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Recently Hu, Tung, Gao and Cao investigated the 0-1 test for chaos. By looking at random
data and at data stemming from the one-dimensional logistic map they concluded that the test is
unreliable. We explain why their criticism is unfounded.
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Recently a paper appeared [1] in which the 0-1 test for
chaos [2, 3] was investigated with respect to its reliability.
The authors accepted the reliability for distinguishing be-
tween regular and fully developed chaos. However, their
conclusions were largely negative. In this Comment we
refute the criticism on the reliability.

We first recall the 0-1 test, following [3] where we gave
a modified and simplified version of the original test [2];
the modified test deals better with noisy data. Consider
a scalar observable Φ(n). In an experiment, Φ(n) is a
discrete set of measurement data. Choose c > 0 and
define

p(n) =
n∑

j=1

Φ(j) cos jc, (1)

for n = 1, 2, . . . Define the mean square displacement

M(n) = lim
N→∞

1

N

N∑

j=1

[p(j+n)−p(j)]2 and the asymptotic

growth rate K = limn→∞ log M(n)/ log n. If the under-
lying dynamics is regular (ie periodic or quasi-periodic)
then K = 0; if the underlying dynamics is chaotic then
K = 1. (We refer to [2, 3] for the justification of these
statements.)

In practice, let N denote the amount of data. Through-
out this Comment, we compute M(n) for N/100 ≤ n ≤

N/10 to ensure that 0 ≪ n ≪ N . Then we compute K
by performing a least square fit for log M(n) versus log n.
This is done for 100 randomly chosen values of c and the
median value of K is the final output of the test (cf. [3]).

Section II of [1] is devoted to “understanding” the test
for chaos, namely that the test examines how the vari-
ance of the auxiliary process p(n) scales with time. This
interpretation is correct but was already present in the
original paper. Indeed, the “R-extension” discussed in [2,
Section 5] corresponds exactly to the “fluctuation analy-
sis” in [1]. As mentioned explicitly in [2, Section 5], the

∗Electronic address: gottwald@maths.usyd.edu.au
†Electronic address: ism@math.uh.edu

necessity to subtract off the mean is a nontrivial obstruc-
tion, whereas a crucial property of the 0-1 test (which is
an “SE(2)-extension”) is that the mean automatically
vanishes (due to rotation symmetry in the plane). A
deeper understanding of the 0-1 test would recognise the
issue with the mean which underlies the development of
the test in [2].

The mathematics behind the test establishes a di-
chotomy for deterministic systems: bounded or diffusive
behaviour of the mean zero random walk. This is one
of the strengths of the test, a binary diagnostic 0 or 1,
with no grey areas in principle. (There are always grey
areas in practice for any test.) Hence Section III of [1]
which highlights the “misclassification” of 1/fα noise (it
is shown that the 0-1 test yields K = 1 independent of
the choice of α) has missed the point. Moreover, it is
a misapplication of the test; as clearly stated in both
our manuscripts [2, 3] the test is designed for determin-

istic (but possible noisy) systems. (Indeed, the paper [2]
is entitled “A new test for chaos in deterministic sys-

tems”.) The problem of distinguishing between chaotic
and stochastic dynamics —although of obvious practi-
cal importance — is different from the problem we are
working on and hence is not grounds for criticism.

Section IV of [1] discusses the “edge of chaos” and
“weak chaos” in the context of the logistic map xn+1 =
axn(1 − xn) + σηn where a is the bifurcation parameter
and ηn ∼ N (0, 1). It is claimed that the 0-1 test can-
not distinguish properly the edge of chaos at a = a∞ =
3.569945672... and weak chaos at a = a∞ + 0.001. We
refute this claim below on three different levels: (i) For
the parameters considered in [1] a visual version of our
test is effective; (ii) For most practical purposes the au-
tomated test is effective with a moderate amount of data;
(iii) In theory the automated test works with probability
one. For brevity, we restrict to clean data σ = 0 (see [3]
for noisy data).

Starting with (i), for the specific parameters a∞ and
a∞ + 0.001 we computed K versus N up to N = 50, 000.
The results are shown in Fig. 1 and show a clear func-
tional difference of K(N). Also defining p(n) as in (1)
and q(n) =

∑n

j=1
Φ(j) sin jc, we plotted p(n) versus q(n)

in Fig. 2. Here N = 5000 suffices for an effective visual



2

test. Again this visual test was explicit in the original
paper [2, Section 5]. We should emphasise that a major
advantage of our test over methods such as [1] is that it
is easily automated and in most cases it is not necessary
to make a visual interpretation of the results.
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FIG. 1: (Color online) Plot of K as a function of N for the
logistic map at a = a∞ (dark gray line, online red) and a =
a∞ +0.001 (light gray line, online green). Although the value
of K is small in both cases, the behaviour of K as a function
of N distinguishes the two cases. The corresponding graphs
for fully developed chaos at a = 3.99 and regular dynamics at
a = 3.561 are shown in the left and right insets respectively.
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FIG. 2: (Color online) Plot of p versus q for the logistic map.
Left: a = a∞; Right: a = a∞ + 0.001. We used 5000 data
points.

For (ii), see Fig. 3 where the results of our test are
shown for N = 5000. The parameter a is incremented
in steps of 0.01 for 3.5 ≤ a ≤ 4 and it is clear that the
automated test (ie the computed value of K) is effective
for most values of a.

Turning to (iii), the dynamics of the logistic map is
particularly well understood [4]: almost every value of a
yields either a periodic attractor or a chaotic attractor

satisfying the Collet-Eckmann condition. It then follows
from results in [5] and [6] respectively that with proba-
bility one K converges to 0 and 1 as N → ∞.

In conclusion, the claim that the 0-1 test is not reliable
is unsubstantiated. The authors chose to focus on (a) sit-
uations where the test was not intended to apply, and (b)
very specialised situations in tiny regions of parameter
space. In this Comment we have reiterated the effective-
ness of the 0-1 test outside these regions and established
the efficacy of our test in situation (b). The claims in [1]
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FIG. 3: (Color online) Plot of K versus a for the logistic map
with 3.5 ≤ a ≤ 4 increased in increments of 0.01. We used
5000 data points. The horizontal lines indicate K = 0 and
K = 1.

are thus shown to be based on misunderstandings regard-
ing the intended scope and implementation of the test.

We agree with the final comment of the authors that
scientists should use all available methods to characterise
and analyse complex data; for essentially deterministic
data the 0-1 test is such a method. We do not claim that
our test will replace traditional methods such as those
relying on phase-space reconstruction [7, 8] but that it
avoids certain well-documented drawbacks of such tests
[9] and hence is likely to be advantageous in certain sit-
uations.
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