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Abstract. We shall complement and strengthen a result of Freed-
man and Quinn by showing that if the fundamental group of an as-
pherical compact 4-manifold with boundary is elementary amenable
then it is either polycyclic or is a solvable Baumslag-Solitar group.
Moreover, two such manifolds are homeomorphic if and only if their
peripheral group systems are equivalent, and each such manifold
is the boundary connected sum of an aspherical 4-manifold with
prime boundary and a contractible 4-manifold.

Let M be an aspherical topological compact 4-manifold with bound-
ary, and let π = π1(M). In order to be able to use currently available
surgery techniques to classify such manifolds we must restrict attention
to elementary amenable groups π. The group is then in fact solvable,
as we shall see. In [10, Theorem 11.5] it is shown that if π is polycyclic
then a homotopy equivalence of such manifolds which restricts to a
homeomorphism on the boundaries is homotopic to a homeomorphism.
We shall extend this result to all solvable groups, and reformulate it in
purely group-theoretic terms.

We shall show first that if π is elementary amenable then either it
is polycyclic or it is a Baumslag-Solitar group BS(1,m), with |m| > 1.
If π = 1 or Z or if cdπ = 3 then we can characterize the possible
boundary components, but when cdπ = 2 our results are fragmentary.
We then show that aspherical 4-manifolds with elementary amenable
fundamental groups are homeomorphic if and only if their peripheral
group systems (the fundamental group with orientation character and
the homomorphisms on π1 induced by the inclusions of the boundary
components) are equivalent. As a consequence, it follows that each such
manifold is the boundary connected sum of an aspherical 4-manifold
with prime boundary and a contractible 4-manifold.

Although our use of 4-dimensional surgery requires that the group
π be “good”, many of our arguments can easily by made in greater
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generality, and we shall do so where possible, without further comment.
When M is closed, χ(M) = 0 and π is polycyclic of Hirsch length 4
thn M is smoothable. Beyond this, we have no general results on the
existence of smooth structures on the aspherical 4-manifolds considered
here. Even the case when M is contractible and ∂M is an integral
homology 3-sphere is notoriously difficult in the smooth context.

1. General remarks on the fundamental group systems of
aspherical manifolds

Basic invariants of a manifold with boundary include its fundamen-
tal group, the number of boundary components, and the fundamental
groups of the boundary components. We formalize this by introduc-
ing the notion of a peripheral system and then study this applied to
aspherical manifolds.

Note that we will always assume our manifolds with boundary are
connected, although, of course, we will not assume the boundary is
connected.

Let M be a compact n-manifold with boundary ∂M = tki=1∂iM .
Let inci : ∂iM → M be the inclusion of the i-th boundary compo-
nent. Choosing base points x0 ∈ M and xi ∈ ∂iM and paths γi from
x0 to xi, define the fundamental group system of M to be the tu-
ple (π1M,π1∂1M, . . . , π1∂kM,π1(inc1), . . . , π1(inck)). The orientation
character of M is the homomorphism w = w1(TM) : π1M → Z× =
{±1}. The peripheral system of M is the fundamental group system
together with the orientation character.

An isomorphism (G,G1, . . . , Gk, j1 : G1 → G, . . . , jk : Gk → G,w)→
(G′, G′1, . . . , G

′
k, j
′
1 : G′1 → G′, . . . , j′k : G′k → G′, w′) of peripheral

systems is a permutation σ ∈ Sk, group isomorphisms θ : G → G′,
θi : Gi → G′σ(i), and elements gi ∈ Gi so that w = w′ ◦ θ and

θi ◦ ji ◦ cgi = j′i ◦ θσ(i) where cgi is conjugation by gi. The isomor-
phism class of the peripheral system is an invariant of M , independent
of the choice of base points and paths.

The cohomological dimension of a group π is

cdπ = sup{n | Hn(π;A) 6= 0 for some Zπ-module A.}
A group π is a PDn-group (a Poincaré duality group of dimension n)
if

Hk(π;Zπ) =

{
Z k = n

0 k 6= n

and if π has type FP , that is, Z has a finite length resolution by finitely
generated projective Zπ-modules. A group π is a Dn-group (a duality
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group of dimension n) if Hk(π;Zπ) is zero for k 6= n and if π has type
FP .

If w : π → Z× is a homomorphism then let Zw be the Zπ-module
which is additively the infinite cyclic group but with (

∑
agg)n =∑

agw(g)n. If A is a Zπ-module, let Aw denote the Zπ-module A⊗ZZw,
with the diagonal π-action.

A space is aspherical if its universal cover is contractible. The fun-
damental group of a closed aspherical n-manifold is a PDn-group.

Lemma 1. Let M be a compact aspherical n-manifold with fundamen-
tal group π.

(1) cd π = n⇐⇒ ∂M is empty.
(2) cd π ≤ n− 2 =⇒ ∂M has one component.
(3) π is PDn−1 =⇒ ∂M has one or two components.

Proof. (1) If ∂M is empty, thenHn(π;F2) = Hn(M ;F2) = H0(M ;F2) =
F2 6= 0. If ∂M is nonempty, then

Hn(π;Zπ) = Hn(M ;Zπ) = H0(M,∂M ;Zπ) = H0(M̃, ∂M̃ ;Z) = 0,

and so cdπ < n.
(2) and (3) follow from the exact sequence

H1(M,∂M ;F2)→ H0(∂M ;F2)→ H0(M ;F2)→ H0(M,∂M ;F2)

which is isomorphic to

Hn−1(π;F2)→ H0(∂M ;F2)→ F2 → Hn(π;F2)

by Poincaré-Lefschetz duality. �

An example to keep in mind is X l × Dn−l. Another example is a
compact contractible manifold with boundary a homology sphere. Note
that the boundary components of an aspherical manifold need not be
aspherical. A compact aspherical manifold can have many boundary
components, for example the cartesian product of torus with a 2-sphere
with many open disks removed.

Now we move from the discussion of the number of boundary com-
ponents to their fundamental groups.

Theorem 2. Let M be a compact aspherical n-manifold with funda-
mental group π.

(1) If cdπ < n and π 6= 1, then π1(inci) is nontrivial for all i.
(2) If cdπ ≤ n− 2, then π1(inc) is an epimorphism.
(3) If cdπ ≤ n− 3, then kerπ1(inc) is a perfect group.
(4) If π is a PDn−2-group, then kerπ1(inc) has abelianization Z.
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(5) If π is a PDn−1-group, then each kerπ1(inci) is a perfect group
and either
(a) ∂M has two components and each π1(inci) is an epimor-

phism, or
(b) ∂M has one component, the image of π1(inc) has index two

and
w1M = (wπ)(w∂) : π → Z×

where wπ is the orientation character of the PDn−1-group
π and w∂ : π → Z× is the homomorphism whose kernel is
the image of π1(inc).

Proof. For all k,

(1) Hk(π;Zπ) ∼= H̃n−k−1(∂M̃).

This follows from Poincaré-Lefschetz duality:

Hk(π;Zπ) ∼= Hn−k(M,∂M ;Zπ),

the identification Hn−k(M,∂M ;Zπ) = Hn−k(M̃, ∂M̃), and the long ex-

act sequence of the pair (M̃, ∂M̃). The isomorphism is an isomorphism
of left Zπ-modules, where the overbar indicates the conjugate module,
defined in terms of the involution g 7→ w(g)g−1.

(1) Take k = 0. Note that since M = K(π, 1) is finite-dimensional,
π is torsionfree. If π 6= 1, then π is infinite so H0(π;Zπ) = (Zπ)π = 0.

Thus Hn−1(∂M̃) = 0. Hence ∂M̃ has no closed components, as we can
see by either replacing Z by F2 or passing to the orientation double
cover of M .

(2) Take k = n − 1. If cdπ < n − 1, then H̃0(∂M̃) = 0, and hence
π1(inc) is an epimorphism.

(3),(4) Take k = n − 2. If cdπ ≤ n − 3, then H1(∂M̃) = 0 and

if π is a PDn−2-group, Z ∼= H1(∂M̃). In both cases, H1(∂M̃) is the
abelianization of ker(π1(inc)).

(5) Take k = n−1, n−2. Taking k = n−1 we see H̃0(∂M̃) = Z, and
thereby we see that either ∂M has two components with π1(inci) an
epimorphism or that ∂M has one component and the image of π1(inc)

has index 2. In either case, taking k = n− 2, we see that H1(∂M̃) = 0,
so that maps π1(inci) have perfect kernels.

Finally, assume M is a compact, aspherical n-manifold with fun-
damental group π, which is a PDn−1-group, and that ∂M has one
component with ρ := image(π1(inc)) having index 2 in π. Consider the
exact sequence of Zπ-modules

0→ H1(M,∂M ;Zπ)→ H0(∂M ;Zπ)
β−→ H0(M ;Zπ).
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The map β is isomorphic to the quotient map Zπ⊗ZρZ→ Zπ⊗ZπZ and
so thus H1(M,∂M ;Zπ) ∼= ker β ∼= Zw∂ . By Poincaré-Lefschetz duality,
H1(M,∂M ;Zπ)w1M ∼= Hn−1(M ;Zπ). But Hn−1(M ;Zπ) ∼= Zwπ by the
definition of wπ. Thus (Zwπ)w1M ∼= Zw∂ . Hence w1M = (wπ)(w∂). �

In particular, if cdπ ≤ n− 2 or if π is a PDn−1-group and ∂M has
two components then ∂M is orientable if and only if M is orientable.
If n ≥ 4 there are examples of each type considered in the theorem. In
case (5)(b) we may take a closed aspherical (n − 1)-manifold X with

a double cover X̂ → X and set M = X̂ ×Z/2 [−1, 1]. Note that in this
case M and X must have different orientation characters.

2. Fundamental group systems of aspherical 4-manifolds

The work of Waldhausen on P 2-irreducible, sufficiently large 3-manifolds
and the Geometrization Theorem of Perelman together imply that as-
pherical 3-manifolds are determined up to homeomorphism by their
peripheral systems. In Theorem 14 we shall show that a similar result
holds for 4-manifolds, provided that π1(M) is elementary amenable.

Lemma 3. Let N be a closed 3-manifold such that ν = π1(N) has an
infinite perfect normal subgroup κ. If G = ν/κ has one end, then G is
a PD3-group. Furthermore H1(κ) and H2(κ) both vanish.

Proof. LetNκ → N be the cover with π1(Nκ) = κ, and let C∗(N ;ZG) =
C∗(Nκ) be the cellular chain complex for Nκ, considered as a complex
of finitely generated free left ZG-modules. We first claim that Nκ is
acyclic, i.e. has the homology of a point. Note that H1(Nκ) = κ/κ′ = 0.

Note that H2(Nκ) = H2(N ;ZG) ∼= H1(N ;ZG) = H1(G;ZG) = 0 since
G has one end (see section 3 of [23]). Hence also H2(κ) = 0. Next
note that Hi(Nκ) = 0 for i ≥ 3, since Nκ is a connected, noncompact
3-manifold.

Hence C∗(N ;ZG) is a finite free resolution for H0(N ;ZG) = Z as a

ZG-module. Since H3(G;ZG) ∼= H3(N ;ZG) ∼= H0(N ;ZG) = Z, we
see that G is a PD3-group. �

Note that solvable Poincaré duality groups are polycyclic [3].
The Baumslag-Solitar group BS(1,m) is the group with presenta-

tion 〈a, t | tat−1 = am〉. (We shall assume m 6= 0.) These groups are
semidirect products Z[1/m] o Z and include the fundamental group
of the torus Z2 = BS(1, 1) and of the Klein bottle BS(1,−1). For
m 6= ±1, they are examples of solvable groups which are not poly-
cyclic.
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Recall that the class of elementary amenable groups is the smallest
class of groups containing all finite and all abelian groups and which is
closed under subgroups, quotients, extensions, and directed unions.

Theorem 4. Let M be an compact aspherical 4-manifold such that π =
π1(M) is elementary amenable. Then one of the following conditions
holds

(1) π = 1 and ∂M is an homology 3-sphere;
(2) π ∼= Z and π1(inc) : π1(∂M) → π1M is an epimorphism with

perfect kernel;
(3) π ∼= BS(1,m) for some m 6= 0 and π1(inc) is an epimorphism,

with kernel κ such that H1(κ) ∼= H2(π;Zπ);
(4) π is a polycyclic PD3-group and either ∂M has two components

and π1(inci) is an epimorphism for i = 1, 2, or ∂M is connected
and [π : Im(π1(inc))] = 2, and in each case the kernels are
perfect;

(5) π is a polycyclic PD4-group and M is closed.

Proof. Since M is an aspherical 4-manifold, cdπ ≤ 4, with equality if
and only if M is closed. Since M is compact, aspherical, π has type
FP . Since π is elementary amenable and cdπ < ∞, it is virtually
solvable [16]. A virtually solvable group which is FP is constructible,
and is a duality group, with Hirsch length h(π) = cdπ [18].

The trivial group is the only group with cohomological dimension 0.
If cd π = 1 then π is a nontrivial free group, and since π is elementary

amenable, π ∼= Z.
The only finitely generated solvable groups with cohomological di-

mension 2 are the Baumslag-Solitar groups BS(1,m) with m 6= 0
[13]. If π is virtually solvable and cd π = 2 then π has a normal
subgroup K of finite index which is a Baumslag Solitar group. Hence
χ(π) = [π : K]−1χ(K) = 0, and so Hom(π,Z) = H1(π;Z) 6= 0. The
kernel of an epimorphism from π to Z is torsion-free, and virtually
abelian of rank 1. Hence it is abelian, and so π is solvable, and thus is
also a solvable Baumslag-Solitar group.

If cdπ = 3 then h(π) = 3 and Hk(π;Zπ) = 0 for k ≤ 2 since π

is a duality group. Hence, by (1), H1(∂M̃), H2(∂M̃), and H3(∂M̃)

all vanish. Since H1(∂M̃) = 0, each ker(π1(inci)) is perfect. The
vanishing of H3 implies that each Gi = image(π1(inci)) is infinite (in
the nonorientable case either replace Z by F2 or pass to the 2-fold
orientation double cover).

An LHS spectral sequence argument shows thatH1(πi;Z[π]) ∼= H1(Gi;Z[π]),
since κi = ker(π1(inci)) is perfect and so Hom(κi;Z[π]) = 0. Hence
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if Gi
∼= Z then H1(πi;Z[π]) ∼= Z[Gi\π] 6= 0, and so H2(∂iM ;Zπi) =

H1(∂iM ;Zπi) = H1(πi;Zπi) 6= 0. Therefore the images Gi are non-
cyclic finitely generated torsion-free virtually solvable groups, and so
each have one end. Hence they are PD3-groups, by Lemma 3. Solv-
able Poincaré duality groups are polycyclic [3], and virtually polycyclic
PD3-groups are polycyclic.

A constructible solvable group is a group which can be built up from
the trivial group by a finite sequence of finite extensions and ascending
HNN extensions [4]. It follows by an induction on the Hirsch length
that if K ≤ H are finitely generated solvable groups such that K is
polycyclic, H is constructible and h(K) = h(H) then [H : K] < ∞.
Therefore [π : Gi] <∞, so π is polycyclic also. Hence π is a 3-manifold
group [7].

The final case is when M is closed and cd π = 4, and then π is a vir-
tually solvable Poincaré duality group. Hence it is virtually polycyclic.
Such PD4-groups are essentially known, in so far as the classification
can be largely reduced to questions of conjugacy in GL(3,Z) (and re-
lated groups) [15, Chapter 8]. Inspection of the possible groups shows
that all are solvable, and thus polycyclic. (This case is well-known, and
is included here only for completeness.)

The assertions about the boundary components and the homomor-
phisms π1(inci) follow from the results of the previous section. �

The following list of simple examples of aspherical 4-manifolds with
non-empty boundary includes examples with polycyclic groups of each
cohomological dimension ≤ 3. (It also includes examples whose groups
have non-cyclic free subgroups, and thus for which the DET has not
been proven.)

(1) π = 1: let M = D4, with ∂M = S3;
(2) π = F (r): let M = \rS1 ×D3, with ∂M = ]rS1 × S2;
(3) π = π1(Tg), Tg a closed surface of genus g ≥ 1: let M be the

total space of a D2-bundle over Tg, with ∂M the associated
S1-bundle;

(4) π = π1(N), N an aspherical closed 3-manifold: let M = M(η)
be the total space of the I-bundle over N induced by η ∈
H1(π;Z/2Z). Then ∂M = N × {0, 1} if the bundle is trivial
and ∂M a connected 2-fold covering space of N otherwise.

The examples of type (4) include all the possibilities with π a PD3-
group and all the π1(inci) injective. For then π1(∂iM) is also a PD3-
group, since it has finite index in π, by Theorem 2. Hence ∂iM is
aspherical. It then follows from Mostow Rigidity and the Geometriza-
tion Theorem (via [20, 24]) that π is also a 3-manifold group.
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3. criteria for asphericity

It is easy to that a closed 4-manifold M is aspherical if and only if
π has one end and π2(M) = 0. In the bounded case the condition on
ends must be modified, as the boundary connected sum of aspherical
manifolds with boundary is again aspherical.

Theorem 5. Let M be a compact 4-manifold with ∂M = tki=1∂iM .
Assume that π = π1(M) 6= 1, and let Γ = Z[π]. Then M is aspherical
if and only if νi = π1(∂iM) has infinite image in π, for i ≤ k, the inclu-
sions induce an isomorphism H1(π; Γ) ∼= ⊕H1(νi; Γ), and π2(M) = 0.
If cdπ ≤ 2 then M is aspherical if and only if ∂M 6= ∅, (M,∂M) is
1-connected and χ(M) = χ(π).

Proof. If M is aspherical then Hi(M ; Γ) = 0 for all i ≥ 1. In par-
ticular, π2(M) = 0. If π 6= 1 then π is infinite, so H0(M ; Γ) = 0.
Hence H3(∂M ; Γ) = 0, and so each νi has infinite image in π. Since
H1(M,∂M ; Γ) ∼= H3(M ; Γ) = 0 and H2(M,∂M ; Γ) ∼= H2(M ; Γ) = 0,
the inclusion of the boundary induces an isomorphism H1(π; Γ) →
⊕H1(νi; Γ).

Conversely, the first two of these conditions imply thatH1(M,∂M ; Γ) =
0 and H3(∂M ; Γ) = 0, and so H3(M ; Γ) = 0. Since π is infinite
H4(M ; Γ) = 0. Thus if also π2(M) = 0 then M is aspherical.

Suppose now that cdπ ≤ 2. IfM is aspherical then ∂M 6= ∅, χ(M) =
χ(π), and (M,∂M) is 1-connected, by Theorem [REF]. Conversely, if
these conditions hold thenH3(M ; Γ) = H1(M,∂M ; Γ) = 0, by Poincaré
duality and the fact that (M,∂M) is 1-connected. Since ∂M 6= ∅ the
cellular chain complex C∗(M ; Γ) is chain homotopy equivalent to a
finite projective chain complex of length ≤ 3. Two applications of
Schanuel’s Lemma show that

(1) Z1 is projective and C2
∼= Z1⊕Z2, where Zi ≤ Ci is the submodule

of i-cycles; and
(2) H3(C∗) = H3(M ; Γ) is projective.
Now HomΓ(H3(M ; Γ),Γ) = 0, since it is a quotient of H3(M ; Γ) =

0, by the Universal Coefficient spectral sequence. Since H3(M ; Γ) is
projective, it must then be 0. Hence H3(C∗) = H3(C∗) = 0, and so
we may assume that C∗ has length ≤ 2. Hence C∗ ∼= D∗ ⊕ Π where
D∗ is a projective resolution of Z and Π = Z2 is a projective module
concentrated in degree 2. On tensoring with Z and using the condition
χ(M) = χ(π), we see that Z⊗Γ Π = 0. Since cd π ≤ 2, the weak Bass
conjecture holds for π [6], and so Π = 0. Hence M is aspherical. �

Every finite 2-complex is homotopy equivalent to a compact 4-manifold
with boundary, and so every groupG with a finite 2-dimensionalK(G, 1)



ASPHERICAL 4-MANIFOLDS 9

complex is realized in this way. However, it remains an open question
whether every finitely presentable group G with cdG = 2 has such a
K(G, 1)-complex.

4. realization of boundaries: PD4-pairs

Each of the polycyclic groups π allowed by Theorem 4 is the fun-
damental group of an aspherical 4-manifold with boundary, and we
shall see in §6 below that the other Baumslag-Solitar groups are also
realizable. We would like to show that every 3-manifold N and homo-
morphism from π1(N) (or pair of such data) compatible with Theorem
4 can be realized as the boundary of an aspherical 4-manifold. We shall
show here that this is so on the homotopy level.

The case when π = 1 is well understood. The manifold M must
be contractible, and taking the boundary gives a bijective correspon-
dence between compact contractible TOP 4-manifolds and homology
3-spheres [10]. More generally, if M is a 4-manifold with non-empty
boundary then taking boundary connected sum with a contractible 4-
manifold does not change π (or the homotopy type of M) but changes
∂M by connected sum with an homology 3-sphere. (We could insist
that ∂M be prime. See §6 below.)

Lemma 6. Let π be a finitely presentable group, N a 3-manifold, and
w : π → Z× and p : ν = π1(N) → π be homomorphisms such that
w1(N) = wp. Let X be the mapping cylinder of the map from N to
K(π, 1) corresponding to p, and let κ = Ker(p). Suppose that one of
the following conditions holds.

(1) cd π = 1, p is an epimorphism and κ is perfect;
(2) cd π = 2, π has one end, p is an epimorphism and κ/κ′ ∼=

H2(π;Z[π]); or
(3) π is a PD3-group, [π : p(ν)] = 2 and κ is perfect.

Then the pair (X,N) is a PD4-pair.

Proof. Since H4(X;Zw) = H3(X;Zw) = 0, the connecting homomor-
phism from H4(X,N ;Zw) to H3(N ;Zw) is an isomorphism. Cap prod-
uct with a generator [X] ∈ H4(X,N ;Zw) and its image [N ] inH3(N ;Zw)
gives rise to a commuting diagram with rows the exact sequences of
cohomology and homology for (X,N), with coefficients Z[π].

Since N is non-empty , H0(X,N ;Z[π]) = 0, and since X is aspher-
ical, Hi(X,N ;Z[π]) = Hi−1(N ;Z[π]), for i ≥ 2. If p is an epimor-
phism then we also have H1(X,N ;Z[π]) = 0, while if [π : p(ν)] = 2
then H1(X,N ;Z[π]) ∼= Z. We may then use homological algebra (and
Poincaré duality for N), to determine the cohomology groups.
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In each case, many of the terms are 0, so the diagram reduces largely
to a collection of commuting squares in which the horizontal maps are
isomorphisms, and the vertical maps are

− ∩ [X] : Hj(X;Z[π])→ H4−j(X,N ;Z[π])

and

− ∩ [N ] : Hj(N ;Z[π])→ H3−j(N ;Z[π]).

(When p is not an epimorphism the situation is slightly more compli-
cated at one end of the diagram.)

We shall give further details only for case (2), when cd π = 2 and π
has one end. (The other cases are similar but easier.) ThenHk(X;Z[π]) =
0 for k > 2. The augmentation Z[π]-module Z has a finitely generated
projective resolution of length two. Dualizing this gives a resolution
for H2(π;Z[π]), and on dualizing again we see that

HomZ[π](H2(π;Z[π]),Z[π]) = 0

and

Ext1Z[π](H
2(π;Z[π]),Z[π]) = 0.

Hence H3(X,N ;Z[π]) = H2(N ;Z[π]) = 0 and a homological argument
then shows that H i(X,N ;Z[π]) = 0, for i ≤ 3.

Since N satisfies Poincaré duality with fundamental class [N ], the
result follows. �

The hypothesis in (2) that π has one end is probably not necessary,
but holds if π ∼= BS(1,m), and simplifies the exposition.

A similar argument applies if π is a PD3-group, and we have two
3-manifolds Ni and epimorphisms pi : νi = π1(Ni) → π with perfect
kernels and such that w1(Ni) = wpi for i = 1, 2.

It remains for us to show that there are degree-1 normal maps
(M,N)→ (X,N) with M a manifold and trivial surgery invariant.

5. realization of boundaries: π = Z

In this section we shall show that if π ∼= Z then any closed 3-manifold
satisfying the conditions of Theorem 4 bounds such a 4-manifold.

We may separate the underlying question into two parts.

(1) Given a 3-manifoldN and a homomorphism p : ν = π1(N)→ π,
compatible with the conditions of Theorem 4, is N a boundary
component of some 4-manifold M with π1(M) ∼= π?

(2) If so, can we choose M to be aspherical?
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We shall use low-dimensional surgery to tackle these questions. This
is straightforward when π = Z or cdπ = 3 (as in Theorems 7 and 12),
but some questions remain when cd π = 2.

In dimension 3 we use the modification of the surgery exact sequence
for low dimensions given in [17], in which elements of the structure set

STOP (N) for a 3-manifold N with π1(N) = π are represented by Z[π]-
homology equivalences with trivial Whitehead torsion, and two such are
equivalent if there is a normal cobordism between them with surgery
obstruction 0 in L4(π,w).

When π ∼= Z then H1(∂M ;Z) ∼= Z and π1(∂M)′ is perfect. (More
generally, if cd π = 1 then π is free, π1(inc) is an epimorphism with
perfect kernel, and π1(∂M) ∼= P o π with P perfect.)

Theorem 7. Let N be a 3-manifold such that ν = π1(N) ∼= κ o Z,
where κ = ν ′ is perfect. Then there is a 4-manifold M ' S1 with
∂M ∼= N . The homotopy class of inc is essentially unique.

Proof. Suppose first that N is orientable, and let f : N → S1 and
g : N → S2 be maps corresponding to the generators of H1(N ;Z) and
H2(N ;Z), respectively. Then h = (f, g) : N → S1 × S2 has degree 1,
and so is a Λ-homology equivalence, where Λ = Z[Z].

If N is non-orientable, the infinite cyclic covering N ′ is homotopy
equivalent to a 2-complex with the homology of S2, and so there is a
map u : N ′ → S2 which induces isomorphisms on cohomology. Let t
generate Aut(N ′/N) ∼= Z. Then ut is homotopic to Au, where A is
the antipodal map, since N is non-orientable. Hence u gives rise to a
map h from the mapping torus M(t) ' N to M(A) ' S1×̃S2, which
is easily seen to be a Λ-homology equivalence.

If N is orientable then N and S1 × S2 are parallelizable. If N is
non-orientable then w1(N) = h∗w1(S1×̃S2) (and hence also w2(N) =
h∗w2(S1×̃S2)). The difference of stable normal bundles νN ⊕ h∗τS1×̃S2

is a stable Spin-bundle over a 3-manifold, and so is trivial. Thus in
each case h extends to a normal map. The surgery invariant is 0 since
it is the obstruction to surgering h to a Λ-homology equivalence. Hence
h is normally bordant to idS1×S2 or idS1×̃S2 . (See also [10, page 207].)

If H : W → S1 × S2 × [0, 1] (or S1×̃S2 × [0, 1]) is a normal bordism
then we may modify it by taking connected sums with a standard
normal map from the E8 manifold to S4 to obtain a normal cobordism
with surgery obstruction 0 in L4(Z) = L4(1) = Z (or L4(Z−) = Z/2Z).
We may then perform surgery rel ∂ to obtain a Λ-homology-cobordism

Ŵ with π1(Ŵ ) ∼= Z. Let M = Ŵ ∪ S1 ×D3 (or Ŵ ∪ S1×̃D3). Then
M ' S1 and ∂M ∼= N . Since H1(inc) is an isomorphism, the homotopy
class of inc is a generator of [∂M,M ] ∼= H1(∂M ;Z) ∼= Z. �



12 JAMES F. DAVIS AND J. A. HILLMAN

Example. Let K be a knot which bounds a smooth slice disc ∆ such
that π1(D4 \∆) ∼= Z. Let X(∆) be the complement of an open regu-
lar neighbourhood of ∆ in D4. Then X(∆) is aspherical, by Theorem
5, and so X(∆) ' S1, while ∂X(∆) ∼= M(K, 0), the 3-manifold ob-
tained by 0-framed surgery on K. If K is non-trivial (e.g., if K is the
Kinoshita-Terasaka 11-crossing knot – see [14, page 23]) then M(K; 0)
is also aspherical [11].

6. realization of boundaries: cdπ = 2

The case cdπ = 2 presents the greatest difficulties for us, and we
do not yet have a clear picture of the possible boundaries, even in the
polycyclic case π = Z2 or π1(Kb). (The problem may be related to the
fact that Ker(π1(inc)) is not perfect.)

Every group π with a finite 2-dimensional K(π, 1)-complex is the
fundamental group of an aspherical 4-manifold, for the cellular struc-
ture of the 2-complex provides a model for constructing a 4-dimensional
handlebody M of the same homotopy type. If w : π → Z× is a homo-
morphism, we may assume that the 1-handles corresponding to gener-
ators g are orientable if and only if w(g) = 1, and then w1(M) = w.
The boundary of such a 4-manifold is a closed 3-manifold N such that
ν = π1(N) maps onto π with kernel κ such that κ/κ′ ∼= H2(π;Zπ)
as left Zπ-modules. (Conjugation in ν determines an action α : π →
Out(κ) and hence a module structure on the abelianization.)

In particular, π = BS(1,m) is the fundamental group of an aspher-
ical 4-manifold with boundary. The simplest examples of bounded
4-manifolds with such groups have Kirby calculus diagrams based on
the presentations given in §1 above, with a 3-component link having
two dotted components representing the generators, and the third com-
ponent with integral framing. Since the 2-complexes corresponding to
these presentations are aspherical, so are the resulting 4-manifolds.

When m = 1 (i.e., π = Z2) we may take the link to be the Borromean
rings. Varying the framing on the third component gives the different
total spaces En(Z2, 1) of orientable D2-bundles over the torus.

When m = 2 and the framing is 0 the boundary is an homology
S2 × S1. There is an alternative construction of such an example.

Example. The stevedore’s knot 61 bounds an “obvious” ribbon disc
in S3. (Give the standard ribbon disc with boundary the reef knot a
half-twist, between the two throughcuts.) Let ∆ ⊂ D4 be the slice disc
obtained from this ribbon disc, and let X(∆) be the exterior of a regu-
lar neighbourhood of ∆. Then X(∆) has a handlebody structure with
two 1-handles and one 2-handle and π1(X(∆)) is the “ribbon group”
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associated to the ribbon disc, as defined in [14, Chapter 1]. Calcula-
tion shows that π1(X(∆)) ∼= BS(1, 2), and so X(∆) is aspherical, by
Theorem 5. In this case ∂X(∆) is the 3-manifold obtained by 0-framed
surgery on the knot 61.

Suppose that cd π = 2, N is a 3-manifold and p : ν = π1(N) → π
is an epimorphism such that w1(N) = wp and κ = Ker(p) satisfy the

condition κ/κ′ ∼= H2(π;Z[π]) of Theorem 4. (If π is solvable we may
use Lemma 11 to reduce to the case when N is aspherical.) Let (X,N)
be the PD4-pair constructed in Lemma 6. If (X,N) is reducible, there
is a degree-1 normal map (M,N)→ (X,N) with normal invariant in

[X/∂,G/TOP ] ∼= H2(π;Z/2Z)⊕H0(π;Zw).

We may modify M by connected sum with copies of the E8-manifold
so that the image of the normal invariant in the second component is 0.
If π ∼= BS(1,m) with m odd then H2(π;Z/2Z) has order 2, and maps
nontrivially to L4(π,w). If m is even this group is 0, and so N bounds
an aspherical 4-manifold with fundamental group π ∼= BS(1,m).

The condition κ/κ′ ∼= H2(π;Zπ) is not transparent, but may be
testable.

Theorem 8. If π has trivial centre there is at most one extension by
κ corresponding to a given homomorphism α : π → Out(κ).

Proof. The action α induces a Z[π]-module structure on ζκ, and the
extensions of π by κ with action α are classified by H2(π; ζκα).

If the centre ζκ is non-trivial then ν = π1(N) has a non-trivial
abelian normal subgroup A. Since cd π = 2 and π has trivial centre, π
is not polycyclic. Hence ν is not polycyclic either, and so N is Seifert
fibred. We may assume that M is orientable. Since m 6= 1, H2(π;Z)
is finite, and so β1(N) = β1(M) = 1. It then follows from standard
properties of Seifert 3-manifolds that A is central in π, and A∩π′ = 1.
Hence the image of A in π/π′ is infinite. On the other hand, the image
of A in π is central, since π1(inc) is onto, and so is trivial. But this is
a contradiction, and so ζκ = 1. The theorem follows. �

Theorem 8 applies if π ∼= BS(1,m) for some m 6= ±1. By contrast,
when m = ±1, so π is a PD2-group and κ = Z, then α = w1(M) −
w1(π), and the possible extensions are parametrized by H2(π;Zα).

Lemma 9. Let N be a 3-manifold such that ν = π1(N) is an extension
of a finitely presentable group π with cdπ = 2 by a normal subgroup κ
such that H1(κ;Z) ∼= H2(π;Z[π]). Then the following are equivalent

(1) κ ∼= Z;
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(2) κ is finitely generated;
(3) κ is solvable.

Proof. We note first that H2(π;Z[π]) is nontrivial and torsion-free as
an abelian group, since π is finitely presentable and cd π = 2, and so κ
is infinite. Clearly (1)⇒ (2) and (3).

If κ is finitely generated then so is H2(π;Z[π]), as an abelian group.
Hence π is a PD2-group [8]. Since κ must be infinite, ν has one end,
and so ν is a PD3-group. Hence κ ∼= Z [15, Theorem 1.19].

If κ is solvable then ν again has one end, and so is a PD3-group.
Since κ is a nontrivial solvable normal subgroup, ν must be either the
fundamental group of a Seifert fibred 3-manifold or polycyclic; in either
case, κ is finitely generated. �

If π is a PD2-group then κ/κ′ ∼= Z. Hence ν/κ′ ∼= π1(Nn), where
Nn is the total space of an S1-bundle over F = K(π, 1), with Euler
invariant n ∈ H2(π;Zu), where u : π → Z× is the action of π on κ/κ′.
(Note that H2(π;Zu) ∼= Z if u = w1(π), and otherwise has order 2.)
Let En(π, u) be the total space of the associated D2-bundle over F .
Then ∂En(π, u) = Nn.

Suppose now that N and π are orientable. Since cd π = 2 and
the oriented bordism groups Ωi are 0 for 1 ≤ i ≤ 3, it follows from
the Atiyah-Hirzebruch spectral sequence that Ω3(K(π, 1)) = 0. Thus
there is an orientable 4-manifold M with boundary N and a map g :
M → En(π, u) such that π1(g ◦ inc) = p. After elementary surgery
on Ker(π1(g)) we may arrange that π1(M) ∼= π. Since g ◦ inc factors
through Nn, we get a map of pairs h : (M,N)→ (En(π, u), Nn) which
is 2-connected and is easily seen to be a Z[π]-homology equivalence of
the boundaries.

If the restriction h|N : N → Nn is a Z[π1(Nn)]-homology equivalence
then the argument of Lemma 10 (below) applies. In general we can-
not expect the strategy used in Theorem 7 (above) for π = Z and in
Lemma 10 for π a polycyclic PD3-group should apply when cdπ = 2.
For example, let K be a knot with non-trivial Alexander polynomial,
and let L be the 3-component link obtained by tying K into one of
the components of the Borromean rings. Let M be the 4-manifold
with Kirby calculus presentation given by the link L with the two triv-
ial components dotted and the knotted component having framing 0.
Then M ' T1 = K(Z2, 1) and H1(∂M ;Z) ∼= Z3. Hence there is an
esssentially unique degree-1 map h : ∂M → T 3 = K(Z3, 1). However,
h is not a Z[Z3]-homology equivalence.
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7. realization of boundaries: cdπ = 3

If π is the group of an aspherical 3-manifold N0 then the inclusion
of ∂M into M factors through some ∂M(η), up to homotopy, and so
there is a map

F : (M,∂M)→ (M(η), ∂M(η)).

such that F : M → M(η) is a homotopy equivalence and F |∂M is a
Zπ-homology equivalence. In this case we may again use the strategy
of Theorem 7.

In the following lemma we use the modification of the surgery ex-
act sequence for low dimensions given in [17], in which elements of the

structure set STOP (N) for a 3-manifold N with π1(N) = π are rep-
resented by Zπ-homology equivalences with trivial Whitehead torsion,
and two such are equivalent if there is a normal cobordism between
them with surgery obstruction 0 in L4(π,w).

Lemma 10. Let N0 be an aspherical 3-manifold with π1(N0) = π, and
let h : N → N0 be a Z[π]-homology equivalence. Then h extends to
a normal map (h, b) which is normally bordant to idN0, via a normal
bordism with trivial surgery obstruction in L4(π,w).

Proof. It follows from the Geometrization Theorem that Wh(π) = 0.
If N0 is orientable then source and target are parallelizable, and so
h extends to a normal map (h, b). This remains true if N0 is non-
orientable, by the argument of Theorem 7 above. In [21] (as corrected
in [2]) it is shown that the surgery obstruction homomorphisms σ3+i

are bijective, if 3 + i ≥ 5. Periodicity of these homomorphisms implies

that STOP (N0) has just one member, so there is a normal cobordism
with trivial surgery invariant. �

Lemma 11. Let ν be a finitely generated group which is an extension
of a solvable group π by a perfect group κ. If ν ∼= G ∗H then G or H
is perfect.

Proof. Clearly ν maps onto ρ = Gab ∗Hab, and hence the subquotients
of the derived series for ν map onto the corresponding terms for ρ.
If neither G nor H is perfect then the derived series of ρ is infinite,
contrary to the hypothesis on ν. �

Theorem 12. Let π be a polycyclic PD3-group and let N1 and N2 be
3-manifolds such that νi = π1(Ni) is an extension of π by a perfect
group κi, for i = 1, 2. Then there is an aspherical 4-manifold M such
that π1(M) ∼= π and ∂M ∼= N1 tN2.
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Proof. Let N0 be a 3-manifold with π1(N0) = π, and let hi : Ni → N0

be maps corresponding to the surjections νi → νi/κi ∼= π.
If Ni is aspherical then cdκi ≤ 2, since [νi : κi] is infinite. Hence

κi is acyclic, by Lemma 3, and so hi is a Z[π]-homology equivalence.
There is a normal cobordisms Wi from hi to idN0 , with trivial surgery
obstruction in L4(π,w), by Lemma 10.

Thus if both N1 and N2 are aspherical we may perform surgery rel

∂ to obtain normal cobordisms (Ĥi, b̂i) : Ŵi → N0 × [0, 1] such that Ĥi

is a homotopy equivalence, for i = 1, 2. Let M = Ŵ1 ∪N0× [0, 1]∪ Ŵ2

(identified along copies of N0). Then M ' N0 and ∂M ∼= N1 tN2.
In general, we have νi ∼= ρi ∗ σi, where ρi is indecomposable and σi

is perfect, by Lemma 11. Hence Ni
∼= Pi]Σi, where Pi is aspherical

and Σi is an integral homology 3-sphere. Let Masp be the 4-manifold
with boundary P1 t P2 constructed as in the above two paragraphs,
and let Ci be contractible 4-manifolds with ∂Ci = Σi, for i = 1, 2.
Then the boundary connected sum M = C1\Masp\C2 has the required
properties. �

There is a similar result for the case when π is a polycyclic PD3-
group and the image of ν in π has index 2. Let η ∈ H1(π;Z/2Z) be

the corresponding epimorphism. Then N bounds Ŵ ∪M(η), where Ŵ

is a Z[ν]-homology cobordism from N to N0 with π1(Ŵ ) ∼= ν.

8. the role of the peripheral system

If M is an aspherical 4-manifold with π = π1(M) polycyclic then the
surgery obstruction maps

[Σj(M/∂), G/TOP ]→ L4+j(π,w)

are bijective for all i > 0 [9, Theorem 4.1]. A similar result holds
if π ∼= BS(1,m) for some m 6= 0, since such groups are fundamental
groups of (very small) graphs of groups with all vertex and edge groups
infinite cyclic, and this case is settled in [22]. In either case, M is
determined up to homeomorphism by ∂M and π [10, Chapter 11.§5].

We shall strengthen this result to show that the peripheral system
is a complete invariant for the homeomorphism type of an aspherical
4-manifold with elementary amenable fundamental group.

Lemma 13. Each boundary component N of an aspherical 4-manifold
M with elementary amenable fundamental group is a connected sum
N0]ΣN , where either N0 is aspherical or π1(N0) ∼= Z or N0 = S3, and
π1(ΣN) is perfect. In particular, ΣN is a connected sum of aspherical
homology 3-spheres with copies of S3/I∗.
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Proof. Since w1(N) = w1(M)|N and π = π1(M) is torsion-free, N
has no 2-sided projective planes. Therefore N is a connected sum of
aspherical 3-manifolds, copies of S1×S2 or S1×̃S2 and summands with
finite fundamental group.

If π = 1 then ∂M = N , and N must be an homology 3-sphere, so
we may set N0 = S3 and ΣN = N .

If π ∼= Z then ∂M = N and Ker(π1(inc)) is perfect. It follows from
Lemma 11 that N ∼= N0]ΣN , where N0 is irreducible and H1(N0;Z) ∼=
Z, while π1(ΣN) is perfect.

A similar argument applies if π is a solvable PD3-group.
When cd π = 2 then we must extend the strategy of Lemma 11.

If π = BS(1,m) then ν is an extension of π by a group κ such that

κ/κ′ ∼= H2(π;Zπ). The cohomology group H2(π;Zπ) is torsion free [12,
Chapter 13], and so ν/κ′ has a composition series with three torsion-free
factors. Any homomorphism from a group with finite abelianization to
ν must have image in κ′ ≤ ν ′. It follows that if ν ∼= G ∗H and
β1(H) = 0 then H is perfect.

Suppose first that M is orientable. If m 6= 1 then H2(π;Z) = 0 and
H2(π;Z) ∼= Z/(m − 1)Z, so β1(ν) = 1, by the long exact sequence for
(M,N). Thus if ν ∼= G ∗ H with β1(G) ≥ β1(H) then β1(H) = 0,
and so H is perfect. If m = 1, so π ∼= Z2, then β1(ν) = 2 or 3,
and H2(π;Z[π]) ∼= Z. If ν ∼= G ∗H with β1(G) = β1(H) = 1 then the
epimorphism from ν to π factors through an epimorphism to F (2). But
then H1(ν;Z[π]) maps onto H1(F (2);Z[π]), which has infinite rank as
an abelian group. Thus if β1(ν) = 2 and β1(G) ≥ β1(H) then H must
be perfect. A similar argument applies if β1(ν) = 3.

If M is non-orientable and ν = π1(N) ∼= G ∗H with β1(G), β1(H) >
0 then the orientable double cover M+ has ν+ = π1(∂M+) ∼= G1 ∗H1

with β1(G1), β1(H1) > 0. Thus we may assume that M is orientable.
Since S3/I∗ is the only homology 3-sphere with finite fundamental

group, the final assertion is clear. �

Theorem 14. Let M and M̂ be aspherical 4-manifolds with boundary,

and with elementary amenable fundamental groups. Then M and M̂
are homeomorphic if and only if their peripheral systems are equivalent.

Proof. The condition is clearly necessary. Suppose that it holds.

If M and M̂ are closed then π = π1(M) is polycyclic, by Theorem
4, and the result follows from [9, Corollary A] and [10].
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Suppose next that N = ∂M and N̂ = ∂M̂ are connected, and let

θ and ϕ : π1(N) → π1(N̂) be the isomorphisms provided by the hy-

pothesis. We may assume that θπ1(incM) = π1(incM̂)ϕ, by absorb-
ing any conjugacy into the isomorphism θ, if necessary. Although ϕ
itself may not be induced by a homeomorphism (see [19]), we may
modify the equivalence to achieve this. We may write N = N0]ΣN

and N̂ = N̂0]ΣN̂ , where N0 and N̂0 are aspherical and ΣN and ΣN̂

are homology 3-spheres, by Lemma 13. Since π1(N) ∼= π1(N̂), there
is a bijective correspondance between the indecomposable factors of
these groups, and hence between the irreducible summands of the 3-
manifolds. Since none of these summands are lens spaces or contain
two-sided projective planes, they are determined up to homeomorphism
by their fundamental groups.

If π is perfect then π = 1, and N and N̂ are homology 3-spheres, so

we may assume that N0 = N̂0 = S3.

If π ∼= Z then either π1(N0) ∼= π1(N̂0) ∼= Z or N0 and N̂0 are both

aspherical. Since w1(M) and w1(M̂) are trivial on the homology sphere

summands and w1(M) = w1(M̂)θ , we may again assume thatN0
∼= N̂0,

and both are either S1 × S2, S1×̃S2 or are aspherical.

If cd π > 1 then N0 and Ñ0 are aspherical, and are homeomorphic.

Thus in each case there is a homeomorphism h0 : N0 → N̂0 which
induces the isomorphism given by the composite of the inclusion of

π1(N0) into π1(N) as a factor, ϕ and the epimorphism π1(N̂)→ π1(N̂0)
induced by collapsing ΣN̂ . Let hΣ : ΣN → ΣN̂ be any homeomorphism

of the homology 3-sphere summands. Then h̆ = h0]hΣ is a homeomor-

phism such that θπ1(incM) = π1(incM̂ h̆), and we may now apply the
result of [10, Chapter 11.§5] (which relies on [9]), that M is determined
up to homeomorphism by ∂M and π. If π = BS(1,m), we may invoke
[22] instead of [9], to obtain a similar result.

A similar argument applies to each component if π is a PD3-group

and ∂M and ∂M̂ each have two components. In this case the homomor-
phisms π1(inci) are epimorphisms, and so conjugacies may be absorbed
into the isomorphisms ϕi. �

Lemma 15. Let M be an aspherical 4-manifold such that ∂M ∼= N]Σ,
where Σ is an homology 3-sphere. If π1(Σ) has trivial image in π =
π1(M) then there is an aspherical 4-manifold M1 such that M1 ' M
and ∂M1

∼= N .
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Proof. We may write ∂M = No ∪ Σo, where No and Σo are the com-
plements of open 3-discs in N and Σ, respectively. The homology 3-
sphere Σ bounds a contractible 4-manifold C. Then ∂C = Σo∪D3. Let
M1 = M ∪Σo C. Then π1(M1) ∼= π and H∗(M1;Z[π]) ∼= H∗(M ;Z[π]),
and so the inclusion M → M1 is a homnotopy equivalence. Clearly
∂M1 = No ∪D3 ∼= N . �

Corollary 16. The 4-manifold M is homeomorphic to a boundary con-
nected sum M0\∆, where ∂M0 is prime and ∆ is contractible.

Proof. This follows from Theorems 7 and 12 together with Lemmas 13
and 15, and Theorem 14. �

9. other good groups

Here we interpret “good” in a very broad sense; having no noncyclic
free subgroups.

It seems unlikely that there are any other good groups π with cd π =
2. For assume π finitely generated, cd π = 2 and π has no non-cyclic
free subgroup. Then the following are equivalent [15, Corollary 2.6.1]:

(1) π ∼= BS(1,m) = Z∗m for some integer m 6= 0;
(2) π is elementary amenable;
(3) π is almost coherent and virtually indicable;
(4) π is almost coherent and amenable;
(5) π is almost coherent and def(π) = 1.

Here a group is almost coherent if every finitely generated subgroup is
FP2.

Question. Is it enough to assume that π is almost coherent and resid-
ually finite (in addition to the conditions before the list)?

If π is an almost coherent, residually finite PD3-group which has no
non-cyclic free subgroup then it is polycyclic [5]. In particular, “good”
3-manifold groups are polycyclic, since they are coherent and residually
finite.

10. some remarks on the closed case

Grigorchuk (1998) has an example of a finitely presentable group
which is not elementary amenable, but does have sub-exponential growth,
and so the DEC holds over this group, by Freedman-Teichner (1995).
(We do not know whether this group could realized by an aspherical 4-
manifold, and have no reason to expect so. In fact no known aspherical
finite complex has such a fundamental group.)
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At the other extreme, the fundamental groups of (necessarily aspher-
ical) closed 4-manifolds with one of the geometries H4, H2(C), H2×H2,

H3 × E1, H2 × E2 or S̃L× E1 contain noncyclic free subgroups.
If f : M → M0 is a homotopy equivalence of closed 4-manifolds

then the difference of the stable normal bundles ξ = νM ⊕ f ∗τM0 is
a stable Spin-bundle, since the Stiefel-Whitney classes are homotopy
invariants. If M and M0 are orientable then the Pontrjagin class p1(ξ)
is 0 (since M and M0 have the same signature). Since the base M is
4-dimensional, ξ is trivial, and so f extends to a normal map (f, b).
Does this remain true if M and M0 are not orientable?

If M and M0 are aspherical and the FJCs hold for π = π1(M) then
f × idS1 is homotopic to a homeomorphism, by 5-dimensional surgery,
and Wh(π) = 0. Hence M × R ∼= M0 × R. These products contain
an h-cobordism between M and M0, which is an s-cobordism since
Wh(π) = 0, by assumption.

Question. Does the argument of the last paragraph go through for
bounded manifolds rel ∂, provided the Borel conjecture holds?
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