ni(u,v) =6uu,, Np(u,v) =6uvv,.

Thus, at the lowest order, O(€?), (3.2) is trivially sat-
isfied by the linear dispersion relation for each mode,
yielding

w1+k?

cu2+kg
ky ’

&a(ky) = — a

&ilk) =~
At the next order, O(€?), linearity again allows us to
separate the two modes, and we obtain for the first
harmonic component

Lz + L3

d .
= (——AT, +3k%Ax -+ (f]Ax-l' k]d—f:Ax))e]a'

= (—AT, - %(h)h)e“’l, (3.3)

and

" o 0 .
Loyus + L3 = (_‘flATl - §1 %(kl )Ax) e"".
(3.4)

Note that here we are regarding &;(k;) as an operator,
with k; — k;—iedy, for reasons which we shall discuss
below. There are similar expressions for the second
harmonic on the right-hand side. Since the eigenfunc-
tions of the homogeneous adjoint operator are propor-
tional to e'* and ¢'%2, we can set uy = v3 = 0, to obtain

a a*
An + (k) Ax = —e 5t (k) BkAx + O(e?),
(3.5)
dw 32(1)
Br + = (2k) By = —€— 2 (2k)28kBx +O(€”).

(3.6)

The corrections on the right-hand side will be absorbed
into higher-order terms of the expansion. We note that
the ansatz (3.1), with £;(k;) interpreted as an operator
as described above ensures vanishing of the right-hand
sides of (3.3) and (3.4) at the leading order, and so
u3 = v3 = 0. Here, of course, the form (3.1) implicitly
includes an O(€3) correction due to &;(k;). Next, the
form of (3.5) and (3.6) implies that we make the
transformation

X/ =X——UGT[,

where
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v 3“" L (k) = ‘9‘"2<2k,)

because at the leading order, A and B are functions of
X' and T». Henceforth we omit the primes on X'.

At the next order, O(e*), separation of the two
waves is no longer possible because of the nonlin-
ear terms. Thus, we have to take into account the
nonlinearity-induced phase-mismatch

X502—29[

0w 0w
~ —(Ak)2( i (2k) — =5 (kr))Tz

(3.7)

Using the explicit form of ¢ as described above, one
obtains for the resonant components,

Euuu4 + £m'v4

= (_ATz +

3? :
aT“;‘(k,)AkAx) &t

( By, +

’w ;
- _aEz—z(Zk,ﬂAka) el

i 92w,

EW(kr)AXX

1(9 w2
T (2k:) Bxx

+ 6ik A% 7Y 4 Gik A* Belf X (3.8)

where the asterisk stands for the complex conjugate.
Analogously, one obtains the second equation

Logus + Lovg

( &1(k)Ar, +f1(k) L (ke) Axx

2 6k2

awl

—fl (k)AkAx)e
w

T ——2(2k:) Bxx

( &(2k) By, + £,(2k, >
82
Lo ak?
+ 6uikeé] (k) A2 X
+ 6 ikt (k)5 (2k) A*Be® X, (3.9)

(2k,)2Aka>e

The compatibility conditions for solution of the cou-
pled system of Eqgs. (3.8) and (3.9) yields a pair of
evolution equations for the amplitudes A and B,

A, + @) Axx + 2iP1AkAx + NjA*BeX =0,
iBr, + @ Bxy +4i0,AkBy + NyA%e ™ =0, (3.10)

where the coefficients are defined by

&, = %%(kr), (.11
@, = ;a;:;z(zkr). (3.12)
N =6k,%§%, (3.13)
N =6k,1—%—?§&. (3.14)

The phase-mismatch of the nonlinear terms can be
eliminated by the transformation

A=A'exp(—iAkX — ioTh),
B = B'exp(—2iAk X —

(3.15)

i0,13). (3.16)

Substituting this transformation into the system
(3.10), the phase-mismatch can be removed by
choosing

200 — o = (49, — 2@,) (Ak)°. (3.17)

Finally, we obtain, omitting the primes,

iAp, + P1Axx + SIA+ NJA*B =0,

iBr, + ®,Bxx + $:B + N,A* = 0, (3.18)

where

Si = o, + D (Ak)?,

S = oy + 4P, (Ak)? = 28). (3.19)

We now see that we can set S| = S; = 0 by choosing
gy = ~@1(Ak)?, 07 = —4d;(Ak)?2, which satisfies
the constraint (3.17). It is readily seen that in terms
of the new variables, the effective phases are 6, =
%92 = k. — w(k)t and are evaluated at precisely the
resonant wavenumber, satisfying both resonance con-
ditions (2.1) and (2.2). However, it is useful to retain
S; and §; in (3.18), which is equivalent to adding the
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terms —S;7> and —$,;T» to the phases #; and 65, re-
spectively. Such terms in effect replace the resonant
frequencies w;(k;) with w;(k;) + €2S;, i = 1,2. Thus,
each §; can be regarded as an O(e?) frequency de-
tuning term, for which the parameters in the coupled
KdV equations (1.1) and (1.1) fail to satisfy (2.6) by
terms of O(€?). Note that (3.19) implies that we can
either satisfy the resonance condition (2.1) exactly,
i.e. we can choose Ak = 0 while introducing a fre-
quency detuning via the remaining free parameter oy,
or we can satisfy (2.2) exactly introducing the detun-
ing via the wavenumber mismatch Ak. We will choose
the frequency detuning and set Ak = 0. It is important
to mention that stationary-wave solutions of (3.18)
only exist in the detuned case S; # 0. In the exactly
resonant case we can obtain oscillatory solitary wave
solutions, for which the phase of the oscillations in-
troduces a necessary term balancing the dispersion in
the asymptotic limit.

To obtain stationary solitary wave solutions of
(3.18), we must assume that @57 < 0 and @,5, < 0.
Then, using the transformations

SZQDZ IS]'
A=y|———A" B=7—-P,
2NN, TNl
(] |
X = —\X', Th=-=—T,
\Sl )

where 7 = £1 for Ny N,@ @, > 0 or < Orespectively,
and omitting the primes, the system (3.18) is cast into
the final form,

A+ Axx —A+AB =0,

M¢Br + Byx — (B + $A* =0, (3.20)

where
D,
=2—.
4 &,

For the system (1.1) and (1.2) we have &, < 0 and
@, <Oandso { > 0.

In the stationary case a particular solitary wave so-
lution of (3.20) for { = 1 was found in Ref. [5] to be

32 3

As(X) =+————— B(X)= ———.
0 2cosh®(x/2) 0 2 cosh?(x/2)

For { > 1 localized solutions of the system (3.20)
can be obtained using an asymptotic expansion around
1/¢ (see, e.g., Ref. [2]). For arbitrary  # 1, Steblina
et al. [4] have found good agreement of the numeri-
cally obtained solution with a Gaussian ansatz, whose
parameters were determined by means of a variational
approximation. We will use their resuit for the ansatz

A=ae P, B=be X, (321)

where the parameters were found to be

&= (p+1)(2p+y)(y+§),
VoY
peo (PTDVZOTY _ 40
V2p ' l-p

The parameter p is determined as a real positive root
of the cubic equation

200° + (4 -3 p* +4{p=¢.

In the parameter range of interest, there is only one real
root, which is positive, i.e. p is uniquely determined.

(3.22)

4. Numerical simulations

In this section we address the question of the valid-
ity of our theoretical results; to be specific we investi-
gate whether the coupled system of equations (3.20)
and their approximate solutions (3.21) is an appro-
priate representation for an SHG resonance in the full
coupled KdV equations (1.1) and (1.1). To show this,
we integrate the coupled KdV equations numerically
using the approximate solution (3.21) as an initial
condition, suitably transformed back into the original
variables of the KdV system. We use a pseudo-spectral
code, where the linear terms are treated with a semi-
implicit Crank-Nicholson scheme, and the nonlinear
terms with an explicit leapfrog. There are only two free
parameters, u and 7, since & is given through (2.6) as

2 2
5= 3T VOP+100)/(7’ +4) (4.1)

3/ (9924 100)/(n? +4)’
which implies § > 4. Note that x4 = 0 is also a pos-
sible case, i.e. one equation of the system (1.1) and
(1.1) can be linear. It is pertinent to mention that when
the parameters take O(1)-values the extension of the
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Fig. 2. Left panel: initial condition, right panel: evolved wavepacket at r = 20. The upper pictures refer to u, the lower to . The parameters
are chosen as u =7 =1, and the corresponding & = 4.6. The resonant wavenumber is &k, = 0.9.

wavepacket is very large, whereas the amplitude is
very small to satisfy €Ak < k;. Fig. 2 shows the initial
condition determined as described above, and its evo-
lution. During the evolution, the wavepacket readjusts
slightly to get closer to an exact solution. It has been
checked that over this time an arbitrary initial wave
packet not satisfying Eqs. (3.20) or the system (1.1)
and (1.1) strongly disperses (see Fig. 3). Similar nu-
merical experiments have been performed at other pa-
rameter values, all revealing that the soliton solution
to (3.20) approximates very closely a solution of the
original coupled KdV system.

5. Conclusion

In this work we have analyzed a resonance be-
tween the fundamental and second harmonics in the
linearly coupled KdV system (1.1) and (1.2), which
is a general model of resonant interaction of internal
waves in stratified fluids. We have shown that the res-
onance may indeed take place. By means of a mul-

tiscale expansion, we have derived asymptotic enve-
lope amplitude equations which coincide with the stan-
dard second-harmonic generation equations in nonlin-
ear optics. We have then performed direct simulations
of the coupled KdV equation, with initial states corre-
sponding to the parametric solitons of the asymptotic
equations. The latter were taken in the form of a Gauss-
ian ansatz provided by the variational approximation.
The result is that these initial states give rise to almost
exact envelope solitons of the coupled KdV equation.
This provides the possibility to directly produce para-
metric solitons in the temporal domain, which is not
possible in available nonlinear optical media.

Finally, we note that in realising the physical ap-
plicability of the theoretical results obtained here, we
should recall that the coupled KdV equations (1.1)
and (1.2) have been derived under a long-wave hy-
pothesis. Egs. (1.1) and (1.2) are in nondimensional
form, but, for example their derivation in the internal
wave context requires that kgh < 1 where kq is the
dimensional wavenumber, and # is a length scale for
the vertical stratification (e.g. the total fluid depth).
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Fig. 3. Left panel: initial condition, right panel: evolved wavepacket at 1+ = 20. The upper pictures refer to u, the lower to v. Same

parameters as in Fig. 2, but with a disturbed p.

The condition for second-harmonic resonance (2.5)
requires that the nondimensional wavenumber k; be of
order unity, which implies that the dimensional reso-
nant wavenumber k4 should be finite, but kg < 1.
This condition can readily be achieved in oceanic, at-
mospheric or laboratory situations.
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