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The behavior at bifurcation from global synchronization to partial synchronization in finite networks of cou-
pled oscillators is a complex phenomenon, involving the intricate dynamics of one or more oscillators with the
remaining synchronized oscillators. This is not captured well by standard macroscopic model reduction tech-
niques which capture only the collective behavior of synchronized oscillators in the thermodynamic limit. We
introduce two mesoscopic model reductions for finite sparse networks of coupled oscillators to quantitatively
capture the dynamics close to bifurcation from global to partial synchronization. Our model reduction builds
upon the method of collective coordinates. We first show that standard collective coordinate reduction has
difficulties capturing this bifurcation. We identify a particular topological structure at bifurcation consisting
of a main synchronized cluster, the oscillator that desynchronizes at bifurcation, and an intermediary node
connecting them. Utilizing this structure and ensemble averages we derive an analytic expression for the mis-
match between the true bifurcation from global to partial synchronization and its estimate calculated via the
collective coordinate approach. This allows to calibrate the standard collective coordinate approach without
prior knowledge of which node will desynchronize. We introduce a second mesoscopic reduction, utilizing the
same particular topological structure, which allows for a quantitative dynamical description of the phases
near bifurcation. The mesoscopic reductions significantly reduce the computational complexity of the collec-
tive coordinate approach, reducing from O(N2) to O(1). We perform numerical simulations for Erdős-Rényi
networks and for modified Barabási-Albert networks demonstrating excellent quantitative agreement at and
close to bifurcation.

Model reduction is essential to gaining a deeper
understanding of the dynamics of complex sys-
tems. For coupled oscillator networks, full mod-
els have very high dimension, but the resultant
dynamics is often low-dimensional. For exam-
ple, synchronization is a collective phenomenon
that can be described by a small number of vari-
ables. There exist well-established model reduc-
tion methods for networks with infinitely many
oscillators, but few methods for finite networks.
Here we consider the collective coordinate model
reduction approach applied to sparsely connected
finite networks. We show that while the stan-
dard collective approach yields significant error
for these sparse networks, this error can be cor-
rected by considering mesoscopic reductions that
capture the microscopic detail of essential nodes
but only the macroscopic detail of the majority of
the network. Our reductions yield a correction to
the critical coupling strength Kg, corresponding
to the transition from global to partial synchro-
nization, obtained via the standard collective co-
ordinate approach, as well as highly simplified but
highly accurate temporal dynamics of individual
oscillators.

a)Electronic mail: lauren.smith@auckland.ac.nz
b)Electronic mail: georg.gottwald@sydney.edu.au

I. INTRODUCTION

Synchronization is common to many networks of cou-
pled oscillators, including in natural systems such as the
activity of the brain1,2 and synchronous firefly flashing3,
as well as in many engineering applications, such as power
grids4,5, and Josephson junction arrays6,7. Understand-
ing the transition from global synchronization, such that
all oscillators are synchronized, to partial synchroniza-
tion, with only some oscillators synchronized, or complete
incoherence is essential to control the collective behavior
of complex networks of oscillators. For example, in the
case of power grids, all oscillators need to remain synchro-
nized, otherwise blackouts occur, and identifying which
parts of the power grid are most prone to desynchroniza-
tion is of particular importance in controlling them.

The high dimensionality of coupled oscillator networks
makes detailed analysis intractable. As such, several
model reduction methods have been developed that re-
duce the dimension of coupled oscillator systems. Here
we consider the Kuramoto model8–15 for coupled oscil-
lators. In the thermodynamic limit of infinitely many
oscillators, dimension reduction can be achieved using
the Ott-Antonsen ansatz16, which describes the dynam-
ics of the macroscopic order parameter. For finite net-
works, the collective coordinate method17–22 achieves di-
mension reduction by projecting the dynamics of the full
system onto a judiciously chosen ansatz manifold, yield-
ing evolution equations for macroscopic variables such as
the order parameter. It has recently been shown that in
the thermodynamic limit there is an equivalence between
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FIG. 1. The network structure assumed here for mesoscopic
reduction of sparse networks: a degree one node (labeled node
1, red), connects to node 2 (blue), which connects randomly
to the rest of the network (gray).

the collective coordinate approach and the Ott-Antonsen
approach21.

The collective coordinate approach is designed to de-
scribe the collective dynamics of a synchronized cluster
of oscillators. Close to the bifurcation from global syn-
chronization to partial synchronization, the dynamics of
individual oscillators or of a group of oscillators which are
about to break off from the main synchronized cluster be-
comes important. The dynamics of these most unstable
oscillators is not captured by the standard collective co-
ordinate framework, and, hence the standard collective
coordinate approach provides a less accurate quantita-
tive approximation close to the bifurcation. The loss of
accuracy of the standard collective coordinate approach
in describing the bifurcation point Kg is much more pro-
nounced in sparse networks compared to dense networks.
We will show that the estimate of Kg itself may incur
an error of 10 − 25% for highly connected networks and
25− 35% for sparsely connected networks. We therefore
focus here on sparsely connected networks, such that the
mean degree k is significantly smaller than the size of the
network N .

To improve the quantitative accuracy of the collective
coordinate method near the bifurcation at K = Kg we
propose two different mesoscopic collective coordinate re-
ductions. Both mesoscopic approaches assume that the
network has the structure shown in Fig. 1, such that node
1 is the most susceptible to desynchronization and has
degree one. Node 1 connects to node 2, which connects
randomly to the rest of the network. This structure is
common for sparse networks where there are many degree
one nodes, and the most susceptible node is generally the
one with natural frequency furthest from the mean fre-
quency, i.e., |ωi−Ω| � 1. Our reductions are mesoscopic
in the sense that they incorporate the microscopic detail
of nodes 1 and 2, but only the macroscopic detail of the
rest of the network which remains strongly synchronized.
We remark that degree 1 nodes have recently been iden-
tified as being crucial in the stability of realistic power
grids, where they are coined dead ends23.

The first mesoscopic collective coordinate approach
involves a single collective coordinate and a one-

dimensional (1D) ansatz manifold. The mesoscopic de-
scription yields an analytic expression that accurately
captures the approximately linear relationship we observe
between the actual values of the critical coupling strength
Kg and the estimates obtained via the standard collective
coordinate approach. The analytic expression obtained
depends only on ensemble statistical parameters of the
full system, such as the mean degree k and the variance
of the natural frequencies σ2. Therefore, even without
any prior knowledge of which node is first to desynchro-
nize, we obtain a highly accurate estimate forKg through
correcting the standard collective coordinate approach.

The second mesoscopic collective coordinate approach
uses four collective coordinates to capture the micro-
scopic dynamics of two critical nodes (nodes 1 and 2 in
Fig. 1) together with the macroscopic dynamics of rest of
the network. This yields a significantly simplified system
that accurately captures the dynamics of the full system
for coupling strengths K close too the critical coupling
strength Kg. Identifying the two critical nodes requires
some prior knowledge of the microscopic dynamics of the
full system, specifically, the node that is most susceptible
to desynchronization which will be the first to break off
from the synchronized cluster. To identify this node, one
can use the standard collective framework19. The result-
ing simplified four-dimensional mesoscopic system accu-
rately describes the temporal phase dynamics of the full
system for coupling strengths K > Kg, such that there
is convergence to a globally synchronized stated, and for
K < Kg, such that there is non-stationary dynamics.

The paper is organized as follows. In Section II we
discuss the Kuramoto model, its bifurcation for networks
of the form Fig. 1, and the two types of network struc-
ture we consider, Erdős-Rényi networks and modified
Barabási-Albert networks. In Section III we describe
standard collective coordinate model reduction. In Sec-
tion IV we describe a mesoscopic collective coordinate
reduction with one collective coordinate, which results
in an analytic expression for the relationship between
the actual and estimated values of the critical coupling
strength Kg, and, hence, a means to correct the stan-
dard collective coordinate approach. In Section V we de-
scribe a mesoscopic collective coordinate approach with
four collective coordinates that we show accurately de-
scribes the temporal phase dynamics of the full system.
Lastly, in Section VI we summarize our results.

II. THE MODEL

In the widely-studied Kuramoto model8–15 the dynam-
ics of each oscillator i with phase φi is governed by

φ̇i = ωi +
K

N

N∑
j=1

Aij sin(φj − φi), (1)

where ωi is the natural frequency, drawn from a prob-
ability distribution g(ω), K is the coupling strength, N
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is the total number of oscillators and A is the network
adjacency matrix. Note that through a change of coordi-
nates into a rotating reference frame, φi(t)→ φi(t)−Ω t,
where Ω = 1

N

∑
ωi is the mean frequency, we may as-

sume without loss of generality that the mean frequency
Ω is zero. Here we consider normally distributed natural
frequencies g(ω) ∼ N (0, σ2), and in all computations we
take σ2 = 0.1.

We now analyze the degree one break-off of node 1 for
networks of the form Fig. 1. The evolution equation for
φ1 becomes

φ̇1 = ω1 +
K

N
sin(φ2 − φ1), (2)

and so it is clear that two solutions to φ̇1 = 0 exist for
K > Kg = |ω1|N , namely

φ2 − φ1 = arcsin

(
ω1N

K

)
, π − arcsin

(
ω1N

K

)
. (3)

At K = Kg these two solutions coincide, both equaling
π/2, and for K < Kg there are no solutions to φ̇1 = 0,
indicating that φ1 is no longer synchronized. This tran-
sition describes the saddle-node bifurcation from global
synchronization to partial synchronization that occurs at
K = Kg = |ω1|N . This can also be shown by considering
the Kuramoto model (1) in phase difference coordinates
Φi = φi+1 − φi for i = 1, . . . , N − 1. Under this change
of coordinates and with the network structure in Fig. 1
the Kuramoto model becomes

Φ̇1 = ∆ω1 +
K

N
(−2 sin Φ1 + F1 (Φ2, . . . ,ΦN−1))

Φ̇2 = ∆ω2 +
K

N
(sin Φ1 + F2 (Φ2, . . . ,ΦN−1)) (4)

Φ̇j = ∆ωj +
K

N
Fj (Φ2, . . . ,ΦN−1) , j = 3, . . . , N − 1,

where ∆ωi = ωi+1 − ωi, and each function Fi is a linear
combination of sine functions of the form sin(

∑b
j=a Φj).

The important feature is that the functions Fi do not
depend on Φ1. Linearizing around Φ = 0, the Jacobian
of this differenced system is

J =
K

N


−2 cos Φ1

∂F1

∂Φ2

∂F1

∂Φ3
. . .

cos Φ1
∂F2

∂Φ2

∂F2

∂Φ3
. . .

0 ∂F3

∂Φ2

∂F3

∂Φ3
. . .

...
...

...
. . .

 . (5)

At Φ1 = π/2, J has a zero eigenvalue with correspond-
ing eigenvector (1, 0, 0, . . . ), and det J changes sign
crossing the hyperplane Φ1 = π/2, meaning at least one
eigenvalue changes sign and a saddle-node bifurcation
has occurred. This description using the differenced
system (4) and its Jacobian (5) will be essential to the
mesoscopic collective coordinate approach described in
Section IV.
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FIG. 2. Degree distribution for a modified Barabási-Albert
network with m1 = 1 and m2 = 4 for N = 2000 nodes. The
graph uses log-log axes to highlight the power law scaling
n ∼ da.

We now describe the two types of networks used in our
computations and analysis, Erdős-Rényi networks and
modified Barabási-Albert networks.

A. Erdős-Rényi networks

In an Erdős-Rényi (ER) network24, each node in a sim-
ply connected network is connected to each other node
with probability 0 < p ≤ 1. Therefore, the mean degree
of the network is k = (N − 1)p. For p ≈ 1 the network
is dense, with p = 1 corresponding to all-to-all coupling.
For sufficiently small p, the network is sparse and there
are likely to be several degree one nodes leading to a
structure as in Fig. 1.

For sparse networks with p� 1 the minimum degree of
the network can be greater than one. We will show that
our method for correcting Kg obtained via the standard
collective coordinate approach still applies to these net-
works with minimum degree greater than one, and which
do not have the form shown in Fig. 1.

B. Modified Barabási-Albert networks

Barabási-Albert (BA) networks25 are scale-free graphs
generated through preferential attachment. These graphs
capture the power law degree distribution that is ob-
served in many real world networks. In the standard
BA construction, a small random seed network with m0

nodes is specified, then each new node is attached to
m ≤ m0 existing nodes, with preference to high degree
nodes. Thus the minimum degree of any node is m and
the mean degree is k = 2m. We modify the preferential
attachment protocol in order to gain independent control
of the minimum degree and the mean degree. We modify
the BA algorithm by specifying that each new node con-
nects to i existing nodes, where 1 ≤ m1 ≤ i ≤ m2 ≤ m0
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is drawn uniformly randomly for each new node node (m1

and m2 are parameters that replace the parameter m).
This means that instead of a minimum degree equal tom,
the minimum degree ism1, which can be 1 if desired, and
the mean degree is k = m1 +m2. This modification pre-
serves the scale-free property of the networks generated,
as demonstrated by the power law degree distribution
n ∼ da shown in Fig. 2, while at the same time allowing
small minimum degrees and independent control of the
minimum and mean degrees.

III. COLLECTIVE COORDINATE MODEL REDUCTION

The general idea of the collective coordinate approach
is to specify a low-dimensional, judiciously chosen, ansatz
manifold. The dynamics within the ansatz manifold is
then determined via orthogonal projection of the full
system17. Thus the approach can be thought of as a
Galerkin approximation.

We now detail how to perform the collective coordinate
approximation. For K > Kg, such that all oscillators are
synchronized, it is natural to consider an ansatz consist-
ing of a single synchronized cluster. A suitable ansatz
manifold is found by linearizing the full Kuramoto model
(1) about φi = φj for all i and j, i.e.,

φ̇ ≈ ω − K

N
Lφ, (6)

where

L = D −A

is the graph Laplacian with D being the diagonal degree
matrix19. The synchronized (stationary) solution of (6)
is given by

φ ≈ N

K
L+ ω, (7)

where L+ denotes the pseudo-inverse of L. The vector
φ̂ = L+ ω provides a basis for the ansatz manifold, so
that the full ansatz manifold is given by

φ ≈ α(t)φ̂, (8)

where α(t) is called the collective coordinate. Note that
the factor N/K in (7) is absorbed by α. The dynamics
of α is found by minimizing the error associated with
restricting the phase space to the ansatz manifold. The
error vector is given by

Ei = α̇φ̂i − ωi −
K

N

N∑
j=1

Aij sin
(
α(φ̂j − φ̂i)

)
, (9)

for i = 1, . . . , N , and is minimized provided that it is
orthogonal to the space spanned by the ansatz manifold
given by (8), i.e., 〈φ̂,E〉 = 0, where 〈u,v〉 = uTv denotes

the Euclidean inner product. Orthogonality yields the
evolution equation

α̇ =
〈φ̂,ω〉
〈φ̂, φ̂〉

+
K

N〈φ̂, φ̂〉

N∑
i,j=1

φ̂iAij sin
(
α(φ̂j − φ̂i)

)
,

(10)
which is a one-dimensional ordinary differential equa-
tion for the collective coordinate α. This approach has
been successfully used to approximate the collective dy-
namics of the Kuramoto model17,21, including general-
izations that describe the inter- and intra-cluster dy-
namics that results from topological clustering19 or fre-
quency clustering20. The approach has also been success-
fully applied to the stochastic Kuramoto model18 and the
Kuramoto-Sakaguchi model22 which includes phase frus-
tration.

Synchronized states of the full Kuramoto model (1)
are approximated via the collective coordinate framework
by stable stationary solutions of the evolution equation
(10). As well as approximating synchronized solutions,
the evolution equation (10) also describes the approxi-
mate dynamics of the system, encoding information such
as the relaxation rate of perturbations away from syn-
chronized solutions and bifurcation structure when sta-
bility is lost17–22. The collective coordinate method is
designed to capture the dynamics of synchronized states.
At the bifurcation point K = Kg, from global synchro-
nization to partial synchronization, the dynamics of in-
dividual oscillators, or a small group of oscillators, that
break off from the synchronized cluster becomes impor-
tant. For instance, we will show that the standard collec-
tive coordinate approach results in large errors (25−35%)
in the estimation ofKg for sparse networks. In Section IV
we will show how this error can be corrected.

The critical coupling strength Kg corresponding to
global synchronization can be approximated via the col-
lective coordinate approach through a combination of two
criteria19.

Definition 1. Under the collective coordinate descrip-
tion, Kg is the smallest value of K such that

(i) A stable stationary solution α∗ to (10) exists and,

(ii) The approximation φ∗ = α∗φ̂ of the synchronized
state is stable in the full Kuramoto model.

The second criterion reflects the fact that even if the
solution α∗ is stable under the reduced dynamics (10),
the state φ∗ = α∗φ̂ may not be stable in the full system
(1), as quantified by the eigenvalues of the Jacobian of
(1) evaluated at φ∗, i.e.,

(Llin)ij =
K

N

−
∑N
k=1Aik cos

(
α∗(φ̂k − φ̂i)

)
, i = j

Aij cos
(
α∗(φ̂j − φ̂i)

)
, i 6= j

(11)
The matrix Llin always has one zero eigenvalue, and if
all the other eigenvalues are negative then the state φ∗
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is stable in the full system and the second criterion is
met. If a single eigenvalue is positive then the state φ∗
is unstable in the full system and the second criterion is
not met. This second stability criterion detects if the full
system has already undergone a saddle-node bifurcation,
such that the synchronized state loses stability. The node
that is first to break off from the synchronized can be
identified using this criterion as the dominant term in the
eigenvector corresponding to the unstable eigenvalue19.

We denote the critical coupling strength corresponding
to the bifurcation from global synchronization to par-
tial synchronization obtained from the full model (1) by
KKM
g , and the critical coupling strength obtained from

the collective coordinate method by KCC
g . We compute

KKM
g and KCC

g for many realizations of random net-
work topologies and random natural frequencies. For the
full model, KKM

g is computed numerically by finding the
smallest value of K such that (1) admits a stable sta-
tionary solution26. In all cases the natural frequencies
are drawn from a Gaussian distribution with variance
σ2 = 0.1 and are uniformly shifted so that

∑
ωi = 0.

The random network topologies consist of ER networks
and modified BA networks of various sizes N and mean
degree k. When we generate networks for our numeri-
cal simulations, we do not enforce the structure of Fig. 1
on the networks. Some, but not all, networks will have
at least one degree 1 node, but, as we will show, the re-
sults also apply to sparse networks with minimum degree
greater than 1. In the case of BA networks we explic-
itly control the minimum degree through the parameter
m1. Fig. 3 shows KKM

g vs KCC
g for sparse networks,

such that k � N . For all values of k and N , and both
ER and BA networks, we observe an approximately lin-
ear relationship between KKM

g and KCC
g . For the sparse

BA networks the minimum degree is controlled, and, as
expected, networks with a minimum degree m1 = 1 (or-
ange) have higher values of Kg compared to those with
m1 = 2 (green). For the ER networks (blue), the min-
imum degree is not controlled. For k = 5 most ER
networks have minimum degree equal to one (66% for
N = 100, 78% for N = 200 and 89% for N = 400) and so
there is significant overlap between the data-sets for ER
and BA networks. For k = 10 the ER networks typically
have minimum degree greater than two, and so the Kg

values are smaller than for the BA networks. Of particu-
lar importance, the relationship between KKM

g and KCC
g

does not depend strongly on either the network construc-
tion (ER vs BA) or the minimum degree of the network.
Note, for instance, that all of the ER networks generated
with N = 100 and k = 10 have minimum degree greater
than one, but they follow the same trend as the BA net-
works with minimum degree equal to one. In Section IV
we derive an analytic expression for this relationship be-
tween KKM

g and KCC
g , assuming that the network has

the structure in Fig. 1.
For dense networks, there is still a positive correlation

between KCC
g and KKM

g , as shown in Fig. 4 for ER net-
works with coupling probability p = 0.95. However, there

is much more deviation compared to the results for sparse
networks shown in Fig. 3, especially for smaller networks
(N = 100) in which finite size effects have a greater im-
pact. For the dense networks used in Fig. 4, the error in
approximating the true vale KKM

g by the collective coor-
dinate approach KCC

g is in the range 10− 25%, which is
significantly more accurate than for the sparse networks
in Fig. 3 for which the error is 25 − 35%. Therefore, we
will focus our analysis on sparse networks.

IV. MESOSCOPIC ANSATZ FUNCTION FOR A SINGLE
COLLECTIVE COORDINATE

We now describe a method that incorporates known
ensemble information about the network and natural fre-
quencies, together with knowledge of which node is most
susceptible to desynchronization, to significantly reduce
the computational complexity of the evolution equation
(10) while preserving the most important information.
We assume as in the standard collective coordinate ap-
proach in Section III a single collective coordinate α(t)
with linearized ansatz manifold (8) describing the main
synchronized cluster. We shall use here the particular
structure of the network (cf. Fig. 1) to modify the ansatz
manifold (8) by taking ensemble averages over realiza-
tions of the network structure A and natural frequencies
ω. This significantly reduces the complexity and we will
see that the reduced description also determines the ap-
proximately linear relationship between KKM

g and KCC
g ,

which can be used to correct approximations KCC
g ob-

tained from the full description (10). The reduction pro-
ceeds as an averaging over many realizations of the ran-
dom graph and random frequencies under the assumption
that the networks have the structure shown in Fig. 1,
where |ω1| is such that node 1 is the first to desynchro-
nize. Averaging over many realizations of graphs with
mean degree k, the mean connectivity between any two
nodes, excluding node 1, is equal to p = k/(N −1). Here
we will denote the average of a variable x over many real-
izations of random networks and random frequencies by
〈x〉. The averaged structure of the network has adjacency
matrix 〈A〉 such that

〈A〉12 = 〈A〉21 = 1,

〈A〉1j = 〈A〉j1 = 0, j > 2, (12)
〈A〉ii = 0, 1 ≤ i ≤ N,
〈A〉ij = p, otherwise.

Note that the ensemble averaged adjacency matrix (12)
is identical for both ER and BA networks, and so some
information about the degree distribution, such as the
presence of hubs, is lost in the ensemble average. We will
see that our averaging method, leading to the adjacency
matrix (12) is highly accurate for both ER and BA net-
works, suggesting that the information lost does not con-
tribute significantly to the outcome. We remark that in
order to retain information about eventual hubs, one may
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FIG. 3. Critical coupling strength Kg in sparse networks obtained from the full Kuramoto model (1), denoted KKM
g , and

obtained via the collective coordinate approach (10), denoted KCC
g for different numbers of oscillators N , mean degree k, and

network structures. Results are shown for 100 realizations each of Erdős-Rényi graphs (blue) and modified Barabási-Albert
graphs with minimum degree m1 = 1 (orange) and m1 = 2 (green). In all plots both the network structure A and the
natural frequencies ωi are randomly realized. Note that there is significant overlap between the data-sets, especially for k = 5.
(a,b) N = 100, (c,d) N = 200, (e,f) N = 400. (a,c,e) k = 5, (b,d,f) k = 10.

compute the ensemble average by retaining the degrees
of each node by prescribing the degrees ki of the nodes,
following the specified degree distribution, and averag-
ing over network structures with those nodal degrees15,27.
Having obtained the averaged adjacency matrix (12), it
can then be shown that the pseudo-inverse of the aver-
aged graph Laplacian 〈L〉 is given by 〈L〉+ = B/(pN2)

where

B11 = N − 2 + p(N − 1)2,

B1j = Bj1 = N − 2− p(N − 1), j > 1,

B22 = N − 2 + p,

B2j = Bj2 = p− 2, j > 2,

Bjj = p+N +
2

N − 1
, 3 ≤ j ≤ N,

Bij = Bji = p− N − 2

N − 1
, 3 ≤ i < j ≤ N.

The natural frequencies are written as

ω = (ω1, ω2,Ω3 + ξ3, . . .Ω3 + ξN )

where Ω3 = 1
N−2

∑N
j=3 ωj is the mean frequency of the

remainder of the network and ξ3, . . . , ξN denote devia-
tions from the mean. Since the total mean frequency
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FIG. 4. Critical coupling strength Kg in dense networks ob-
tained from the full Kuramoto model (1), denoted KKM

g , and
obtained via the collective coordinate approach (10), denoted
KCC

g for different numbers of oscillators N for Erdős-Rényi
networks with p = 0.95. Results are shown for 100 realiza-
tions of the network structure Aij and the natural frequencies
ωi. (a) N = 100, (b) N = 200, (c) N = 400.

may always be set to zero through a suitable change of
coordinates, we have that

Ω3 = −ω1 + ω2

N − 2
. (13)

For any function f , averaging over frequency realizations
yields the identity〈

1

N − 2

N∑
j=3

f(ξj)

〉
=

∫ ∞
−∞

f(ξ)(g(ξ)− µ)dξ (14)

where g(ξ) is the probability density function from which
the natural frequencies ωi are drawn, and µ is its mean.
Here the frequencies are drawn from a Gaussian distribu-
tion g(ω) with mean µ = 0 and variance σ2. In particular,

for f(ξ) = ξ and f(ξ) = ξ2 (14) yields the averaged mean
and averaged variance〈

1

N − 2

N∑
j=3

ξj

〉
= 0, (15)

〈
1

N − 2

N∑
j=3

ξ2
j

〉
= σ2. (16)

Similarly, we obtain〈
1

N − 2

N∑
j=3

sin(ξj)

〉
= 0, (17)

〈
1

N − 2

N∑
j=3

cos(ξj)

〉
= e−σ

2/2. (18)

Having computed the averaged graph Laplacian 〈L〉
and its pseudo-inverse 〈L〉+, we may compute the aver-
aged collective coordinate ansatz function φ̂ = 〈L〉+ω
for a given realization of frequencies ω = (ω1, ω2,Ω3 +
ξ3, . . . ,Ω3 + ξN ). After some algebra, it can be shown
that

φ̂1 =
1

pN
((p(N − 1) + 1)ω1 + ω2)

φ̂2 = − 1

pN
(pω1 + (N − 2)Ω3) (19)

φ̂j =
1

pN
(−pω1 + 2Ω3) +

1

p(N − 1)
ξj , j = 3, . . . , N.

Substituting this ansatz function and the averaged ad-
jacency matrix 〈A〉 (12) into the collective coordinate
evolution equation (10), and averaging over frequency re-
alizations using (15)-(18), yields the simplified evolution
equation for the collective coordinate

α̇ =
a− bKN

c
, (20)

where

a =ω2
1 +

N − 2

p
Ω2

3 +
(N − 2)σ2

(N − 1)p
,

b =
α(N − 2)σ2E

(N − 1)2p

(
(N − 2)E + cos

(
αΩ3

p

))
+

ω1 sin(αω1) + (N − 2)EΩ3 sin

(
αΩ3

p

)
, (21)

c =
(N − 1)ω2

1

N
− 2(N − 2)ω1Ω3

Np
+

N − 2

p2

(
σ2

(N − 1)2
+

2Ω2
3

N

)
,

with

E = exp

(
−1

2

(
ασ

(N − 1)p

)2
)
.
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Here we have used the zero mean frequency condition
(13) to eliminate ω2 as a parameter (ω2 = −ω1 − (N −
1)Ω3). The reduced evolution equation (20) has far fewer
parameters than the standard collective coordinate evo-
lution equation (10), six parameters compared to N2 +N
parameters. In addition, there are no summations in the
reduced equation (20) while there is a double summation
over N terms in the standard equation (10). Therefore,
the reduced equation is vastly less computationally com-
plex (O(1)) compared to the standard equation (O(N2)).

The result of the averaging process is demonstrated
in Fig. 5(a,b), where the gray curves show the right
hand side of the standard evolution equation (10) for
100 realizations of random Erdős-Rényi graphs and ran-
dom frequencies, keeping the coupling strength K = 60
fixed. The random graphs have N = 100 and k = 5,
and all are constructed to have the structure shown in
Fig. 1. The random frequencies ωi are drawn such that
ω1 and ω2 are kept fixed, while the remainder of the
frequencies are drawn randomly from the Gaussian dis-
tribution g(ω) with variance σ2 = 0.1. The frequencies
ω3, . . . , ωN are then uniformly shifted to ensure the zero
mean frequency condition (13) is satisfied, i.e., so that
Ω3 = −(ω1 + ω2)/(N − 2). We present here results for
ω1 = −0.677 and ω2 = 0.0434, implying Ω3 = 0.00646.
The thick blue curves in Fig. 5(a,b) show the right hand
side of the averaged equation (20). We observe that while
the averaged curve is not the average of the realizations
for all values of α, it is close to the average of the realiza-
tions near the intercept α̇ = 0 (Fig. 5(b)). Considering
the histogram of such stationary points, i.e., α∗ such that
α̇(α∗) = 0, which is shown in Fig. 5(c) for the 100 realiza-
tions, we observe that their mean, which is α∗ = 1.753,
agrees with the stationary solution of the averaged evolu-
tion equation (20) (vertical dashed line at α∗ = 1.754). It
is arguably this stationary solution that is the most im-
portant aspect of the collective coordinate framework, as
it determines the approximate synchronized state, and is
critical in determining Kg through the collective coordi-
nate method. The small range of stationary point values
produced by all the realizations of the network structure
and natural frequencies indicates that the macroscopic
dynamics of the full Kuramoto model (1) is insensitive to
changes in the network structure and the natural frequen-
cies of nodes 3, . . . , N , as long as the statistical properties
(k, Ω3 and σ2) are unchanged. This is further evidence
that the averaging approach is justified. We remark that
changing the value of the coupling strength K does not
qualitatively change the results of Fig. 5, the station-
ary points of the individual realizations (10) still agree
strongly with the stationary point of the averaged equa-
tion (20). The only difference is that as K increases, the
minima of all curves decrease, and the stationary points
shift toward α = 0.

The simplification achieved by averaging allows to find
the relationship between KCC

g and KKM
g for sparse net-

works as observed in Fig. 3, and, hence, correct the es-
timate KCC

g without needing to know which node will
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FIG. 5. (a,b) 100 realizations of the collective coordinate
evolution equation (10) (light gray) for coupling strengthK =
60 and Erdős-Rényi networks with N = 100 and k = 5 such
that node 1 has degree one and is connected to node 2, and
natural frequencies such that ω1 = −0.677, ω2 = 0.0434 and
ω3, . . . , ωN are drawn randomly from a Gaussian distribution
with variance σ2 = 0.1 and such that

∑N
i=1 ωi = 0. The

reduced collective coordinate evolution equation (20) is shown
in dark blue. (b) Subregion of (a) near the α̇ = 0 intercept.
(c) Histogram of the stationary points α∗ such that α̇(α∗) = 0
for the 100 realizations in (a,b). The intercept point α∗ =
1.754 of the reduced equation (20) is shown as the vertical
dashed line.

desynchronize first. In Section II it was shown that for
networks with structure as in Fig. 1 such that node 1 is
the first to desynchronize we have KKM

g = |ω1|N . To
determine KCC

g we must consider the two criteria in Def-
inition 1. We consider criterion (ii) of Definition 1, sta-
bility of the approximate solution φ̂∗ = α∗φ̂ in the full
Kuramoto model (1), where α∗ is the stationary point of
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the collective coordinate evolution equation (20), because
this criterion is stronger than criterion (i). Stability in
the full Kuramoto model (1) is determined by the eigen-
values of Llin (11), or, equivalently, the eigenvalues of the
Jacobian J of the phase-difference system, given by (5)
for networks with the structure in Fig. 1. Following the
same analysis as in Section II, at Φ1 := φ2 − φ1 = π/2,
J has a zero eigenvalue and det J changes sign cross-
ing the hyperplane Φ1 = π/2. Therefore, stability of
φ̂∗ = α∗φ̂ is lost exactly when Φ̂∗, defined component-
wise by Φ̂∗i = φ̂∗i+1 − φ̂∗i , coincides with the hyperplane
Φ1 = π/2, such that α∗(φ̂2 − φ̂1) = π/2. As such, KCC

g

is the value of K such that

α̇|α=(π/2)/(φ̂2−φ̂1) = 0. (22)

The condition (22) is valid for both the standard col-
lective coordinate evolution equation (10), provided the
network has the structure in Fig. 1, and for the reduced
collective coordinate evolution equation (20). Whereas
this expression is intractable for the standard collective
coordinate approach, requiring all the microscopic pa-
rameters Aij and ωi, it is readily available for the meso-
scopic reduction (20). For the mesoscopic description the
solution is

KCC
g (ω1,Ω3, N, p, σ

2) =
aN

b

∣∣∣∣
α=(π/2)/(φ̂2−φ̂1)

(23)

such that a and b are as in (21). We explicitly state all
the parameters that KCC

g depends on via a and b. This is
a computationally simple solution, although writing the
full expression is tedious.

Since KKM
g = |ω1|N , we have ω1 = KKM

g /N (assum-
ing, without loss of generality, that ω1 > 0). In addition,
from the zero mean frequency condition (13) we have

Ω3 = −ω1 + ω2

N − 2
≈ − ω1

N − 2
= −

KKM
g /N

N − 2
.

Substituting these expressions for ω1 and Ω3 into (23)
yields the relationship between KCC

g and KKM
g as follows

KCC
g (KKM

g ;N, p, σ2) =
aN

b

∣∣∣∣
α =

π/2

φ̂2−φ̂1
, ω1 =

KKM
g
N ,

Ω3 = −
KKM
g /N

N−2

,

(24)
which depends only on the ensemble parameters N , p
and σ2. This relationship is shown in Fig. 6 for the same
values of N and k = (N − 1)p as the first two columns of
Fig. 3, overlaying the data from Fig. 3 for random real-
izations of network structures and frequencies. It is clear
that the simple relationship (24) accurately captures the
approximately linear relationship observed from the ran-
dom realizations in Fig. 3.

In our elimination of Ω3 to obtain (24) through the sub-

stitution Ω3 = −K
KM
g /N

N−2 we ignore variations in Ω3 that
result from ω2 6= 0. This is justified because variation

in Ω3 has a negligible effect on the relationship between
KCC
g and KKM

g (results not shown).
For the dense networks considered in Fig. 4 with p =

0.95 we find that the relationship (24) does not accurately
capture the trend betweenKCC

g andKKM
g . This is shown

in Fig. 7. It is not surprising that the description (24) is
poor in these cases, because their dense network struc-
tures are far from the assumed structure shown in Fig. 1
which has a degree one node. The probability of a degree
one node existing scales as (1− p)N , which is extremely
small for p ≈ 1 and large N . Similarly, the probability of
low degree nodes with degree greater than one are very
small.

Discussion

We propose the relationship (24) as a means to correct
KCC
g obtained from the standard collective coordinate

description (10). That is, given KCC
g obtained from (10)

and only knowledge of N , p and σ2, we can invert (nu-
merically) (24) to obtain an improved approximation to
KKM
g . Using (24) to correct the standard collective co-

ordinate approach has the advantage that it requires no
knowledge of the microscopic dynamics of the full system.
In particular, one does not need any prior knowledge of
which node is the first to desynchronize.

In addition, the relationship between KCC
g and KKM

g

is not only valid for networks of the form Fig. 1, but
also for sparse networks in which the node that breaks
off has degree greater than 1. This is demonstrated in
Fig. 6 by the BA networks with minimum degree m1 = 2
and by the ER networks, many of which have minimum
degree greater than one when N = 100. For networks
with minimum degree greater than 1, and for which there
are many low degree nodes, determining which node will
be the first to desynchronize is more complex, requir-
ing computation of the eigenvalues and eigenvectors of
the Jacobian for coupling strengths close to the critical
coupling strength Kg. On the other hand, the standard
collective coordinate method avoids this computation, as
it does not require knowledge of the most susceptible
node. So, from a practical standpoint, it is beneficial to
use the standard collective coordinate approach and the
correction given by (24).

V. MESOSCOPIC ANSATZ FUNCTION FOR FOUR
COLLECTIVE COORDINATES

In the previous section we obtained a correction to the
critical coupling strength for the standard collective co-
ordinate approach. However, the temporal dynamics of
the full system near the bifurcation at Kg are still not
well described by a single collective coordinate. To ac-
curately describe the dynamics we consider a new meso-
scopic ansatz function with four collective coordinates.
This derives from the collective coordinate approach to
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FIG. 6. The relationship KCC
g (KKM

g ;N, p, σ2) described by (24) (continuous black curve) for sparse networks with the same
values of N and k = (N − 1)p as in Fig. 3, together with the data in Fig. 3 obtained from random realizations of network
topologies (both Erdős-Rényi topologies (blue points) and modified Barabási-Albert topologies (orange points for m1 = 1 and
green points for m1 = 2)) and natural frequencies. (a,b) N = 100, (c,d) N = 200, (e,f) N = 400. (a,c,e) k = 5, (b,d,f) k = 10.

treating multiple interacting synchronized clusters17,20,
as occurs for multimodal frequency distributions or topo-
logical clustering. The difference here is that two of the
“clusters” consist of individual nodes, nodes 1 and 2 in
a network of the form Fig. 1. The third cluster consists
of the remainder of the nodes (nodes 3, . . . , N). Our de-
scription here is mesoscopic in the sense that it captures
the microscopic details of nodes 1 and 2, but only the
macroscopic detail of nodes 3, . . . , N .

The mesoscopic collective coordinate ansatz function
is

φ ≈ φ̂ = f1(t)χ1 + f2(t)χ2 + f3(t)χ3 + α3(t)S3, (25)

where χi is the indicator vector for each cluster, i.e., χ1 =
(1, 0, 0, . . . ), χ2 = (0, 1, 0, . . . ) and χ3 = (0, 0, 1, 1, . . . ),
fi(t) describes the mean phase of the i-th cluster, α3(t)
is a dilation parameter which controls the shape of the
synchronized third cluster together with the shape vector
S3 = (0, 0, θ̂3). Ordinarily, there would be shape vectors

and dilation parameters for all the clusters, but here clus-
ters 1 and 2 consist of single nodes and so do not require a
description of the cluster shape. The ansatz (25) reduces
the dynamics from N variables down to four collective
coordinates.

The shape function θ̂3 for the third cluster is derived
by considering the third cluster in isolation (i.e., ignoring
nodes 1 and 2) and solving the resultant linearized system
(as for the single cluster case (6)-(7)), yielding

θ̂3 = L+
3 ω3, (26)

where

L3 = D3 −A3

is the (N −2)× (N −2) graph Laplacian of the subgraph
obtained by removing nodes 1 and 2 from the graph A,
and ω3 = (ω3, . . . , ωN ). The ansatz manifold φ̂, onto
which the dynamics of the full system is projected, is
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FIG. 7. The relationship KCC
g (KKM

g ;N, p, σ2) described by
(24) (continuous black curve) for dense networks with the
same values of N and p = 0.95 as in Fig. 4, together with the
data in Fig. 4 obtained from random realizations of Erdős-
Rényi network topologies and natural frequencies. (a) N =
100, (b) N = 200, (c) N = 400.

spanned by the four vectors, χ1,2,3 and S3, forming an
orthogonal basis. Orthogonality of χ3 and S3 results
from the fact that L3 is a graph Laplacian and there-
fore has a zero eigenvalue with corresponding eigenvector
(1, 1, . . . ).

The error vector associated with restricting the phase
space of the full Kuramoto model (1) to the ansatz man-
ifold is given by

Ei =
3∑
j=1

ḟjχ
(i)
j + α̇3S(i)

3 − ωi −
K

N

N∑
j=1

Aij sin
(
φ̂j − φ̂i

)
,

(27)
for i = 1, . . . , N . This error is minimized when it is
orthogonal to the ansatz manifold, i.e., when 〈E ,χ1,2,3〉 =

0 and 〈E ,S3〉 = 0. These orthogonality conditions yield
the evolution equations for the collective coordinates with

ḟ1 = ω1 +
K

N
sin(f2 − f1), (28)

ḟ2 = ω2 +
K

N

sin(f1 − f2) +

N∑
j=3

A2j sin(φ̂j − f2)

 ,

(29)

ḟ3 = Ω3 +
K

N(N − 2)

N∑
k=3

N∑
j=2

Ajk sin(φ̂j − φ̂k), (30)

α̇3 =
θ̂T3 ω3

θ̂T3 θ̂3

+
K

N θ̂T3 θ̂3

N∑
k=3

N∑
j=2

S(k)
3 Ajk sin(φ̂j − φ̂k),

(31)

where Ω3 = 1
N−2

∑N
j=3 ωj as before. Unlike the collective

coordinate description with a single collective coordinate
(10), the evolution equations (28)-(31) require knowledge
of the oscillator most susceptible to desynchronization in
order to distinguish nodes 1 and 2. Furthermore, the
three cluster description requires the network to have the
form Fig. 1, which is not required for the standard col-
lective coordinate description. We assume here that we
have prior knowledge of the node that is first to desyn-
chronize. In Section III we explained how to obtain the
critical node through the standard collective coordinate
framework using the eigenvectors of Llin (11).

Following a similar procedure to Section IV, a sig-
nificant simplification to the evolution equations (28)-
(31) is possible by averaging the network structure and
natural frequencies over many realizations. The aver-
aged network structure Aij is as in (12), and frequen-
cies are written again in the form ω = (ω1, ω2,Ω3 +
ξ3, . . . ,Ω3 + ξN ). After averaging the network structure,
the subnetwork for nodes 3, . . . , N has adjacency matrix
〈A3〉 = p(1TN−21N−2−IN−2), i.e., 〈A3〉 represents an all-
to-all connected graph with uniform connection weight
p. It can be shown that 〈L3〉+ = 1

(N−2)2p2 〈L3〉, which
results in

θ̂3 = 〈L3〉+ω3 =
1

(N − 2)p
(ξ3, . . . , ξN )T . (32)

Substituting θ̂3 into the evolution equations (28)-(31)
and averaging over frequency realizations using the iden-
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tities (15-(18)) we obtain the reduced set of equations

ḟ1 = ω1 +
K

N
sin(f2 − f1), (33)

ḟ2 = ω2 +
K

N

(
sin(f1 − f2) +

(N − 2)p sin(f3 − f2)e−
β23σ

2

2

)
, (34)

ḟ3 = Ω3 +
K

N
p sin(f2 − f3)e−

β23σ
2

2 , (35)

β̇3 = 1−K
N
pβ3e

− β
2
3σ

2

2

(
cos(f2 − f3) + (N − 2)e−

β23σ
2

2

)
,

(36)

where we have rescaled the dilation parameter α3 by let-
ting β3(t) = 1

(N−2)pα3(t). This simplified description
provides a significant reduction in computational com-
plexity, compared to both the full Kuramoto model (1)
and the full collective coordinate description (28)-(31).

Note that equations (28) and (33) for ḟ1 are identical,
and have the same form as the equation for φ̇1 in the
full Kuramoto model (1). Therefore, by the same rea-
soning as in Section II we obtain KCC

g = KKM
g = |ω1|N ,

with a saddle-node bifurcation occurring in the collective
coordinate dynamics (28)-(31) at K = KCC

g .
To show that the reduced mesoscopic equations (33)-

(36) accurately capture the dynamics of the full Ku-
ramoto model (1), we compare trajectories of the full sys-
tem with trajectories of the reduced system. We will con-
sider both coupling strengths K > Kg, such that there
is convergence to a stationary state, and K < Kg, such
that node 1 desynchronizes resulting in non-stationary
dynamics. For the full Kuramoto model (1), in each
case we consider trajectories for 1000 realizations of ran-
domly drawn frequencies and randomly generated net-
works with N = 100 oscillators. As in Section IV, for the
frequencies, we fix the values ω1 = −0.677, ω2 = 0.0434,
Ω3 = 0.00646, and σ2 = 0.1, and randomly draw the
remaining frequencies ω3, . . . , ωN from a normal distri-
bution with variance σ2, and enforce that the mean fre-
quency 1

N−2

∑N
j=3 ωj = Ω3. For the network structure,

we generate networks with the form in Fig. 1, such that
the subnetwork for nodes 2, . . . , N is an Erdős-Rényi net-
work with p = 0.05. For these systems, the critical cou-
pling strength is Kg = N |ω1| = 67.7. Fig. 8 shows the
trajectories of the phases for K = 70 > Kg, with all
trajectories having the same initial condition. The tra-
jectories of the reduced mesoscopic system (33)-(36) are
shown by dashed curves, such that φ1 (blue), φ2 (orange),
and ψ3 (green) correspond to the collective coordinates
f1, f2, and f3, respectively. For the full model, we show
statistical information from the 1000 realizations, and
note that ψ3 is used to denote the mean phase of nodes
3, . . . , N , i.e.,

ψ3 = arg

 1

N − 2

N∑
j=3

eiφj

 . (37)

Fig. 8(a) shows the median curves (solid thick curves) for
each of φ1 (blue), φ2 (orange) and ψ3 (green), such that
we compute the median of the 1000 trajectories at each
time instant. We see very good agreement between the
median trajectories of the full Kuramoto model and the
trajectories of the reduced system (33)-(36). Figs. 8(b)-
8(d) show more detailed statistical information for the
trajectories of φ1, φ2 and ψ3, respectively. The shading
in each figure corresponds to quantile ranges, such that
the darkest shading corresponds to the quantile range
0.45 − 0.55 (containing the median), and each succes-
sive decrease in the darkness corresponds to a quantile
range that also contains 10% of the trajectories. We ob-
serve that most trajectories are contained within a nar-
row range, and this narrow range agrees very well with
the reduced system (33)-(36). We checked that outlying
trajectories correspond to pathological realizations of the
frequencies and network, such as having node 2 connected
to only a single node in the main synchronized cluster,
resulting in nodes 1 and 2 desynchronizing as a pair.

For the desynchronized state withK = 65 < Kg, Fig. 9
shows the corresponding trajectories and statistical infor-
mation, as for Fig. 8. The same random frequencies and
network structures are used, and the same initial condi-
tion for all trajectories is used. In this case the dynam-
ics is non-stationary, with oscillator 1 having desynchro-
nized from the rest of the oscillators. We again observe
very good agreement between the median of the trajec-
tories of the full Kuramoto model (thick solid curves in
Fig. 9(a)) and the trajectories of the reduced mesoscopic
system (33)-(36) (dashed curves). Furthermore, consid-
ering the quantile ranges in Figs. 9(b)-9(d), most tra-
jectories of the full Kuramoto model (1) fall within a
narrow range, which contains the trajectories of the re-
duced mesoscopic system (33)-(36). The results for both
K > Kg and K < Kg show that the greatly simplified
mesoscopic model (33)-(36), which incorporates only the
ensemble statistics of the frequencies and network struc-
ture for nodes 3, . . . , N , is able to accurately reproduce
the dynamics of the full Kuramoto model in most cases.
This highlights that the specific details of the collectively
organised main cluster is unimportant to the resultant
dynamics.

The reduced mesoscopic collective coordinate system
(33)-(36) can be further simplified using a time-scale
splitting between the phase dynamics of f1,2,3 and the or-
der parameter r3(t) of the third cluster (nodes 3, . . . , N),
similar to the time-scale splitting derived previously20.
The collective coordinate approximation yields an order
parameter r3 of the third cluster given by

r3 =

∣∣∣∣∣∣ 1

N − 2

N∑
j=3

eiα3Φ̂
(j)
3

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1

N − 2

N∑
j=3

eiβ3ξj

∣∣∣∣∣∣ .
Averaging over frequency realizations yields

〈r3〉 = e−
β23σ

2

2 . (38)
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FIG. 8. Trajectories of the collective coordinate phases f1 (dashed blue), f2 (dashed orange) and f3 (dashed green) with
dynamics governed by the reduced mesoscopic dynamics (33)-(36) and statistical properties of 1000 trajectories of the full
Kuramoto model (1) for N = 100, p = 0.05, ω1 = −0.677, ω2 = 0.0434, Ω3 = 0.00646, and σ2 = 0.1, for globally synchronized
dynamics with coupling strength K = 70 > Kg = 67.7. For the full Kuramoto model the frequencies ω and network topologies
A are randomized as described in the text. (a) Trajectories of the collective coordinates f1, f2 and f3 together with the medians
of the trajectories of the full Kuramoto model for each of φ1 (thick solid blue), φ2 (thick solid orange) and the mean phase ψ3 of
the third cluster defined by (37) (thick solid green). (b-d) Trajectories of the collective coordinates f1, f2 and f3, respectively,
each combined with shaded regions corresponding to quantile ranges of trajectories of the full model. For example, the darkest
shaded band of each color corresponds to the quantile range 45− 55%, and each successive decrease in darkness corresponds to
a quantile range containing 10% of trajectories.

Using (38) we can express the mesoscopic evolution equa-
tions (33)-(36) in terms of f1,2,3 and r3 only, i.e.,

ḟ1 = ω1 +
K

N
sin(f2 − f1), (39)

ḟ2 = ω2 +
K

N
(sin(f1 − f2) + (N − 2)p sin(f3 − f2)r3) ,

(40)

ḟ3 = Ω3 +
K

N
p sin(f2 − f3)r3, (41)

ṙ3 = −r3

√
log r−2

3

(
σ − K

N
pr3

√
log r−2

3 ×

(cos(f2 − f3) + (N − 2)r3)

)
.

(42)

These equations have the advantage that the physical
meaning of r3 is clearer than β3. Furthermore, for cou-
pling strengths close to, or greater than, Kg, the third
cluster remains synchronized, and so r3(t) = 1−ε(t) with
0 < ε� 1. Expanding the evolution equations (39)-(42)

around ε = 0 to leading order yields

ḟ1 = ω1 +
K

N
sin(f2 − f1), (43)

ḟ2 = ω2 +
K

N
(sin(f1 − f2) + (N − 2)p sin(f3 − f2)) ,

(44)

ḟ3 = Ω3 +
K

N
p sin(f2 − f3), (45)

ṙ3 = −
√

2σε
1
2 +

2Kp

N
(cos(f2 − f3) +N − 2) ε, (46)

which demonstrates a time-scale splitting between the
slow order parameter r3 and the fast phases f1,2,3. On the
fast time scale, the dynamics is purely phase dynamics
which are decoupled from the order parameter r3. In the
limit ε→ 0 we obtain

Ḟ1 = ω2 − ω1 +
K

N
(−2 sinF1) + (N − 2)p sinF2) , (47)

Ḟ2 = Ω3 − ω2 +
K

N
(sinF1 − (N − 1)p sinF2) , (48)

where Fi = fi+1−fi. This reduced system has stationary
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FIG. 9. As for Fig. 8, except for non-synchronized dynamics at K = 65 < Kg. (a) Trajectories of the collective coordinates f1,
f2 and f3 together with the medians of the trajectories of the full Kuramoto model for each of φ1 (thick solid blue), φ2 (thick
solid orange) and the mean phase ψ3 of the third cluster defined by (37) (thick solid green). (b-d) Trajectories of the collective
coordinates f1, f2 and f3, respectively, each combined with shaded regions corresponding to quantile ranges of trajectories of
the full model. For example, the darkest shaded band of each color corresponds to the quantile range 45 − 55%, and each
successive decrease in darkness corresponds to a quantile range containing 10% of trajectories.

points

sinF1 = −N
K
ω1, and sinF2 =

N

K

Ω3

p
. (49)

Thus, for large coupling strengths K, there are four sta-
tionary points. Stability analysis reveals a pair of saddles,
a stable node and an unstable node. Upon decreasing
K, two saddle-node bifurcations occur simultaneously at
K = Kg = N |ω1|, such that all stationary points van-
ish. The saddle-node corresponding to the coalescence
of the stable node and saddle describes the bifurcation
from global synchronization to partial synchronization.
The unstable node describes an unstable stationary con-
figuration of oscillators.

Discussion

The reduced mesoscopic equations (43)-(46) reveal a
connection between the mesoscopic collective coordinate
ansatz for one collective coordinate discussed in Sec-
tion IV and the mesoscopic collective coordinate ansatz
for four collective coordinates. In deriving the ansatz
function for a single collective coordinate, we solve the
linearized dynamics of the full Kuramoto model (1), lin-
earizing about φi − φj = 0. If instead we solve the lin-
earized phase-only dynamics (43)-(45), linearizing about

fi − fj = 0, we obtain the ansatz function

f̂1 =
1

pN
((p(N − 1) + 1)ω1 + ω2)

f̂2 = − 1

pN
(pω1 + (N − 2)Ω3)

f̂3 =
1

pN
(−pω1 + 2Ω3),

which is identical to the ansatz function (19) obtained for
a single collective coordinate, except that the variations
ξj are not accounted for.

The accuracy of the reduction (33)-(36), which con-
denses the parametric description of the majority of the
system down to its ensemble statistics demonstrates that
the microscopic parametric details of the bulk network
are largely unimportant in describing the macroscopic
dynamics of the system. The mesoscopic ansatz captures
all the essential information.

For any specific realization of the network topology
and natural frequencies, the original collective coordinate
evolution equations (28)-(31) with four collective coordi-
nates are more accurate in describing the temporal phase
dynamics of individual oscillators than the reduced meso-
scopic equations (33)-(36). This is not surprising because
they incorporate the full microscopic parametric details
of the system. However, this loss of accuracy of the re-
duced mesoscopic system is greatly offset by its analytical
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simplicity, its generality (applying to all realizations si-
multaneously), and its reduced computational complex-
ity (O(N2) for the original system (28)-(31) and O(1)
for the reduced mesoscopic system (33)-(36)). As noted
previously, both collective coordinate methods obtain the
exact value of Kg.

VI. CONCLUSIONS

We have introduced two mesoscopic collective coordi-
nate reductions for the finite size Kuramoto model with
sparse connectivity which result in significant reductions
in complexity and which more accurately describe the dy-
namics of the full system for coupling strengthsK close to
the critical coupling strength Kg corresponding to global
synchronization. It is typical of sparse networks that the
first node to desynchronize is degree one (or low degree).
We exploit this property by assuming a simplified, aver-
aged, network structure, which captures the microscopic
details of the important nodes: the one that first desyn-
chronizes and the one it connects to, while averaging the
collective behavior of the rest of the network.

The mesoscopic reduction with one collective coor-
dinate achieves an analytic expression that describes
the observed relationship between the critical coupling
strength obtained via the standard collective approach
KCC
g and the actual critical coupling strengthKKM

g . This
analytic expression depends only on the ensemble param-
eters of the full system, i.e., the number of oscillators N ,
the network mean degree k and the variance of the natu-
ral frequencies σ2. Using this relationship between KCC

g

and KKM
g , one can correct the estimate for Kg obtained

through the standard collective coordinate framework,
which, while inaccurate for sparse networks, has the ad-
vantage that it does not require prior knowledge of which
oscillator will be first to desynchronize. Furthermore,
the relationship between KCC

g and KKM
g is valid for the

more complex case where the node that first desynchro-
nizes has degree greater than one. If there are many low
degree nodes there is significant computational effort in
determining which will desynchronize first. This prob-
lem can be avoided by employing the standard collective
coordinate framework and then correcting the estimate
for Kg.

The mesoscopic reduction with four collective coordi-
nates uses two collective coordinates to capture the mi-
croscopic dynamics of the two most important oscillators,
the one that first desynchronizes and the one it connects
to, and two collective coordinates to describe the collec-
tive macroscopic dynamics of the remainder of the oscil-
lators. Averaging over network configurations and natu-
ral frequency realizations yields a simplified description
that we have shown accurately captures the dynamics
of the full system in the more complex case of coupling
strengths close to the critical coupling strength Kg. The
simplified system, which reduces the microscopic details
of the main synchronized cluster to its ensemble statis-

tics, captures both convergence to a synchronized state
for coupling strengths K > Kg and non-stationary dy-
namics for coupling strengths K < Kg.

Both mesoscopic reductions highlight that for sparse
networks the fine details of the network and frequencies
for nodes that remain highly synchronized play only a
small role in the resultant dynamics of the full system,
since they can be replaced by ensemble statistical param-
eters with typically only a small loss in accuracy. The
dynamics is dominated by the microscopic interactions
of two critical nodes and the collective behavior of the
remainder of the network.

Here we have focused on the bifurcation from global
synchronization to partial synchronization at the criti-
cal coupling strength Kg. Our analysis can equally be
applied to each successive bifurcation such that another
node breaks off from the synchronized cluster. This
can be performed by either ignoring the effects of nodes
that have already desynchronized17,19,21, or by includ-
ing the effect of non-synchronized oscillators through
averaging22. The latter approach is especially important
if the dynamics of the full model includes a phase frustra-
tion parameter, as in the Kuramoto-Sakaguchi model28.

Our approach is designed to deal with finite size net-
works away from the thermodynamic limit. This allows
for applications to real-world systems. In particular the
issue of onset of global synchronization is important for
power grids29, which on short time scales can be de-
scribed by Kuramoto-type models30. Power outages can
be caused by a loss of synchronization and identifying
nodes which are likely to cause cascading failures is of
utmost importance29,31. The detrimental role of degree
1 nodes (or so called dead ends) in the grid stability has
been established for example within the Northern Euro-
pean power grid23. Furthermore, it was shown that the
collective dynamical behavior in power grids is strongly
influenced by finite size effects15,32. We hope that our
computationally cheap method will be useful for study-
ing and controlling large but finite real-world networks
such as power grids.
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