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Mixing of materials is fundamental to many natural phenomena and engineering applications. The

presence of discontinuous deformations—such as shear banding or wall slip—creates new

mechanisms for mixing and transport beyond those predicted by classical dynamical systems theory.

Here, we show how a novel mixing mechanism combining stretching with cutting and shuffling

yields exponential mixing rates, quantified by a positive Lyapunov exponent, an impossibility for

systems with cutting and shuffling alone or bounded systems with stretching alone, and demonstrate

it in a fluid flow. While dynamical systems theory provides a framework for understanding mixing in

smoothly deforming media, a theory of discontinuous mixing is yet to be fully developed. New

methods are needed to systematize, explain, and extrapolate measurements on systems with

discontinuous deformations. Here, we investigate “webs” of Lagrangian discontinuities and show

that they provide a template for the overall transport dynamics. Considering slip deformations as the

asymptotic limit of increasingly localised smooth shear, we also demonstrate exactly how some of

the new structures introduced by discontinuous deformations are analogous to structures in smoothly

deforming systems. VC 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4941851]

When highly localised discontinuous deformations are

added to an otherwise smoothly deforming medium,

additional topological freedom for particle transport is

created, such as “jumping” between streamlines.3 We

show which structures associated with smooth dynamical

systems are preserved in the presence of discontinuous

deformation, which are destroyed, and the reason for

each. The freedom created by discontinuous deforma-

tions enables the creation of new types of transport struc-

tures. In particular, we uncover a novel mixing

mechanism that can only arise under combined stretch-

ing, cutting, and shuffling, and demonstrate this in a

model fluid flow where the opening and closing of valves

combined with a slip boundary condition induces fluid

cutting. The mechanism is fundamentally different to

both classical smoothly deforming bounded systems and

systems with only cutting and shuffling as it exhibits ex-

ponential mixing rates in the absence of folding. We

introduce the “webs” of Lagrangian discontinuities as a

method for studying systems with both continuous and

discontinuous deformations that is able to provide a tem-

plate for the overall transport dynamics, including classi-

cal structures found in smoothly deforming systems and

new structures that are introduced by discontinuous

deformations. We show that these new structures are

analogous to structures in smoothly deforming systems

by considering a cut as the asymptotic limit of increas-

ingly localised shears.

I. INTRODUCTION

Dynamical systems theory is the natural language of

particle transport and mixing in fluid flows. Since its intro-

duction over three decades ago, the signatures of chaos have

been found in biological flows,12 geo- and astro-physical

flows,17,24 and industrial and microfluidic flows.18 This

approach1—termed chaotic advection—has uncovered the

fundamental mechanisms which control fluid mixing and

transport in natural and engineered systems.

While chaotic advection largely applies to smoothly

deforming materials, there also exist large classes of materi-

als that deform discontinuously, including granular matter,

colloidal suspensions, plastics, polymers, and alloys.19,21

These materials can exhibit highly localized, discontinuous

deformations such as slip surfaces and shear banding (Figs.

1(a)–1(c)), which we denote as Lagrangian discontinuities.

Understanding the transport and mixing dynamics of these

materials is critical to engineering applications such as the

development of effective processing methods for granular

matter, and understanding natural phenomena such as identi-

fying the deformations which give rise to observed geologi-

cal formations.

Moreover, Lagrangian discontinuities may also arise in

smoothly deforming materials under certain conditions. Fora)Electronic mail: lachlan.smith@monash.edu
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example, in fluid flows with valves and free-slip boundaries,

the opening and closing of valves cuts fluid filaments, and

the free-slip boundaries allow the cut to be advected into the

fluid bulk. Essentially fluid is able to undergo a discontinu-

ous slip deformation analogous to shear-banding. Valves are

common to a vast array of applications, including piping net-

works, vascular networks, multifunctional microfluidic anal-

ysis chips, river networks with locks, and the heart (Fig.

1(d)). Hence, Lagrangian discontinuities arise in a wide

range of flows, not just discontinuously deforming materials,

and it is important to understand the mixing and transport

properties of such flows.

The essence of mixing in materials that deform

smoothly is stretching and folding,1 however, discontinuous

deformation introduces fluid cutting. This seemingly small

change has profound consequences for mixing and transport.

Cutting introduces an extra degree of topological freedom,

hence the cutting action of discontinuities admits new trans-

port and mixing mechanisms, and indeed ergodic mixing is

possible in such systems by cutting and re-arranging material

elements alone.4,9,10,22 While stretching and folding (SF) and

cutting and shuffling (CS) can each lead to complete mixing

in the sense of the unbounded increase in the interfacial area

between marked parts of the continuum, the key difference is

that CS does not involve material deformation; the rate of

mixing, quantified by the Lyapunov exponent, in SF systems

can be exponential, but in CS systems mixing can only be

algebraic.4 In the terms of ergodic theory, CS can only

achieve “weak mixing” but not the “strong mixing” charac-

teristic of SF systems.

Discontinuous deformations cannot be represented as a

smooth invertible transformation (diffeomorphism), a building

block of classical dynamical systems theory. The stability of

periodic points, associated manifolds and interactions captures

the global dynamics for smooth systems,20 however, this is

not the case for systems with discontinuous deformation due

to the added topological freedom. We must therefore extend

the scope to include other tools. We introduce the “webs” of

Lagrangian discontinuities as a complete tool for studying sys-

tems with Lagrangian discontinuities. The “web of pre-

images” is made up of all points where material will

eventually experience a discontinuous deformation, and the

“web of images” comprises points where the discontinuous

deformations are advected into the fluid bulk. They provide

additional information to periodic point analysis, creating a

template for the overall structure of the system.

In practice, materials that exhibit slip or shear-banding

may deform visco-elastically prior to failure, resulting in a

mix of CS and SF, and in general, a mix of CS and SF arises

in all but highly idealized systems. The interactions from

even vanishingly weak SF and CS are non-trivial. Mixing in

these combined CS and SF systems has been considered,7,8,22

but the focus is typically on SF dominated systems where

strong mixing occurs. While the coherent structures in CS-

only systems can be understood using piecewise-isome-

tries,6,22 there has been no previous work on understanding

the new structures that can be created in systems with both

CS and SF. To illustrate these concepts, we consider a model

fluid flow in a parameter range where fluid deformation is

dominated by CS, but weak stretching can also occur. We

show that these combined dynamics produce mixing dynam-

ics that are fundamentally different to those found in SF

dominated systems or in CS-only systems. While our model

flow exhibits exponential increase in interfacial area nor-

mally associated with SF systems, folding is not present.

Instead, crossing of invariant curves is achieved via

“streamline jumping” produced by the Lagrangian disconti-

nuity, similarly to what occurs in CS-only systems.3 Using a

simple map comprising composite shear and cutting motions,

we demonstrate the essential physics which govern mixing

of discontinuously deforming media. The generality of this

map (consisting of only shearing of material and slip surfa-

ces) means it is universal to the broad class of systems with

Lagrangian discontinuities.

FIG. 1. Lagrangian discontinuities,

which are intrinsic to many materials

and valved flows, create the template of

mixing and the distribution of mass and

energy by cutting and shearing fluid fil-

aments. (a) Shear banding in geological

formations (Photo Bruce Hobbs). (b)

Shear bands in a granular flow, repro-

duced with permission from G.

Metcalfe and M. Shattuck, Physica A

233, 709–717 (1996). Copyright 1996

Elsevier.14 (c) Shear banding in an

alloy, reproduced with permission from

Louzguine-Luzgin et al., Metals 3, 1

(2012). Copyright 2012 The

Multidisciplinary Digital Publishing

Institute.13 (d) Streamlines through a

model heart valve during systole, repro-

duced with permission from Yagi et al.,
J. Biomech. Sci. Eng. 6(2), 64–78

(2011). Copyright 2011 The Japan

Society of Mechanical Engineers.25
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To probe the connection between smooth and discontin-

uous deformations more deeply, we consider a discontinuous

slip surface as the asymptotic limit of increasingly localised

shear. The new structures that are introduced by the discon-

tinuous deformation appear as classical coherent structures

when the cut is smoothed, but are destroyed in the singular

limit towards a cut. These new structures therefore provide

the analogues for discontinuous deformations of the classical

coherent structures.

II. A SMOOTH FLOW WITH LAGRANGIAN
DISCONTINUITIES

To illustrate how valves and slip boundaries are able to

create discontinuous deformations of fluid that resemble slip

surfaces and shear banding of materials, we consider a peri-

odically reoriented dipole flow, the Reoriented Potential

Mixing (RPM) flow.11,15,23 We choose RPM flow parameters

such that CS dominates but some weak fluid stretching is

also present. The flow is a 2D incompressible potential

(Darcy) flow that approximates flow in porous media, where

singularities of the dipole flow mimic valved wellbores used

in groundwater applications. The model has been studied

both numerically11 and experimentally15 in the context of

chaos and mixing in groundwater flow.23 This prototypical

model introduces a mix of CS and SF dynamics based on pa-

rameters of the flow, and so is well-suited to studying the

mixing dynamics from CS-dominated to SF-dominated

flows. We highlight the difference between the transport

behaviour in the RPM flow compared to classical dynamical

systems and CS-only systems.

The RPM flow is driven by a periodically reoriented

dipole flow (Fig. 2) within the unit circle, the boundary of

which is a separating streamline for the unconfined flow, and

hence corresponds to a free-slip boundary. After each time pe-

riod s (non-dimensionalized by the emptying time of the do-

main), the dipole is instantaneously rotated by the angle H to

a new position and switched on again. In the limit of vanish-

ing fluid inertia, the RPM flow can be considered piecewise

steady. Hence, the parameters s, H control the kinematics of

mixing and transport in this flow. Previous studies11 have

shown the strength of chaos and hence SF increases with

increasing s, and so we expect CS to dominate for small s,

and for large s the classical dynamics to dominate.

The motion of fluid particles within the flow is described

by the advection equation

dx=dt ¼ vðx; tÞ; (1)

where x is the position of the particle and the velocity v is

controlled by H, s. We denote the position of a particle

initially located at the point x after time T by YT(x).

This advection map is area-preserving since the velocity v is

incompressible. In this study, we consider the RPM flow in

closed mode, such that particles are reinjected from the sink

to the source along the same streamline. Example trajectories

are shown in Fig. 2(b) together with the sequence of dipole

orientations (see Appendix A for details on the particle track-

ing method).

The steady dipole flow is a 2D incompressible flow, and

therefore, a one degree-of-freedom Hamiltonian system.

While the tools and techniques of Hamiltonian chaos are

directly applicable to mixing in 2D incompressible flows,

reorientation of the dipole by switching valves combined

with the slip boundary condition introduces a Lagrangian

discontinuity that is advected into the bulk flow, with conse-

quences for transport that we explore.

A. CS-dominated transport structures

To illustrate the difference between CS and SF dominated

flows, we visualize Lagrangian dynamics via a Poincar�e sec-

tion; which for temporally periodic flow is a stroboscopic map

that captures particle positions over many periods of the flow.

Non-mixing regions in the Poincar�e section appear as distinct

“islands” (termed KAM-tori) visible in Fig. 3(a), whereas

mixing regions appear as a topologically distinct “chaotic

sea.” Coherent structures for classical Hamiltonian systems

are largely organized by the local stability of periodic points,

with low-period points playing a dominant role. Elliptic points

involve local rotation only and so are locally stable, producing

the non-mixing KAM-tori. Conversely, hyperbolic points are

locally unstable, with a direction of contraction and a direction

of expansion, and generate the chaotic sea. These features are

illustrated in the Poincar�e section in Fig. 3(a) for the RPM

flow with (H, s)¼ (2p/3, 0.2) and are symmetric about

the line y ¼ tanð�H=2Þx shown in dashed orange. The

Poincar�e–Birkhoff theorem states that in a Hamiltonian sys-

tem the KAM-tori around an elliptic point will eventually

breakup as an alternating chain of elliptic and hyperbolic

points, as shown in Fig. 3(a) by the red (hyperbolic) and blue

(elliptic) points. At such large values of s, the RPM flow is

dominated by SF and the organization of structures is essen-

tially the same as a classical Hamiltonian system.

At low values of s, the Lagrangian discontinuities play a

greater role, resulting in structures that are fundamentally

different to those encountered in a classical Hamiltonian sys-

tem. This is seen in Fig. 3(c) which shows detail of the

Poincar�e section for (H, s)¼ (2p/3, 5.012� 10�4). We pri-

marily focus on this fixed dipole rotation angle H¼ 2p/3 and

fixed switching time s¼ 5.012� 10�4, denoted s*. The

resulting structures violate the Poincar�e–Birkhoff theorem

FIG. 2. The RPM flow. (a) Streamfunction contours with the dipole (solid/

open triangles) in its original (black) and rotated (dashed grey) positions. (b)

Source (solid triangles) and sink (open triangles) positions and a typical par-

ticle trajectory in the flow with (H, s)¼ (2p/3, 0.1), starting at the star.
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because chains of elliptic points now exist that have no

hyperbolic points between them. At such small values of s,

the flow becomes less chaotic over large length scales, and

particles closely follow streamlines of the steady flow v0

(Fig. 3(b)) which arises in the limit s ! 0, consisting of an

average of v(x, t) over all dipole orientations. For small val-

ues of s, particle trajectories are perturbed slightly from the

streamlines of v0, leading to the small-scale structures illus-

trated in Fig. 3(c). This subset is representative of the small-

scale behaviour across the entire domain.

It is convenient to define the streamline return time treturn

of the steady flow v0 as the time it takes a particle on a given

streamline to return to its initial position. The two streamlines

with minimum return time are shown as the green and cyan

dashed curves in Figs. 3(b) and 3(c), one in each of the grey

and white groups of sectors, and these streamlines separate

regions with different Lagrangian structures. On the left side

of Fig. 3(c), there is a fractal distribution of densely packed

KAM-tori which form chains that shadow streamlines of v0.

The periodicity of each of these chains is governed by its reso-

nance with the streamline return time, such that for integers p,

q, if s/treturn¼ p/q then the period of the island chain is q. As

the Poincar�e–Birkhoff theorem does not apply to flows with

Lagrangian discontinuities, these KAM-tori manifest in the

RPM flow as a dense tiling of islands without hyperbolic

points between them. The absence of hyperbolic points is

explained via a symmetry argument: as coherent structures

must be symmetric about the symmetry line y ¼ tanð�H=2Þx
(shown in dashed orange in Fig. 3), any chain of periodic

points must also be symmetric about the symmetry line.

When the underlying KAM-torus intersects the symmetry line

twice, the periodic points must be arranged as in Fig. 4(a) for

the odd and even periodicity cases, these configurations are

the ones observed in Fig. 3(a). It is also possible that the

underlying KAM-torus only intersects the symmetry line

once, which can be achieved by periodic boundaries as in Fig.

4(b). This occurs in the RPM flow at low s as the KAM-tori

are the streamlines of the flow v0 (Fig. 3(b)), forming closed

loops connected via the dipoles, each of which only intersect

the symmetry line once—either in the white or gray region. In

these cases when the KAM-torus only intersects the symmetry

line once, the chains of periodic points must be arranged as in

Fig. 4(b), with one periodic point in each chain occurring on

the periodic boundary. For the chains of elliptic points in the

RPM flow, if hyperbolic points interleaved them in accord-

ance with the Poincar�e–Birkhoff theorem, then the dipole

FIG. 3. Poincar�e sections for the RPM

flow. (a) (H, s)¼ (2p/3, 0.2), the sym-

metry line y ¼ tanð�H=2Þx is shown

in dashed orange. Chains of elliptic

and hyperbolic points are illustrated by

blue and red points, respectively. (b)

Streamlines of the asymptotic (s ! 0)

flow v0 (black), each of which is con-

tained in either the gray or white sec-

tors. The two streamlines with the

minimum return time are shown in

dashed green and cyan, with the sym-

metry line again shown in dashed or-

ange. The location of the window used

for (c) is shown in pink (not to scale).

(c) A small section of the Poincar�e sec-

tion for the RPM flow with (H,

s)¼ (2p/3, s*), with s* defined in the

text. The orbit of each particle has a

fixed color, showing which structures

are part of the same chain. (d) and (e)

Sketches of the discontinuity produced

in the velocity field by (d) co-rotating

elliptic islands and (e) hyperbolic

points with no elliptic orbit at the

centre, such as occurs in the RPM

flow.
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positions must be hyperbolic points, as in Fig. 4(c). However,

we will see in Sec. II B that the dipoles are the source of the

discontinuous deformations, and any Lagrangian coherent

structure that is advected onto the dipole will be destroyed,

and hence destroy the entire chain of hyperbolic points. This

lack of hyperbolic points allows a denser tiling of islands, a

smaller chaotic set, and much slower transport between the

islands. With such a dense tiling of islands, large jumps in the

velocity are produced at the boundaries of neighbouring

islands, as depicted by the arrows representing velocity vec-

tors in Fig. 3(d). These jumps are only possible due to the

presence of Lagrangian discontinuities.

Similar resonance is observed on the right side of Fig.

3(c) for chains of hyperbolic points, whose position mirrors

the centres of the islands on the left. Like the chains of elliptic

points, there is a jump in the velocity field at the point

between successive hyperbolic points, demonstrated by the

arrows representing opposing velocity vectors at the centre in

Fig. 3(e). These points represent the centres of leaky regions

in which particles are temporarily trapped, i.e., they spend a

large amount of time there but eventually leak out and are

replaced by particles leaking in from outside. Particles rotate

about the centre of the region, as they would on a KAM-torus

surrounding an elliptic periodic point, but they are able to

move chaotically. In these regions, fluid elements experience

a mix of stretching and CS, and later we will see that no fold-

ing occurs. Strong mixing takes place, an impossibility for

both CS-only systems and stretching-only systems.

Later, we will see that by approximating the slip defor-

mation by a highly localised smooth shear these periodic

point chains can be considered in the limit of smooth sys-

tems. As predicted by the Poincar�e–Birkhoff theorem, the

point between the elliptic islands in this smoothed approxi-

mation is a hyperbolic periodic point, and vice versa. In the

limit of a Lagrangian discontinuity, these hyperbolic and

elliptic points are destroyed by the discontinuity, and hence

are denoted as “pseudo-hyperbolic points” and “pseudo-

elliptic points,” respectively.

B. Valves and wall slip acting as a slip surface

Lagrangian discontinuities significantly influence the

transport dynamics of incompressible flows. We examine how

the opening and closing of valves combined with slip bound-

ary conditions creates Lagrangian discontinuities. Fig. 5

shows how this manifests in the RPM flow (Multimedia

view). Fluid cutting is achieved by closure of the valve, and

once closed the slip boundaries allow the disjoint fluid ele-

ments to move independently, as occurs via the operation of

the reoriented dipoles. If the disjoint fluid does not reconnect

to the valve immediately before it is reopened, this discontinu-

ity can be advected through the valve and into the bulk fluid.

For flows such as the RPM with non-uniform velocities on the

boundary, the “cut” appears as a slip deformation. This

Lagrangian discontinuity occurs along the curve separating

fluid that passes through the valve from the rest of the domain,

the dot-dashed curve in Fig. 5 that is approximately semi-

circular. It can be found by solving tvalve(x)¼ s, where tvalve is

the time it takes a particle to reach the valve.

Under no-slip boundary conditions, fluid would remain

attached to the valve and cutting could not occur. Fluid close

to the valve would experience a highly localized shear that

can be approximated as a cut when the boundary layer is

thin. This idea is discussed in more detail in Sec. V.

C. The webs of Lagrangian discontinuities

We now introduce the “webs” of Lagrangian discontinu-

ities, which provide a template for the overall transport dy-

namics of a system with discontinuous deformations. We

demonstrate how the web alone provides information on the

nature of the cutting mechanism, the location and stability of

periodic points, and pseudo-periodic points.

Lagrangian discontinuities occur at locations where fluid

will be cut into disconnected pieces, either via shear banding

or slip or via cutting from opening and closing fluid bounda-

ries. In the case of the RPM flow, this occurs at points that

are advected onto the valve at the time when the dipole reor-

ients, i.e., the dot-dashed curve in Fig. 5. We can extend this

notion by considering locations where fluid will eventually

experience discontinuous deformation, not just in the next

flow period, but in any subsequent flow period. This corre-

sponds to finding points that will be cut after some number

of flow periods, which we achieve by taking successive prei-

mages of the original Lagrangian discontinuity Ds
1, the

FIG. 4. Possible arrangements of alternating elliptic and hyperbolic (open/closed circles) period-N points (PN) resulting from the breakup of KAM-tori according

to the Poincar�e–Birkhoff theorem in systems with a symmetry line (dashed gray). (a) KAM-tori (dashed black) intersect the symmetry line twice. (b) KAM-tori

intersect symmetry line once and connect to themselves via the periodic boundaries. The points marked by arrows are on the periodic boundary and hence denote

the same point. (c) A sketch of how periodic points could be arranged on a streamline of the flow v0 in the limit as s! 0 if the Lagrangian discontinuity caused

by the dipoles did not exist.
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dotted-dashed curve in Fig. 5, under the map Ys. The result is

an infinite web of preimages

Ds ¼ fDs
n ¼ Y�n

s ðDs
1Þ; n > 0g; (2)

some of which are shown in Fig. 6(a) for the RPM flow.

Fluid that straddles the N-th preimage Ds
N will remain con-

nected until the N-th iteration when it will be cut into discon-

nected pieces.

The web of preimages identifies points that will experi-

ence discontinuous deformation at some future time. We can

also consider points where these discontinuous deformations

will propagate throughout the domain, i.e., points where

successive iterations under the inverse map Y�1
s leads to dis-

continuous deformation at the dipole. In this case, the initial

discontinuity consists of points that are advected onto the

sink under the inverse flow, which begins with the dipole in

its final orientation (position 3 in Fig. 2) and polarity

reversed. This coincides with the set Ds
1 reflected through the

symmetry line y ¼ tanð�H=2Þx, and we denote it Du
1.

Taking successive images of Du
1 under the map Ys yields the

web of images

Du ¼ fDu
n ¼ Yn

s ðDu
1Þ; n > 0g; (3)

some of which are shown in Fig. 6(b). A cutting of fluid that

occurs on the m-th iteration will appear along the N-th image

FIG. 5. The deformation of an initially

square set of particles for (H, s)¼ (2p/3,

0.02) after times t¼ ns, n¼ 0, 1, 2, 3, and

4. The domain around the valve, marked

by the points A–F, has been placed side

by side and inset to make it easier to see

the cutting of the fluid filament. Particles

are shaded according to the magnitude of

local stretching. The position of the

Lagrangian discontinuity (where fluid

reaches the dipole in one flow period) is

shown as the dotted-dashed curve. After

t¼ 4s, particles on each side of the

Lagrangian discontinuity become sepa-

rated. (Multimedia view) [URL: http://

dx.doi.org/10.1063/1.4941851.1].
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after Nþm iterations. The web of images can also be found

as the web of preimages of the reverse flow Y�1
s , and vice

versa. Furthermore, due to the RPM flow’s reflection-

reversal symmetry about the line y ¼ tanð�H=2Þx, the web

of images is the reflection of the web of preimages through

the symmetry line.

Analysing the webs in Figs. 6(a) and 6(b), it can be seen

that when a higher order preimage (i.e., further away in time,

denoted by colours closer to purple) meets a lower order pre-

image (closer to orange), the higher order curve is cut by the

lower order curve. For the web of preimages the upper por-

tion is shifted to the right, and for the web of images it is

shifted to the left. This means that cutting of fluid in the flow

results in a shift of the upper portion to the left (direction is

reversed for the preimages since it is using the inverse flow)

where the higher order preimage acts as the slip surface.

This prediction based on the webs can be verified by the

inset in the last figure of Fig. 5. Furthermore, it is easy to dis-

tinguish classical non-mixing KAM islands in the webs,

within which there must exist elliptic periodic points.

Hyperbolic periodic points can also be distinguished as

points where the webs converge inwards, the web of prei-

mages converges along direction of expansion (unstable

manifold Wu), whereas the web of images converges along

FIG. 6. The webs of Lagrangian discontinuities Ds, Du for (H, s)¼ (2p/3, s*) shown in the same frame used for Fig. 3(c), whose Poincar�e section is shown in faint

grey. Curves are coloured from red to purple according to the number of preimages and images, respectively. Convergence towards hyperbolic points along the

stable and unstable manifolds (Ws,u) is illustrated by arrows. (a) Web of preimages. (b) Web of images, with a blowup around one of the hyperbolic points.
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the direction of contraction (stable manifold Ws), two exam-

ples of this convergence are illustrated by arrows, and this is

made clearer by the blown up figure in Fig. 6(b). Elliptic and

hyperbolic points could also be found using standard peri-

odic point analysis, however, the pseudo-elliptic and pseudo-

hyperbolic points cannot be found using conventional meth-

ods. These can be found from the webs as points where

higher order preimages meet a lower order preimage, and

can be distinguished by the way the higher order preimages

are cut, shown in Fig. 7. We measure the cut as the signed

distance between the two end points, where the sign is given

by the difference between the x-coordinate of the top and

bottom end-points. Pseudo-hyperbolic points occur when the

signs of the gradient of the preimages and the cut are the

same, and pseudo-elliptic points occur when the signs are

different. This same classification can be used for the web of

images.

This type of analysis can be applied to general systems

with discontinuous deformations, not only fluid flows. The

web of Lagrangian discontinuities creates a template for the

overall transport dynamics and provides additional informa-

tion compared to the standard periodic point analysis.

In Sec. III, we discover the underlying mechanisms that

generate the webs and the implications for transport and mix-

ing in general systems with Lagrangian discontinuities.

III. BASIC MECHANISMS OF DISCONTINUOUS MIXING

To elucidate the transport mechanisms associated with

cutting and shuffling and stretching and folding motions in

materials with Lagrangian discontinuities, we consider a

simple map which captures the key features present in real

systems. In many systems, complex mixing dynamics can be

idealized as a sequence of shears. If discontinuities are pres-

ent, then cutting of material can also occur. We introduce a

simple map, the Cut-Shear-Shear (CSS) map, such that the

net deformation K consists of a sequence of horizontal cut-

ting (Figs. 8(c) and 8(d)), horizontal shearing (Fig. 8(b)) and

vertical shearing (Figs. 8(e) and 8(f))

Cðx; yÞ ¼ ðxþ a sgnðyÞ; yÞ; Shðx; yÞ ¼ ðxþ c1y; yÞ;
Svðx; yÞ ¼ ðx; yþ c2xÞ; Kðx; yÞ ¼ SvShCðx; yÞ;

(4)

subject to periodic boundary conditions at y¼62a/c1. The

map C mimics the action of a slip-line as naturally occurs in

shear-banding materials, or via a Lagrangian discontinuity

which arises from the boundary motion as in the RPM flow.

The parameters a, c1, and c2 quantify the magnitude and

direction of cutting, horizontal shear, and vertical shear,

respectively; we will see that varying these parameters can

fundamentally change the system. While a large set of sim-

ple maps may be constructed from compositions of elemen-

tary deformations (cutting, shear, rotation), the CSS map

FIG. 7. Classification of pseudo-periodic points based on the cutting of

higher order (dashed) images/preimages by a lower order image/preimage

(solid) in the webs of Lagrangian discontinuities. The vertical axis is the

signed distance between the end-points of the cut image/preimage, i.e., the

displacement of the upper curve relative to the lower curve. Pseudo-

hyperbolic points occur where the gradient of the images/preimages has the

same sign as the cut, and pseudo-elliptic points occur where the signs are

opposite.

FIG. 8. The CSS map. (a)–(f) The deformations that comprise the CSS map: (a) no deformation, (b) horizontal shear Sh, c1¼ 0.2, (c) and (d) positive and nega-

tive horizontal cut C, a¼60.2, (e) and (f) negative and positive vertical shear Sv, c2¼70.2. (g)–(j) Combined deformation and associated Poincar�e section

for different combinations of the basic deformations. Period-1 points are shown as triangles (elliptic) or circles (hyperbolic), and only exist in (g) and (h).
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captures the essential features of the dynamics observed in

the RPM flow and we will only consider this map here. An

exhaustive exploration of these dynamics is required to de-

velop a complete theory of discontinuous mixing, but this is

beyond the scope of this study.

For the CSS map, there are four topologically distinct

combinations for the Lagrangian dynamics. These depend on

the signs of a/c1, a/c2 and are shown in Figs. 8(g)–8(j). For

a/c1< 0 the cut and horizontal shear act in opposite direc-

tions, and the Poincar�e sections (Figs. 8(g) and 8(h)) reflect

the qualitative behaviour of the RPM flow on each side of

the minimum return streamline. Conversely, for a/c1> 0

(Figs. 8(i) and 8(j)), the cut and horizontal shear act in the

same direction. There is therefore no “balancing” of the two

deformations and hence no period-1 points. With a positive

vertical shear, the behaviour in Fig. 8(j) at the origin is quali-

tatively similar to a classical hyperbolic point. The two

shears create contraction in one direction and stretching in

another. However, the presence of the discontinuities along

the x-axis and at the periodic boundaries perturbs the motion

and “kicks” particles between streamlines, creating wide-

spread chaos. Reversing the vertical shear, the Poincar�e sec-

tion Fig. 8(i) has similarities to Fig. 8(g). Both have a dense

fractal tiling of KAM tori. However, there are no period-1

points in this case, and the largest KAM tori are much

smaller than the period-1 KAM islands in Fig. 8(g). For the

remainder of the paper, we focus on the cases with a/c1< 0

(Figs. 8(g) and 8(h)) to connect the CSS map to the transport

and mixing processes of the RPM flow.

In Fig. 8(h), the map has two hyperbolic points (circles)

which create a pseudo-elliptic island between them, similar

to those which occur on the right side of Fig. 3(c). To ana-

lyse mixing in these regions, we performed a dye trace simu-

lation (Fig. 10(a)) (Multimedia view), leading to a well-

mixed state within 50 iterations of the CSS map. Similar to

stretching and folding alone, the combination of CS and

stretching leads to exponential separation of nearby particles,

as shown in Fig. 9(b), however, classical Smale “horseshoe”

structures associated with fluid folding do not arise. Rather,

cutting and rearranging plays the role of folding. This simple

cutting, shuffling, and stretching process is responsible for

fluid mixing in the region of the RPM flow contained

between the minimum return streamline and the circular

boundary (Fig. 3(b)). While this behaviour has not been rec-

ognized in previous studies, it is likely to arise in most sys-

tems with combined stretching and CS.

To elucidate the mechanisms which drive chaotic

motion and leaking of particles, we consider the curves

x2

c1

�
y6

a

c1

� �2

c2

þ x y6
a

c1

� �
¼ c; c 2 R (5)

that are invariant under the CSS map, shown as blue and red

in Fig. 10(b). The system can be thought of as two affine lin-

ear systems “glued” together along the x-axis, such that the

composite CSS map can be expressed as

Kðx; yÞ ¼ 1 c1

c2 1þ c1c2

� �
x
y

� �
þ a sgnðyÞ 1

c2

� �
: (6)

A particle above the x-axis will follow the blue invariant

curves, and below it will follow the red. The key is that

when crossing the x-axis, e.g., from red to blue, it will not

follow the blue invariant curve until the start of the next iter-

ation, allowing it to jump onto a range of blue curves (any of

those before the line y¼ c2x which is shown in dashed

black). This “streamline jumping” is directly due to the dis-

continuity along the x-axis and causes the widespread chaos.

Successive jumps outward can result in particles escaping

the pseudo-elliptic island, and likewise particles from outside

are able to jump in.

Fig. 8(g) shows that by simply reversing the direction of

the vertical shear, the two period-1 points become elliptic

(triangles) and a dense fractal tiling of non-mixing islands is

created. This is qualitatively similar to the dynamics

observed in the RPM flow on the left side of Fig. 3(c). While

there is no mixing within the islands, Fig. 11(b) shows that a

particle initially located at the origin will eventually trace

out the entire region between them, forming the chaotic set.

In this case, the combination of the two shears results in a

rotation and hence the distance between initially close par-

ticles will not grow until the cut separates them, as shown in

FIG. 9. The separation of nearby particles in the CSS map. Particles were initially located at (0, 0) and (10�6, 0). (a) Using the same parameters as in Fig. 8(g).

The large jump in separation distance is caused by the two particles being cut in opposite directions, which occurs when their y-coordinates have opposite

signs. (b) Using the same parameters as in Fig. 8(h), the exponent agrees with the Lyapunov exponent associated with the hyperbolic points, which can be

found as logðmaxðk1;2ÞÞ ¼ logð 1
50
ð51þ

ffiffiffiffiffiffiffiffi
101
p

ÞÞ � 0:200 using Equation (B6).
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Fig. 9(a). This case is therefore a CS-only system, consisting

of only elliptic rotation and cutting, and hence is associated

to a piecewise isometry. The complex structures for the webs

of the CSS map are anticipated by the theory of piecewise

isometries.6,22 They are multifractal and can be very difficult

to resolve numerically at small length scales. The structure

of the web depends only on the rotation angle generated by

the elliptic points. Similar webs appear in other contexts,

including the outer billiards map,16 overflow in digital fil-

ters,5 and kicked Hamiltonians,2 all of which are driven by

elliptic rotations and discontinuous deformation, much the

same as the CSS map in this case.

Repeating the process of finding successive preimages

of Lagrangian discontinuities resolves the webs of

Lagrangian discontinuities (Fig. 11(a)). As in the RPM flow,

the webs form a template for the system, revealing the nature

of the cutting mechanism, the periodic points, and the

pseudo-periodic points. It can also be seen that the web Fig.

11(a) coincides with the chaotic set Fig. 11(b).

The dynamics of the CSS map clearly demonstrates how

Lagrangian discontinuities create two new types of transport

mechanism that are not possible in classical SF systems. The

first is via pseudo-elliptic islands, where the Lagrangian dis-

continuity enables jumping between invariant curves and

mixing in a leaky region via a process of stretching, cutting,

and shuffling. Exponential separation of nearby particles,

and hence strong mixing, is achieved due to the presence of

stretching. This leads to more rapid mixing than can be

achieved in a CS-only system. The second mechanism is in

the measure-zero set amongst the densely packed elliptic

regions given by the webs of preimages and images. In this

set particles travel ergodically, experiencing a combination

of rotation and cutting deformations. Such a dense tiling of

elliptic points without any hyperbolic points is impossible in

FIG. 10. Pseudo-elliptic islands in the

CSS map with the same parameters as

Fig. 8(h). The pair of period-1 hyper-

bolic points are shown as black/red

stars. (a) Dye trace simulation. An

initially circular blob of fluid particles

(half red, half blue) is iterated under

the CSS map K. (b) Invariant curves

for the CSS map (red, blue) and

particle trajectories (black, green

arrows). The dashed black line y¼ c2x
defines the region where particles

may jump onto new invariant curves.

(Multimedia view) [URL: http://

dx.doi.org/10.1063/1.4941851.2].
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classical Hamiltonian systems, but is characteristic of other

CS-only systems (piecewise isometries) that are driven by

rotation and cutting. We have demonstrated that these trans-

port behaviours can occur in real systems even when the

base system is conservative, and can play a fundamental role

in the overall dynamics of transport and mixing.

IV. THE IMPACT OF NON-LINEAR DEFORMATIONS

A. The non-linear CSS map

The CSS map only considers linear shear, but in most

applications, stress is non-uniform, resulting in varying shear

rates even in Newtonian materials, with the potential for

much stronger variation if yield stress or shear rate depend-

ence is present. In fluids, they arise in flows that have non-

uniform velocity profiles, which occur in the RPM flow

based on the non-linear return time distribution of the as-

ymptotic flow v0. We extend the CSS map by replacing the

linear vertical shear Sv with the non-linear vertical shear Snl

(Fig. 12(a))

Snlðx; yÞ ¼ ðx; yþ f ðxÞÞ; K2ðx; yÞ ¼ SnlShCðx; yÞ: (7)

In Fig. 12, f(x)¼ 0.05x2� 0.2 (dashed) is quadratic such that

the shear is negative for x< 0 and positive for x> 0. Locally,

the non-linear CSS map behaves similarly to the linear CSS

map but includes regions of positive and negative vertical

shear. We do not show it here, but by approximating the

non-linear function f(x) with a piecewise linear function, the

linear CSS map can make a piecewise approximation to the

non-linear CSS map to arbitrary accuracy. Thus the Poincar�e
section for the non-linear map (Fig. 12(b)) has both the novel

pseudo-elliptic islands and the dense tiling of non-mixing

islands from Figs. 8(g) and 8(h). Using this quadratic func-

tion f(x), the Poincar�e section for the non-linear model (Fig.

12(b)) captures the key features of the RPM flow (Fig. 3(c)).

We are therefore able to understand the mechanisms driving

the transport in the RPM flow at a fundamental level, and

because any function f(x) can be approximated by sequences

of the up- or down-going vertical shears, these basic trans-

port structures will appear for every non-linear shear profile.

FIG. 11. Webs of Lagrangian discontinuities for the CSS map. (a) The webs of preimages, Ds, and images, Du, of Lagrangian discontinuities, colored accord-

ing to number of pre/post-images (red-purple) with the same parameters as Figs. 8(g) and 8(h). The corresponding Poincar�e sections from are shown in grey.

(b) Tracking a single particle initially located at the origin for 2 000 000 iterations (colored from purple to red) of the CSS map with the same parameters as

Fig. 8(g) shows that the webs of Lagrangian discontinuities coincide with the chaotic set between the non-mixing islands.

FIG. 12. The non-linear CSS map equa-

tion (7). The initial condition, cut and hor-

izontal shear are identical to those in Figs.

8(a)–8(c). (a) Non-linear vertical shear

Snl, with f(x)¼ 0.05x2� 0.2 (dashed). (b)

The combined deformation and associ-

ated Poincar�e section. Period-1 points are

shown as triangles (elliptic) or circles

(hyperbolic). Note the similarity between

this Poincar�e section and Fig. 3(c).
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B. Segregated mixing

The quadratic CSS map shows that it is possible to com-

bine the mixing capabilities of pseudo-elliptic points with

non-mixing regions using non-linear vertical shears. By

using more complex functions f(x) in Equation (7), it is pos-

sible to engineer systems that have multiple mixing and non-

mixing regions. Pseudo-elliptic islands are created anywhere

that the function f(x) has x-intercepts with a positive gradi-

ent, and dense non-mixing islands are created when the x-

intercepts have negative gradient. It is therefore simple to

design systems that combine mixing and non-mixing regions

by controlling the location and gradients of x-intercepts of f.
An example is shown in Fig. 13, where segregated mixing is

achieved using the piecewise linear function f(x) shown in

Fig. 13(b). Mixing regions are created on the left and right

via pseudo-elliptic points, and in the center, there is a thin

non-mixing region. The fact that the non-mixing islands

form a dense tiling means that they form vertical barriers to

transport with very slow leakage across them, separating the

two mixing regions. The segregated mixing is clearly illus-

trated by the dye trace in Fig. 13(c) (Multimedia view),

within 25 iterations the left and right sides are well mixed,

but there is little intermixing between the left and the right.

V. TRANSITION FROM SF TO CS

The Lagrangian discontinuity in the CSS map is caused

by the cutting map C. By approximating the cut with a

smooth sequence of progressively sharper deformations, we

can analyse the transition of smooth systems with mixing

controlled by SF towards a system with Lagrangian disconti-

nuities and CS. We replace the map C in the CSS map with

the smoothed map

Cbðx; yÞ ¼ ðxþ a gbðyÞ; yÞ; where (8)

gb yð Þ ¼

A tanh b yþ 2
a

c1

����
����

 ! !
� 2; y < � a

c1

����
����

A tanh byð Þ; jyj � a

c1

����
����

A tanh b y� 2
a

c1

����
����

 ! !
þ 2; y >

a

c1

����
����

8>>>>>>>>><
>>>>>>>>>:

(9)

A ¼ coth b
a

c1

����
����

 !
: (10)

As shown in Fig. 14, the C1-continuous functions gb(y) con-

verge pointwise to sgn(y) as b!1. Therefore, the maps Cb

converge pointwise to the cutting map C, and the associated

smoothed CSS map Kb ¼ SvShCb only has Lagrangian dis-

continuities in the limit b!1.

Comparing the dye trace simulations in Figure 15 for a

fixed number of iterations n¼ 6, the only difference between

the CSS map (b!1) and the smoothed map Kb with large

but finite b is that material that is cut by the CSS map

FIG. 13. Segregation of mixing

regions using a piecewise-linear verti-

cal shear. (a) The Poincar�e section gen-

erated using the piecewise linear

function shown in (b) as f(x) in

Equation (7). Hyperbolic and elliptic

period-1 points are shown as circles

and triangles, respectively. (c) A dye

trace simulation with four initially sep-

arated colours of dye. Dye is shown af-

ter 0, 1, 25 iterations, respectively.

(Multimedia view) [URL: http://

dx.doi.org/10.1063/1.4941851.3].
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remains connected by thin striations. The striations occur

along lines that coincide with the images of the Lagrangian

discontinuity (Figure 15(d)) and become infinitely thin as b
! 1. This is expected since this web consists of the points

that experience discontinuous deformation. Therefore, trans-

port structures for the smooth and discontinuous maps will

converge everywhere except the web of post-images of the

Lagrangian discontinuity, Du, a set of measure zero.

In order to analyse the transition as b! 1, we consider

the Poincar�e sections and period-1 points. Fig. 16 demon-

strates the convergence of Poincar�e sections for the smooth

systems towards the discontinuous limits Figs. 8(g) and 8(h).

Unlike the CSS map, in each case at low values of b the chains

of periodic points alternate between elliptic (triangles) and

hyperbolic (circles), as anticipated by the Poincar�e–Birkhoff

theorem. Focusing on the period-1 points for c2¼�0.2 (top

row of Fig. 16), as for the CSS map there are the two elliptic

points at (0, 6 1). In contrast to the CSS map that has pseudo-

hyperbolic points at the origin and on the periodic boundary at

ð0;�ja=c1jÞ, the smoothed maps Kb have genuine hyperbolic

points. Hence mixing in the chaotic sea between KAM islands

is generated by SF rather than CS. As b!1, the magnitude

of the shear about the origin increases, and the eigenvalues

k1¼ 1/k2 approach1 and 0 (Appendix B 3), meaning infinite

expansion and contraction. The corresponding eigenvectors

FIG. 14. The smooth functions gb(y) used to approximate the discontinuous

function sgn(y). Inset is the deformation of a square by the smoothed cut Cb

with b¼ 10.

FIG. 15. The effect of the smoothing pa-

rameter b on a dye trace simulation with

the same parameters as Fig. 8(h). (a) The

initial configuration of the dye is a red

disk enclosed within a blue annulus. The

hyperbolic period-1 points at (0, 6 1) are

shown as black stars. (b) The location of

the dye after 6 iterations of the CSS map

K. The dashed rectangle is the domain

used for (c), (d), and (e). (c) Increasing

the smoothing parameter b, converging

towards the discontinuous limit. (d) The

dye trace for the CSS map with the web

of images of the Lagrangian discontinu-

ity, Du. Further from red is more distant

in time. This web coincides with the

location of the striations at high values of

b. (e) The dye trace for the CSS map

shown with the unstable manifold (black)

associated with the hyperbolic point at

the origin for the smoothed map Kb with

b¼ 2000. As b approaches infinity the

unstable manifold converges to the same

web of post-images of the Lagrangian

discontinuity in (d). Likewise the stable

manifold converges to the web of pre-

images of the Lagrangian discontinuity.
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give the directions of expansion and contraction, in the limit b
!1 they approach (1, c2) and (1, 0) which correspond to the

first image and preimage in the webs of Lagrangian disconti-

nuities, and the only two lines that are tangent to both of the

period-1 elliptic islands for the CSS map.

Conversely, when the vertical shear is reversed (bottom

row of Fig. 16) there are two period-1 hyperbolic points at

(0, 61) as for the CSS map, but there are two more period-1

points, at the origin and on the periodic boundary at

ð0;�ja=c1jÞ. These two new period-1 points share the same

characteristics for each set of flow parameters. For low val-

ues of the smoothing parameter b, they are elliptic and the

corresponding KAM islands are bounded by the parallel het-

eroclinic connections of unstable manifolds associated with

the hyperbolic points. As b increases, the heteroclinic con-

nections become transverse, creating a chaotic sea around

the KAM islands, gradually engulfing them. The KAM

islands become increasingly thin, to the point where they

undergo period-doubling bifurcations, each creating a

period-1 hyperbolic point and two period-2 elliptic points.

For the case shown with (a, c1, c2)¼ (�0.2, 0.2, 0.2), this

bifurcation occurs around b� 101 (Appendix B 3). As in the

c2¼�0.2 case, the eigenvalues approach 1 and 0, with

eigenvectors converging to (1, c2) and (1, 0), and associated

stable and unstable manifolds converging to the webs of

Lagrangian discontinuities Ds, Du, respectively (Figures

15(d) and 15(e)). These webs can therefore be considered as

the analogues of the stable and unstable manifolds for sys-

tems with discontinuous deformations.

A fundamental difference between the stable and unsta-

ble manifolds (Fig. 17) for the CSS map compared to the

smoothed map Kb is that the Lagrangian discontinuity cuts

both manifolds into disconnected pieces. Material lines

such as the stable and unstable manifolds form impenetra-

ble barriers to transport, but cutting them creates “gaps,”

allowing material to pass through freely. For sufficiently

large b, almost all individual particles follow the same tra-

jectories using the smoothed and discontinuous maps, how-

ever, finite area material parcels have greater freedom in

the presence of Lagrangian discontinuities. In the limit b !
1, the material barriers disappear, and material parcels are

able to cross the destroyed barriers, whereas for finite b
high levels of stretching are required to ensure that barriers

are not crossed.

FIG. 16. Convergence of the Poincar�e sections for the smoothed map Kb toward the corresponding Poincar�e sections Figs. 8(g) and 8(h) of the discontinuous

map K. Hyperbolic and elliptic period-1 points are shown as circles and triangles, respectively, and are located at (0, 61) and (0, 0). For c2¼ 0.2 (bottom row),

at b� 101 the periodic point at the origin bifurcates from elliptic to hyperbolic (see Appendix B 3 for more details).

FIG. 17. The stable (gray) and unstable (black) manifolds associated with the hyperbolic points (solid circles) located at (0, �1) and (0, 1), respectively, with

the same parameters as Fig. 8(h). The first two plots are for the smoothed map Kb (b¼ 50, 2000), and the final plot is for the CSS map K.
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To consider the impact of smoothing the Lagrangian dis-

continuity on mixing characteristics, we compare the dye

trace simulation Fig. 10(a) for the CSS map with its counter-

part Fig. 18 (Multimedia view) for the smoothed map Kb

with b¼ 50. Both maps exhibit similar gross behaviour,

however, a key difference is that folds replace the pro-

nounced cuts. The folds accumulate along the stable mani-

folds of the hyperbolic points (Fig. 17) leading to strong SF.

As b increases the thickness of the folds decreases, so that in

the limit b ! 1 the folds have zero thickness, forming the

lines of discontinuous deformation.

Considering a smoothed cut illustrates how non-

Hamiltonian structures such as pseudo-elliptic points,

pseudo-hyperbolic points and the webs of Lagrangian dis-

continuities are analogous to the structures found in

Hamiltonian systems. Systems with highly localised shears

share many of the same properties as systems with

Lagrangian discontinuities, but there is a set of measure zero

where transport structures will never agree.

We have shown that in the RPM flow the Lagrangian

discontinuities are a result of opening and closing valves

combined with a slip boundary condition. In practice, fluid

flows have no-slip boundaries, so fluid would always remain

connected across valves. Instead of being cut, fluid will ex-

perience highly localised shear depending on the thickness

of the boundary layer. We therefore expect that with no-slip

boundary conditions in the RPM flow, the structures seen in

Fig. 3(c) would be replaced by their smoothed analogue as in

Fig. 16, where the thickness of the boundary layer acts as the

smoothing parameter b.

VI. CONCLUSIONS

Cutting by Lagrangian discontinuities drastically alters

how mixing and transport can arise in materials and systems

that have slip planes, shear bands or valves and wall slip.

Cutting opens up a wider range of possibilities for the long-

time organization of material by increasing the topological

freedom of Lagrangian transport. Using a simple map con-

sisting of cutting and shearing motions, we have found a

novel mixing mechanism that arises in general systems that

combine stretching and CS, which we call a pseudo-elliptic

island. Within these islands strong mixing occurs, an impos-

sibility for CS-only systems and SF systems without folding.

The map can also produce fractal tilings of classical non-

mixing islands with a greater density of islands than is possi-

ble in a classical SF system, resulting in slower transport and

weak mixing. We have only considered a few of the possibil-

ities for maps composed of simple shear, cut and rotation

deformations. Further study of the full array of possibilities

could reveal fundamentally different structures that may

appear in physical systems.

Our map demonstrates qualitatively similar mixing and

transport as that seen in a realistic example flow for relevant

ranges of the control parameters. We have shown that even

with a smooth incompressible base flow, the opening and

closing of valves combined with a slip boundary condition

creates Lagrangian discontinuities, leading to transport

behaviour that cannot be found in classical Hamiltonian sys-

tems. Slip walls are necessary if the opening and closing of

valves occurs on the boundary, but Lagrangian discontinu-

ities will also arise in flows with no-slip boundary conditions

if the fluid is injected into and extracted from points in the

domain away from boundaries.

The standard methods used for studying SF systems—

periodic point analysis, dye trace simulations—are still rele-

vant in systems with Lagrangian discontinuities, but new

methods are needed to fully understand them. We have intro-

duced the webs of Lagrangian discontinuities as a more com-

prehensive tool. These webs determine the location and

stability of periodic points, the nature of the cutting mecha-

nism, and the locations of new structures such as pseudo-

periodic points.

While we have used 2D examples, extension of this

analysis to fully 3D systems will be challenging. A third

dimension creates even more topological possibilities for

coherent structures, for instance, the web of Lagrangian dis-

continuities is made from 1D curves in 2D systems but in 3D

there will be a web of interlaced 2D surfaces. The introduc-

tion of a Lagrangian discontinuity is anticipated to create

FIG. 18. The dye trace simulation corresponding to Fig. 10 except using the

smoothed map Kb with b¼ 50. Rather than stretching and CS, SF is the mix-

ing mechanism. The period-1 points are shown as black stars, at (0, 61)

they are hyperbolic, and the point at (0, 0) is elliptic. (Multimedia view)

[URL: http://dx.doi.org/10.1063/1.4941851.4].
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fundamentally different structures to those observed in 2D

systems.

Future study should focus on developing a complete

framework for 2D transport in the presence of Lagrangian

discontinuities, studying the full range of interactions

between CS and SF.
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APPENDIX A: PARTICLE TRACKING IN THE RPM
FLOW

Tracking individual particles within the RPM flow is

essential for the production of Poincar�e sections and dye trace

simulations. Finding the path of a particle requires solving the

advection equation (1) either numerically or analytically. For

the RPM flow, the velocity field v can be found analytically,11

making computation significantly easier. While an analytic so-

lution to Equation (1) is impossible for the RPM flow, a

pseudo-analytic method is used to track particles in a similar

manner to Lester et al.11 The main difference being the use of

the potential function U and streamfunction W as orthogonal

coordinates, instead of using the polar angle h and W as coor-

dinates which are parallel along the y-axis. Using the stream-

function as a coordinate is beneficial since it is a constant of

motion, and the potential function is a canonical choice since

it must be orthogonal to the streamfunction. Conversion

between Cartesian coordinates and ð/;wÞ coordinates is per-

formed via polar coordinates

x; yð Þ $ r; hð Þ $ /;wð Þ

r /;wð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2 cos wð Þ

cos wð Þ þ cosh /ð Þ

s

h /;wð Þ ¼ � j/j
/

cos�1 sin wð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2 /ð Þ � cos2 wð Þ

q
0
@

1
A

/ r; hð Þ ¼ 1

2
log

r2 � 2r sin hð Þ þ 1

r2 þ 2r sin hð Þ þ 1

 !

w r; hð Þ ¼ tan�1 2r cos hð Þ
1� r2

� �
:

(A1)

The advection equation in these new coordinates is given by

dU
dt
¼ cos Wð Þ þ cosh Uð Þ
� �2

;
dW
dt
¼ 0: (A2)

We have therefore reduced the system to one dimension,

though this differential equation is still insoluble. On the

other hand, the equation

dt

dU
¼ 1

dU=dt
(A3)

has the analytic solution

tadv /;wð Þ ¼ csc2 w �2cot wtan�1 tan
w
2

tanh
/
2

� ��

þ
sin

w
2
þ sinh

/
2

sin w
sech

/� iw
2

� ��

þ sech
/þ iw

2

� ��	
(A4)

which gives the advection time from the x-axis (U¼ 0) to the

point ð/;wÞ along the streamline W¼w. The residence time

of each streamline can then be computed as

tresðwÞ ¼ 2 lim
/!1

tadvð/;wÞ ¼ �2ðw cot ðwÞ � 1Þcsc2ðwÞ:

(A5)

The advection of a particle for the time period T can be

expressed as a map ð/;wÞ ! ð/0;wÞ, where the new value

of the potential function satisfies

tadv /0;w
� �

þ tres wð Þ
2
¼ tadv /;wð Þ þ tres wð Þ

2
þ T mod tres wð Þ:

(A6)

However, the function tadv is not invertible, so there is no

analytic solution for /0. We use Newton’s root finding

method to solve Equation (A6) to machine precision accu-

racy. The new coordinates are then converted to Cartesian

coordinates via Equation (A1).

APPENDIX B: PERIODIC POINT ANALYSIS

Periodic points and their stability play a pivotal role in

the organisation of particle transport, and lower order

(smaller period) points play a greater role than higher order

points. We therefore focus on finding the period-1 points

of maps f(x), which satisfy f(x)¼ x. The local stability of

period-1 points is determined by the eigenvalues of the de-

formation tensor F¼ (@fi/@xj). For area-preserving maps,

the eigenvalues must satisfy k1k2¼ 1. If the eigenvalues

are real, then k1¼ 1/k2, leading to a direction of contrac-

tion and a direction of expansion. In this case, the periodic

point is called hyperbolic. The only other possibility for an

area-preserving map is that the eigenvalues form a complex

conjugate pair k1;2 ¼ cos h6i sin h, in which case there is a

rotation about the periodic point, and the point is called

elliptic.

1. The CSS map

To find and classify the period-1 points of the CSS map,

we write the map explicitly as

K x; yð Þ ¼ x0; y0
� �

x0 ¼ xþ c1yþ a � sgn yð Þ

y0 ¼ c2x0 þ yþ 2

jc01j
mod

4

jc01j

� �
� 2

jc01j
;

(B1)
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where c0i ¼ ci=a. This includes the periodic boundaries at

y ¼ 62=c01. Period-1 points must therefore satisfy the pair of

equations

xþ c1yþ a � sgn yð Þ ¼ x;

c2xþ yþ 2

jc01j
mod

4

jc01j

� �
� 2

jc01j
¼ y:

(B2)

The second equation simplifies to

c2xþ yþ 2

jc01j
¼ yþ 2

jc01j
þ n

4

jc01j
; n 2 Z (B3)

which implies that

x ¼ n
4

jc01jc2

; jyj ¼ � a

c1

; n 2 Z: (B4)

Therefore, period-1 points only exist when c01 ¼ c1=a < 0,

and in these cases occur at the points ðn 4
jc0

1
jc2
;61=c01Þ.

For the CSS map, the deformation tensor is

F ¼ 1 c1

c2 1þ c1c2

� �
; y 6¼ 0;6

2

c01
(B5)

and is undefined if y ¼ 0;62=c01 due to discontinuities cre-

ated by the cutting transformation and periodic boundary.

The eigenvalues of F are

k1;2 ¼
1

2
2þ c1c26

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1c2 4þ c1c2ð Þ

p
 �
: (B6)

Assuming that c1> 0 and c2>�4/c1, the eigenvalues are

real when c2> 0 and form a complex conjugate pair when

c2< 0. In terms of stability, this means that the period-1

points are hyperbolic when c2> 0 and they are elliptic when

c2< 0.

2. The non-linear CSS map

The function f(x) in the quadratic vertical shear Snl can

be written as f(x)¼ ax2� b. The period-1 points of the non-

linear CSS map can be found in a similar manner to those in

the linear CSS map. The map can be written explicitly as

K2 x; yð Þ ¼ x0; y0
� �

x0 ¼ xþ c1yþ a � sgn yð Þ

y0 ¼ a x0ð Þ2 � bþ yþ 2

jc01j
mod

4

jc01j

� �
� 2

jc01j
:

(B7)

Period-1 points satisfy ðx0; y0Þ ¼ ðx; yÞ, which is true when

x ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a
bþ n

4

jc01j

� �s
; jyj ¼ � a

c1

; n 2 Z: (B8)

This can only occur when 1
a bþ n 4

jc0
1
j


 �
� 0 and c01 < 0. The

deformation tensor F2 can be computed at every point except

along the lines y ¼ 0;62=c01

F2ðx; yÞ ¼
1 c1

2ax0 1þ 2c1ax0

� �
: (B9)

It can be seen that F2 is equivalent to F but with c2 replaced

with 2ax0. Assuming that c1> 0 and a> 0, we can therefore

say, that the period-1 points are elliptic when x< 0 and

hyperbolic when x> 0.

3. Smoothed CSS map

Essentially, the same analysis as for the CSS map

applies to the smoothed map at the points (0, 61). The value

of the smoothing parameter b has some effects on the values

of the eigenvalues and eigenvectors of the deformation ten-

sor, but the nature of the points remains the same.

For the period-1 points at the origin and on the periodic

boundary at ð0;�2ja=c1jÞ, direct computation of the defor-

mation tensor Fb ¼ ð@Ki
b=@xjÞ yields

Fbðx; yÞ ¼
1 b
c2 1þ bc2

� �
(B10)

where

b ¼ ab coth b
a

c1

����
����

 !
þ c1 (B11)

is the net horizontal shear at the origin from the maps Cb and

Sh. This deformation tensor is in the same form as Equation

(B5), and thus the two eigenvalues are

k1;2 ¼
1

2
2þ bc26

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bc2 4þ bc2ð Þ

p
 �
: (B12)

As b ! 1, the eigenvalues converge to 0 and �1,

respectively.

The nature of the periodic point is determined by the

discriminant

D ¼ bc2ð4þ bc2Þ; (B13)

for D> 0 the period-1 point is hyperbolic, for D< 0 it is

elliptic and when D¼ 0 it is degenerate. Assuming that

c1> 0, c2 6¼ 0 and a< 0, there are a number of cases. The dis-

criminant will be zero when

b ¼ 0; or b ¼ �4

c2

: (B14)

Restricting to the case when c1¼�a, then b¼ 0 is equiva-

lent to b coth b ¼ 1, implying that b¼ 0. Therefore, the

period-1 point becomes degenerate as the smoothing param-

eter b ! 0. This can also be seen by the fact that as b!
0; gbðyÞ ! y so Cb ! S�1

h and hence Kb! Sv.

The other case in Equation (B14), b ¼ �4
c2

, is equivalent to

b coth b
a

c1

����
����

 !
¼ �1

a

4

c2

þ c1

� �
(B15)

which will have a solution provided the right hand side is

greater than 1. If a solution exists then the period-1 point

will experience either a period-doubling or period-halving

023113-17 Smith et al. Chaos 26, 023113 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.194.129.221 On: Wed, 17 Feb

2016 00:02:22



bifurcation. In the main text, the cases used are (a, c1, c2)

¼ (�0.2, 0.2, 60.2). For c2¼ 0.2, the right hand side of

Equation (B15) is equal to 101, and hence there is a period-

doubling bifurcation of the elliptic point at b� 101. On the

other hand, for c2¼�0.2, the right hand side of Equation

(B15) is equal to �99 and hence there is no solution. In this

case, the point remains hyperbolic for all values of b.

The eigenvectors of the deformation tensor Fb corre-

sponding to the eigenvalues k1,2 are given by

v1 ¼ 1;
c2

1� k2

� �
; and v2 ¼ 1;

c2

1� k1

� �
: (B16)

Hence as b ! 1 the eigenvectors converge to (1, 0) and

(1, c2), respectively.
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