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Abstract

We classify all the possible asymptotic behavior at the origin for positive solutions of quasilinear
elliptic equations of the form div (VulP~2Vu) = b(x)h(u) in Q \ {0}, where 1 < p < N and Qs
an open subset of RY with 0 € Q. Our main result provides a sharp extension of a well-known
theorem of Friedman and Véron for h(u) = u? and b(x) = 1, and a recent result of the authors for
p =2 and b(x) = 1. We assume that the function /% is regularly varying at co with index ¢ (that is,
lim; o, h(A1)/h(t) = A9 for every A > 0) and the weight function b(x) behaves near the origin as
a function by (|x|) varying regularly at zero with index 6 greater than —p. This condition includes
b(x) = |x|° and some of its perturbations, for instance, b(x) = |x|°(~log|x])" for any m € R.
Our approach makes use of the theory of regular variation and a new perturbation method for
constructing sub- and super-solutions.
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1. Introduction

Let 1 < p < N and Q be an open subset of R such that the origin is contained in Q.
Motivated by [7]], [3]], [17] and our recent work [4], we classify here all the possible asymptotic
behavior at the origin for positive solutions of quasilinear elliptic equations of the form

—div (|VulP~2Vu) + b(x)h(u) =0 in Q" := Q\ {0}, (1.1)
under suitable assumptions on b(x) and A(u). Unless stated otherwise, the functions /& and b
always satisfy the following conditions.

AssumpTION A. The function h is continuous on R and positive on (0, o) with h(0) = 0, and
h@)/t~ is bounded for small t > 0, while b is a positive continuous function on Q \ {0}.

By a solution of (I.T]), we mean the following.
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Definition 1.1. A function u is said to be a solution (sub-solution, super-solution) of (L.1I)) if
u(x) € C'(Q*) and for all functions (non-negative functions) ¢(x) in C!(Q*),

f \VulP>Vu - Vo dx + f b(hwedx=0 (<0, >0). (1.2)
Q Q

By C!(Q*) we denote the space of functions in C!(Q*) having compact support in Q.

Friedman and Véron considered in [7] the following special case of (I.1J:
—div (IVul’2Vu) + |l 'u =0 in Q". (1.3)

They obtained a complete classification of the behavior near zero for all positive solutions when
p—-l<gx< % (any g > p — 1 if p = N). The homogeneity of the power non-linearity and
various scaling arguments were key ingredients in the approach of [[7] and other related papers
such as [18] [19] and [3]]. These arguments can be easily modified to treat a more general case
where h(u) behaves like u? near infinity, but it is crucial that in the limit it behaves like a pure
power, that is, lim,_,, h(¢)/t? = ¢ > 0; see Remark 2.3 in [7].

Our main goal is to extend the classification result of Friedman and Véron [7] to weighted
equations of the type (T.T) when the nonlinearity / needs not behave like a pure power at infinity.
For such & the scaling arguments used before fail to work in several key steps. The condition
near infinity we impose on 4 is the following:

ha _
bty h(t)

Functions satisfying condition (I.4) are known as regularly varying functions at co with index
q. More precisely, a positive measurable function £ defined on an interval (A, co) with A > 0 is
called regularly varying at co with index ¢, written & € RV,, provided that the equation in
holds for some ¢ € R. A regularly varying function of index zero is called a slowly varying
function. Any positive constant function is trivially a slowly varying function. Other non-trivial
examples of slowly varying functions include:

A4 for every 2 > 0 and some g > p — 1. (1.4)

(a) The logarithm log ¢, its m-iterates log,, ¢ (defined as loglog,,_, #) and powers of log,, ¢ for
any integer m > 1.
log t
(b) exp (logoigogt)‘
(c) exp((log)®) with a € (0, 1).

We have h € RV, if and only if h(t) = t?L(t) for a function L that is slowly varying at co.
The concept of regular variation can be applied at zero as follows.

Definition 1.2 (see [12]]). We say that by is regularly varying at (the right of) zero with index
6 € R (written as by € RVy(0+)) if t — by(1/¢) is regularly varying at co with index —6.

Thus by € RV,(0+) if and only by(r) = rL(1/r) for r > 0 small, where L is a slowly varying
function at co. Note that lim,_,g bo(r) = 0if 8 > 0, whereas lim,_,g bo(r) = o if 8 < 0. However,
if by is slowly varying at zero (that is, 6 = 0), then the above examples show that the limit of by
at zero in general cannot be determined, and it may not even exist. For instance, if

bo(r) = exp{(—log )Y cos((— log HYHY forr e (0,1),
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then by is slowly varying at zero, but lim inf, ¢ bo(r) = 0 and lim sup,_,, bo(r) = +oo.
Our hypothesis on b involves regular variation at zero, namely
b(x)
im
lx1=0 bo(]x])

=1 for some by € RVy(0+) and 8 > —p. (1.5)

Let u(x) denote (as in [7]]) the fundamental solution of the p-harmonic equation
—div (|VulP2Vu) = &, in D’(R") (in the sense of distributions in RY),
where 8, denotes the Dirac mass at 0. If wy denotes the volume of the unit ball in RY, then
p__l(Na)N)—l/(P—l)|x|(p—N)/(p—1) for1 < p <N,

ux)=p(x) =4 N-p
(Nwn) Y N=D1og(1/|x]) for p = N.

From || , the function b is locally in L= (Q) for some € > 0 small. Hence Theorem 1 of Serrin
[14] is applicable to (1.1) whenever h(f)/t*~! is bounded in a neighbourhood of +co. In this case,
if u is any given positive solution of (LI, then one of the following holds

(a) u can be defined at 0 so that the resulting function is a continuous solution of @) in all
of Q (thatis, u € Wllo’cp () N C() such that ll holds for all ¢ € Ci(Q));

(b) there exists a constant C > 0 such that C~!u(x) < u(x) < Cu(x) near x = 0.
To ensure that A(t)/tP~" is unbounded at co, we require ¢ > p — 1 in (1.4). We define

1N +6
(pN)—(Hif1<pSN (Cnpo = 0if p = N), (1.6)

C N.p.o = —
where 6 appears in (I.5). In Theorem|[I.2] we show that if p — 1 < g < Cu,,4, then a new type of
behavior near zero arises (in the sense of solutions u satisfying limyy—o u(x)/u(x) = co).

Our central result (Theorem|[T.T)) establishes a complete classification of the positive solutions
of @ assuming that p — 1 < g < Cy,9. We also show that the restriction g < Cy,p ¢ is sharp
(cf., Theorem @) and that there exist solutions in each of the categories of Theorem ﬂzlunder
suitable regularity and monotonicity assumptions (see Theorem [I.2)).

We now state precisely our main results.

Theorem 1.1. Let (T.4) and (T.5) hold with 1 < p < N and p —1 < q < Cy,pg. If u is a positive
solution of (1), then as |x| — 0 exactly one of the following applies:

h
(i) |xIPb(x) ib—tff); converges to the following positive number
uP=1(x
-1
frenim (PO (pa (2O
Npat =\ g ¥1-p g+1-p g+1-p)

(i2) u(x)/u(x) converges to a positive constant y and
—div(|VulP2Vu) + b(x)h(u) = y*7 16y in D'(Q). (1.7)

(i3) u(x) has a finite limit and u can be extended as a continuous solution of (1)) in all Q.
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Theorem 1.2. Let (T.4) and (I.3) hold with 1 < p < Nand p -1 < q < Cy 9. Assume that Q
is a bounded domain with C'-boundary and © € C'(0Q) is a non-negative function. If h(t)/t"~!
is non-decreasing for t > 0, then for every y € [0, 00) U {+00}, the following problem

— div ((VulP2Vu) + b(x)h(u) =0 in QF,

1.8
1m@=y, u=19°9 ondQ, (18)
Ix—0 w(x)

admits a unique non-negative solution u,, which is in Cllt;g(Q*) for some a € (0, 1). Moreover, if
¥ € [0, co0), then (I.7) holds with u = u,.

Theorem 1.3. Let (T.4) and (T3) hold with 1 < p < N and q > Cypp. If ¢ = Cn pp, then we
assume in addition that
b
liminf 22 20 and Timinf 22 s 0. (1.9)

1—co  tCNpo Ix—0 |x|¢

Then any positive solution of (I.I) can be extended as a continuous solution of (I.1)) in all Q.

Remark 1.1. We extend several results in papers such as [[7], [3]], [17] and [4].

(a) Theorem[[.I]with b = 1 and h(r) = #4 reduces to Theorem 2.1 of Friedman and Véron [7]
on Eq. (I.3), which for p = 2 was proved earlier by Véron [18][19] and also by Brezis and
Oswald [2] (with a different approach to [18} [19])).

(b) Theorem @with h(t) = 14 and b(x) = 1 is due to Friedman and Véron [7].

©) Theorem@extends results given for b(x) = 1 by Brezis—Véron [3]] (p = 2) and Vazquez—
Véron [17]] (1 < p < N). Our proof is somehow different than in [3]] and [17]].

In Theorem we prove that if u is a positive solution of 1i and lim sup;,_, l‘% # 00,

then either (ip) or (z3) holds in the settings of Theorem @ However, the most difficult part in
u(x) _

the proof of Theoremis the next result dealing with the case limsup,_,, i =

Theorem 1.4. Let (I.4) and (1.5) hold with 1 < p < N and p — 1 < g < Cy pg. If u is a positive
solution of (LT) such that limsup o u(x)/u(x) = oo, then

1
u(x) rq (p— D =
=1, h =l————-N+ — , 1.10
oo Ty e (q+1—p teriop (1.10)
and the function Y is defined by
< dt " B
— = [sbo(s)]7T ds for small r > 0. (1.11)
1) [h()]7T 0

The statement of (/1) in Theorem [I.1] is equivalent to (I.T0). This can be easily checked
using (A.6) and in Appendix [A] Theorem [I.4] determines the precise asymptotic limit of
solutions with strong singularities at zero (that is, solutions u satisfying lim supy,_,, Z(—jg = 00).
Understanding the blow-up behavior at zero for such solutions is more intricate than in [7] due
to the lack of homogeneity of 4 in (T.4) and the richness of the admissible class for the weight
function b in (I.5). We recently made progress in [4] by treating such a nonlinearity % in the
special case b = 1 and p = 2. More exactly, we extended Véron’s classification result in [[18}[19]]
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to positive solutions of Au = h(u) in Q" when h € RV, with ¢ > 1. To overcome the difficulty
caused by the lack of homogeneity of &, we introduced in [4] a perturbation method that enabled
us to construct crucial sub-super-solutions to the equation. These were used to obtain the precise
limiting behavior of the solutions # with a strong singularity at zero. But the perturbation method
in [4] seems difficult to apply if p # 2.

In this paper, we introduce a different perturbation method, which not only applies to the
general case 1 < p < N, but can also tackle a weight function b(x) in the equation. Moreover,
even in the special case p = 2 and b = 1, this new method is much simpler to use than the earlier
perturbation method of [4]]. In Section 2] by assuming two facts (to be validated later in Section 3|
and Section [7), we prove Theorem Our key ingredient is given by the construction of sub-
and super-solutions via the new perturbation method. The super-solutions will be used to obtain
a key sharp upper bound (see (2.9)), while the sub-solutions are instrumental in proving a sharp
lower bound for positive solutions with strong singularities at zero.

The rest of the paper is organized as follows. In Section [3| we show that for ry > 0 small,
every positive sub-solution u(x) of (I.T) is bounded above by C,Y(|x]) for 0 < |x| < ro, where
Ci = Ci(rp) > 0 is a constant independent of u (see (3.1))). This validates our first assumed fact
and enables us to prove that every positive solution u satisfies a Harnack-type inequality (see
Lemma [3.1). Section [ proves a regularity result that is to be frequently used in compactness
arguments in later sections. One such ap 11cat1on is in Section [5} where we prove Theorem [5.1]
that treats the case of positive solutions (1.1) satisfying limsupy,_,, Z(x) # oo. Section @ gives
several results for the power case b(x) = |x| and h(r) = ¢4 for t > 0, which will be useful for
the general case later. The arguments here are based on ideas in [7]. In Section [7] we complete
the proof of Theorem [I.4]by validating the second fact assumed true in Section[2] The proof of
TheoremE]rests on Theorem[gifllf lim SUP| 0 U(X)/p(x) # oo, otherwise we use Theorem
The above ingredients will also serve to prove Theorem [[.2)in Section [§] and Theorem in
Section 0] In Appendix [A] we include properties of regularly varying functions used in the
paper, along with some known comparison results (Lemma and Lemmal[A.9).

2. Solutions with strong singularities at zero
We first assume that (T-4) and @) holdwithl < p<Nandg>p—1.
Remark 2 1. The function Y in ( is regularly varying at zero of index — %P Hence,

q—p+1

6+p

lim, o 20 f( ) =0 forevery f € RV0(0+) witho < — el

Consequently, Lemma[3.1] (a) implies the following.
Fact 1: Any positive sub-solution u of (L.I) satisfies

u(x) . 6+p
im =0 foreve € RV, (0+)witho < ———. 2.1
D fe ry f -(0+) p— 2.1)
For the remainder of Section E], we assume in addition that ¢ < Cy,,¢. We shall later prove
Fact 2: If u is a positive solution of (1)) such that lim sup,,_,, #8 oo, then
u(x) . 6+p
im =o00 foreve € RV, (0+) witho > ———. 2.2
D e ry f -(0+) p— (2.2)

We postpone the validation of Fact 2 to Lemma [7.1]in Section[7] We can now proceed with the
proof of Theorem [I.4] which relies on the construction of sub-super-solutions in Section
5



2.1. Proof of Theorem (L4 (assuming Facts I and 2)

Let u denote a positive solution of such that lim sup,_, % = oo. Without loss of
generality, we can assume that A(?) is increasing for large ¢ > 0, the function Y € C%(0, ry) for
small rp > 0 and (A-8) holds (see Remark[A.2]and Remark [A.4]of Appendix [A).

Fix € > 0 sufficiently small. We can find < 7 <5} such that 5t - nase —» Oand .Y
(respectively, ¢ 1) is a sub-solution (respectively, super-solution) of in B,,(0)\ {0} for some
small r, > 0. This assertion follows from Lemmalzl (with v = 0). If we could show that

{u(x) is dominated by n} Y (|x|) near zero, 2.3

u(x) dominates 1, T'(|x|) near zero,
then we could use the comparison principle (Lemma[A-8) to conclude that
niY(x) + Ce > u(x) and  u(x) + CL > - Y(|x]) for every O < |x| < rg, 2.4)

where C; = maxy-,, u(x) and C, := nY(r;). From (2.:4), we would immediately get

. u(x) o u(x) -
* > limsu and liminf —— > 7.
e = 20T (D W0 () = e
By letting € — 0 in (2.5), we would get (I.T0). However, it is difficult to obtain (2.3) since we do
not have enough control of u(x) near x = 0 to compare it with nZT'(|x]). Thus we introduce a per-
turbation method that uses the weaker information from Facts 1 and 2 above. In Section we
construct a one-parameter family of functions (n:VTV(r)) O] (respectively, (n;VT_V(r)) ” ])
? 4 V0 ’ 4 V0
such that lim,_,o 7%, = nZ, and lim,_o Y.,(r) = (r) for every r in a small interval (0, o) (see
(2.10) and (2:14)). Moreover, for each v € (0, vo], we have:
(P1) Yy(r) = Y(r) = T_,(r) for all r € (0, rp) (see @-IT)).
(P2) r +— Y,(r) is regularly varying at zero of index less than —qﬁ;ﬁl (using (2.10)).
(P3) r — T_,(r) is regularly varying at zero of index greater than —%.
P4) U:,vTv(") (respectively, n_,_,(r)) is a super-solution (respectively, sub-solution) of 1|
in B,,(0) \ {0} for some small r, > 0O that is independent of v (see Lemma @

(2.5)

The facts assumed early in the section can now be used to compare « and 77;, T+, near zero.
Let v € (0, vo] be arbitrary. Using (P2) and (P3), jointly with (2.I)) and (2:2), we obtain

u(x) . u(x)
=0, lim =0
Ty (|x]) =0 Y, (|x])
We prove below that (2.4) holds when n:Y(|x]) (respectively, 77z Y(|x])) is replaced by n;',V‘Y’V(IxI)
(respectively, 77, T_,(|x])). Notice that n;VTV(r) + C, is a super-solution of (1.1) in B, (0) \ {0}.

By (2.6), we see that u(x) is dominated by n},(,(|x|) near x = 0. By applying the comparison
principle (Lemma[A-g), we find

(2.6)

lim
|x|—0

u(x) < n;‘rv(|x|) +C, forevery O < |x| < 7. 2.7)

Using n > 7, and lim, o 77;, = 77, by (P1) we find C} > 5, T_,(r,) for every v € (0, o] (if
needed, we reduce vy > 0). Since u(x) dominates n_,Y_,(|x|) near x = 0 and u(x) + C; is a
super-solution of (IT) in B,,(0) \ {0}, by applying Lemma[A_8|again, we obtain

u(x) + C. > 1, T (Ix]) forevery 0 < |x| < re. (2.8)
Letting v — 0 in (2.7) and (2.8), we arrive at (2.4). This completes the proof of (I.10).
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Remark 2.2. Using Fact 1, we proved that any positive sub-solution u of (I.1) satisfies

lim sup u(x)
-0 X(lx])

<7, where nis given by (1.10). 2.9)

2.2. Sub- and super-solutions via a new perturbation method

Our construction of sub-super-solutions uses a suitable perturbation of the function Y’ defined
by (I.11). Fix vy € (0, 1) suitably small. For every v € [0, vo], we define Y, (r) by

00 r 1+v
f @ ( f [sbo(s)]7T ds) for r € (0, rp). (2.10)
0 [h(e)]7T \Jo

We assume that ry > 0 is small such that by() > 0 and for[sbo(s)]v%l ds < 1 for all r € (0, rp).
Clearly T = Y. Let Y_, be obtained from the definition of ', with v replaced by —v. Hence,

T, >T>T, >7.,, forevery0<v<. 2.11)

(1+v)(6+p)
T gpAl
(respectively, —%). Since p — 1 < g < Cy,p g, the constant 7 in li is positive. In what
follows, € and r, will denote small positive constants, and B,, := B,,(0). We will define

From li we see that T, (respectively, Y_,) is regularly varying at zero of index

O (r) :=qiY(r), @.(r):=m.T(r) forre(0,ry) (2.12)

with suitable 7 > 0 satisfying lim,_,o 775 = 1, and then show that ®} (respectively, @;) is a
radial super-solution (respectively, sub-solution) of (@ in B,, \ {0} for . > O small. This is
achieved by a perturbation method involving Y., given above.

Construction of (I)iv. For any v € (0, vo], we define CDj’V(r) for r € (0, rp) by
OF (r):=n., T (r) and @, (r) :=1,,T_,(r), (2.13)
where 75, > 0 is suitably chosen such that lim,_o 77, = 775 and lim._,o 7; = 1. We will take

1
1+ p—1 gHi-p
. =[—( i (n‘f”‘P+o;V)] s Moy =

1
(1- y)p—l e NG
&,V (1 — 8)2 &,v PRV (ﬂq P+ Os,v) (214)

(1 +e)?

for some of, > 0 and o, < 0 satisfying lim, o 0y, = 07 and 0y — Oas & — 0.
For v = 0 we identify @}, with ®; given by (2.12). Hence the one-parameter family (®7,),
can be regarded as a “perturbation” of @7, which converges to ®* as v goes to 0.

Lemma 2.1. For any small & > 0, there exists r, > 0 such that ®f , (respectively, ®_ ) is a radial
super-solution (respectively, sub-solution) of @) in B, \ {0} for every v € [0, vy].

Proof. We fix £ > 0 sufficiently small. By (I.5), there exists r, > 0 small such that
(1 —&)bo(Jx]) < b(x) < (1 + &)bo(|x]) forevery O < |x| < re.

By reducing r, > 0 if needed, we will show that for any v € [0, vy], the function v = (D;“’V satisfies

(W P2, + (1 = )N bo(Hh(v(r) > 0 for r € (0, ry). (2.15)
7



This clearly implies that @, is a super-solution of (1.1} in B, \ {0}. Since & € RV,, there exists
a function L which varies slowly at co such that a(r) = t7L(¢) for ¢t > 0 large enough. From (2.14)
and Proposition[A.2] it follows that

L(n;,0) . .
im L0 =1 uniformly with respect to v € [0, v],
f—oo

provided that vy > 0 is small enough. So, by taking . > 0 large enough, the ratio L(ij;; 1)/ L(?) is
bounded below by 1 — ¢ for all ¢ > 7, and every v € [0, vy]. Since Y(r) — oo as r — 0, we can
reduce r, > 0 such that ((r) > 1, for all r € (0, r,). By 2.11) and (2.13)), we get

W@ () = (1 = &), )?h(Y,(r)) forevery r € (0,r,) and any v € [0, vo].

Hence to prove (2.13) for v = @/

&,y

it suffices to show that for every v € [0, vy], we have

NP, < (1= )2, )T bo(HDh(L,(r) - for every r € (0, 7). (2.16)
Let J, B and J be given by and (AZ8). For small r > 0, we set
bl
P,(r) ;= —N — rbo"((:)) + (1 +WBMOICL,NFCL1) — vip — DB, (2.17)

Using (2.10) and (2.13), after some calculations, we find that for v = @} the left-hand side of

(2:16) is given by

r v(p—=1)
(1 +v)ms, 1P Py(r) [f (sbo(5)) 7T ds} N o (Ph(L,(r). (2.18)
0
In view of (2.17), we write P,(r) = T,(r) + vT2,/(r), where T}, (r) is given by
rby(r)
T,(r):==-N- + BMIC ()T (C,(r)).
bo(r)

From (2Z.11) and the convergence properties in (A.7) and (A-8), we deduce that as r — 0 the
function T, (r) (respectively, T5,(r)) converges to 9P+ (respectively, %), uniformly
with respect to v € [0, vp]. Hence, there exists r, > 0 such that for every v € [0, vy]

0<P(r) <n?™" + 0}, foreveryre (0,r,), (2.19)

where o}, > 0 satisfies lim,_ 0}, = 0} > 0 and 0} — 0 as & — 0. From (2.19) and (2.14), we
find that the quantity in (2:T8) is bounded above by the right-hand side of (2.16). This ends the
proof of forv = @} . One can similarly check that v = @, satisfies the reverse inequality
in (i.e., “<” instead of “>") with —e replaced by +e&. Since the argument follows the same
ideas as for (Z.13), we omit the details. This completes the proof of Lemma 2.1}

3. A priori estimates and Harnack inequality

In this section, we assume that (T.4) and (I.5) hold with 1 < p < N and g > p — 1. Note
that here we do not impose any upper bound restriction on g. We first extend Lemma 2.1 and
Lemma 2.2 in [[7], where the special case b = 1 and A(f) = 7197t is treated. In Lemma we
prove that every positive sub-solution of (I.T) satisfies a priori estimates of the type (3-I), which
will be used to derive a Harnack inequality for positive solutions u of li If limyyy—0 :‘% =0,
then we show that u can be extended as a continuous solution of inall Q (cf. Lemma3.2).
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Lemma 3.1. Fix ry > 0 such that B,,(0) cC Q. Then there exist positive constants Cy and C,
(which depend on ry) such that

(a) (A priori estimates) For every positive sub-solution u of (L1), we have
u(x) < C1Y(|x|) foreveryO < |x| < ro. (3.1
(b) (Harnack-type inequality) For every positive solution u of (L)), it holds

rlnlgx u(x) < C, ﬂln u(x) forall0 <r<ry/2. (3.2)
Proof. Without any loss of generality, we can take A to be increasing on (0, o) (see Remark[A.2).
Using the convention in Remark [A.4] we may assume that (A.8) holds.

To conclude (3:1)), it is enough to prove that there exists a constant C > 0 such that

< dt
f — > [C|x|”b(x)]ﬂ%' for every 0 < |x| < ry. (3.3)
ux) [h(t)] 7

Then we can find a large constant C; > 0 such that
[Clxb(x)) 7T
iy L

Jereqe @1 7T dt

Indeed, by (A.7) and (I.T1), it follows that as |x| — 0, the left-hand side of (3.4) converges to

gq-p+1

>1 forevery O < |x| < ry. (3.4

CcriC I”T (%). Hence, by choosing a suitable large constant C; > 0, the inequality in (3.4)
holds for |x| € (0,&) and some £ > 0. Then for |x| € [, o], the inequality in (3.4) holds by
possibly enlarging C; > 0 (since fcoj,r(ro)[h(t)]fﬂ%l dt — 0as C; — o0). This proves for
some constant C; > 0 sufficiently large. By combining (3.3) and (3.4), we reach (3.1)).

We now prove . Fix xo € RN with 0 < |xo| < ro. We set p’ = p/(p — 1) and define

2)x = xol\”
0= 1= 220N e By (o).
|xo 2
We have {(xp) = 1 and 0 < £ < 1 in Bjy;2(xp). For some C > 0, we define S as follows
< dt L »
— = [Clxol’b(x0)] 7T [£(x)]”  for x € Biy (xo). (3.5)
S [h(n)] 7T ’

The right-hand side of (3.5) equals zero for x € 9By, 2(x0). Hence S = co on dB,2(x0). We
shall choose in @) a constant C > 0, which is independent of x(, such that S satisfies

~div(|VS|[P2VS) + b(x)A(S) = 0 in By, 2(xo). (3.6)

Then we can apply the comparison principle (see Lemma[A-§]in Appendix [A) to deduce that
u(x) < S(x) forevery x € By 2(x0). (3.7
Using x = xo in (3.7) and (3.3)), we get the inequality in (3.3) with x = xo. This proves (3.3)

since xo is arbitrarily fixed with 0 < |xo| < ry. To end our proof, we need to show (3.6).
9



Proof of (3.6). Using (I.3)) and Proposition[A.2] we can find a constant ¢ > 0 such that
b(xo) < cb(x) for every x, xo such that 0 < |xo| < rp and |xp|/2 < |x] < 3|x0|/2. (3.8)
We next show that S defined by (3.3) satisfies
div([VS[P2VS) < Ce(p/ 2?7127 [N + (p)?3(S)HF(S)| b0h(S),  Vx € Buy(x0),  (3.9)

where J and F are given by and (A-8), respectively. Using (3.5), we obtain

VS = (p')* {27 Ch(xo)h(S)lx - x0|2—l’g(x)}ﬁ (x = X0) in Biga(x0). (3.10)
Hence, using (3.3), (A.6) and (A.8), it follows that
LTS (= x0) = (7)1 = LOS)FS) < (PASTE) in BuyaCan). (B.11)
By @, we find that the left-hand side of @ equals
Cp 2127 [Né(x) + Zg LTS - (v ) = 1 - g(x))] b)h(S). (3.12)

Using (3.TT)), (3:8) and 0 < £ < 1 in Byyj2(xp), we obtain that the quantity in (3.12) is bounded
above by the right-hand side of (3.9). This concludes the proof of (3.9).

Froari??rp, we have limyy_,o |x[?b(x) = 0 so that sup_,, [xI”b(x) < co. From the definition
of § in , the minimum of § on the ball B|,|/>(xo) can be made as large as desired by choosing
a sufficiently small constant C > 0, which is independent of xy. From (A7) and (A-8), we have
im0 J(O)F() = %. Using , we see that holds for a small positive constant C that
is independent of xj. This proves the claim of (a).

(b) We rewrite the equation (II)) in the form
—div([Vul’ "> Vu) + [b2(0)]Pu? =0 for 0 < |x| < ro, (3.13)

where b, (x) is a positive function defined by

(b)) = M for every x € R with 0 < |x| < rp. (3.14)
[u(x)]P~!
Using (3.1, (3:14) and (A3) in Lemma[A’7] we find

ha(C1 Y (1x])
[C(x)]P~!
By (I.TT), (A7) and Remark[A-2] we find that as |x| — 0, the right-hand side of (3.I5) converges

_ o p-1
to (C,)7P*! (%) . Hence, for some constant A > 0, we have

IXIP[b2(2)]7 < (C)'P|x|Pb(x) for every 0 < |x| < rg. (3.15)

P [b2(x)]P <A forall 0 < |x| < ro. (3.16)

Fix xo € R" such that 0 < |xo| < ry/2. By applying the Harnack inequality (Theorem 1.1) of
Trudinger [[16]] for (@) on By,,;2(x0), there exists a constant ¢y > 0 depending only on p, N
and |x0|||b2(x)||Loo(3|_¥0|/2(x())) such that

sup  u(x) <co inf  u(x). (3.17)

x€Byegy/6(x0) XEB)xy1/6(x0)
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Using , we derive that [xo[[[b2(x)l|L=(5,,.(x) is bounded above by 24!/7, which is indepen-
dent of xo. Hence ¢y = co(p, N,A) > 0 is independent of xy with 0 < |xg| < r9/2. To deduce
, we use a standard covering argument as in [7]. If x; and x, are any points in R" such that
0 < |x1] = |x2| < r9/2, then x; and x, can be joined by 10 overlapping balls of radius |x;|/6 with

centers on 4By, (0). By (3.17), we obtain (3.2) with C; = ¢".

Lemma 3.2. Let u be a positive solution of (1.1) and y := lim sup,_,o u(x)/u(x).

(1) If)/ * 0, then lim|x|_>0 u(x) = 00,
(i) Ify = 0, then limyy_o u(x) is finite, and u can be extended as a continuous solution of (L.I)
in all Q.

Proof. (i) Clearly, y # 0O implies that limsup,_,,u(x) = co. Suppose by contradiction that
dp = liminf}_0 u(x) < co. Then there exists a sequence {x,},> in R" which converges to zero
such that lim,,_,., u(x,) = dy. Without loss of generality, we can take |x,| to be decreasing to zero
asn — oo and 0 < |x,| < ry/2 for some ry > 0 small such that B, (0) cc Q. Let np > 1 be large
enough such that u(x,) < dy + 1 for every n > ny. By Lemma [3.1] (b), there exists a constant
C, > 0 such that holds. Thus we obtain that

ﬂlf\lxl u(x) < G, ‘n}}n u(x) < Cru(x,) < Co(dp + 1), Vn = nyg.
Since —div(|Vu|P2Vu) < 0 for 0 < |x| < |x4, |, by the weak maximum principle for the p-Laplace
operator ([8]]) applied on {x € RY : |x,| < |x| < |x,,|} with n > ng, we find u(x) < Cy(dy + 1) for
all 0 < |x| < |x,,|. This is a contradiction with lim SUP)yy0 U(X) = 0.

(ii) Let u satisfy limyyo u(x)/u(x) = 0. We rewrite the equation (I.1I)) in the form

—div(|[VulP2Vu) + d(x)u’' =0 in Q, (3.18)

where d(x) := b(x)h(u)/uP~! for x € Q. Let ry > 0 be small such that B,,(0) cc Q. We first
prove that lim sup,_,, u(x) < co. We set C := max|y=,, u(x). For any integer n > 1, we define

vu(x) := (1/m)u(x) + C  for every 0 < |x| < ry.

Since y = 0, we see that for any integer n > 1, there exists r,, > 0 such that u(x) < v,(x) for every
x € RY with 0 < |x| < r,. We may assume that {r,},»; decreases to zero and r, < ry for every
n>1.SetQ, :={xeR" :r, <|x| <ry). Then we have

u<v,ondQ, and —div(|[Vul’>Vu) <0 = —div(|Vv,|’>Vv,) in O,.

By the maximum principle, we find u < v, in Q, for any #n > 1. For x € R with 0 < |x]| < ry,
we have u(x) < v,(x) for all n > 1 sufficiently large. Since lim,« v,(x) = C, we conclude that
u(x) < Cfor 0 < |x| < rg. By , we find that b(x) € L%(B,O(O)) for some small & > 0. Using
Assumption A, it follows that d(x) € L%(B,O (0)). We can then apply Theorem 1 of Serrin [14]
to the solution « of (3.18)) and conclude the assertion of (ii).

4. A regularity result

Our aim is to extend the regularity result of Lemma 1.1 in [7] on (I.3) to equations of the
form (T.I). We let ro > O be small such that By, (0) CC Q and let g be a positive continuous
function defined on (0, 4ry]. We prove here the following result.
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Lemma 4.1. Ler (T4) and (T.3) hold for ¢ > p — 1 and p > 1. Assume that N > 1 and

0<6< qf}“’_’ = Let g € RV_5(0+) satisfy limsup,_, % < oo, where Y is defined by (I.T1).

If u is a positive solution of (I.1)) such that, for some constant Cy > 0,

0 <ulx) <Cig(lxl) for0 < |x| < 2ry, 4.1)

then there exist constants C > 0 and a € (0, 1) such that

[Vu(x)| < C% and |Vu(x) = Vu(x)| < C

g(xD)
|x|1+a IX - x’|“’

, 4.2)

for any x, x" in RV satisfying 0 < |x| < |x'| < ro.

Remark 4.1. (i) If 1 < p < N in Lemma[4.1] then there exists a constant C; > 0 such that @)
holds with g = Y for every positive solution u of (I.I) (cf., Lemma [3.1).

(ii) If g € RV_s(0+) with 0 < 6 < qf{fp, then lim,_o % = 0since T € RV__szp (04).
qtl=p

Proof. We use a line of thought similar to Lemma 1.1 of [[7] based upon a C!*-regularity result
of Tolksdorf [15]] applied to nonlinear degenerate elliptic equations of the form

—div(V¥/P2V¥) + B=0 inT, where[:={yeRV: 1 <]y <7} 4.3)

and B € L*(I). If ¥ € L*(I) n W"P(I') is a weak solution of (4.3), then there exist constants
a=a(N,p)e(0,1)and C = C(N, p, [Pll~r), lIBllz~a)) = 0 such that

IV¥llcowqy < C,  where I := {y e RY : 2 < [y| < 6). 4.4)

For every 8 € (0,79/6), we define Wz on I as follows

Wp(é) = % foré el 4.5)
It follows that
Vu(x) = g?(ﬂ)V‘Pﬂ(x/ﬁ) forall x e {B¢: € €T} (4.6)
Since u is a solution of (T.T), we see that ¥4 satisfies the equation (#.3)) with B = Bg given by
P
By(&) := Wb(ﬁf)h(u(ﬁf)) for§ el 4.7)

We prove that there exists a constant C > 0, which is independent of 8 € (0, ry/6), such that
IV¥sllcoa < C. (4.8)

To this end, we check that W and Bg are in L™(I') with their L*-norms bounded above by a
positive constant that is independent of 8 € (0, ro/6). Using @.I) and (@.3), we find

Ys(é) < Cy % for every £ € I'and all 8 € (0, ry/6). (4.9)
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Since g € RV_5(0+), we can write it as g(f) = 9L (¢) for some function L that is continuous on
(0, 2rp) and slowly varying at zero. Using Proposition[A.2] we have

L@
e o

Hence there exist positive constants ¢ and 5 which depend on ry, such that
cg(B) < g(BIE) < Eg(ﬂ) for every 8 € (0,79/6) and every £ € I'. 4.10)

Using (#.9), we obtain that ¥ € L>(T") and [¥sll~, < C1C for every B € (0, ro/6).
We now prove Bg € L*(I'). Since h(1)/t? -1 is bounded for small ¢ > 0, in view of Remark
we can find two positive constants a; and a, such that

1 uniformly with respectto & € I

h(t) < a ™' + arh (t/Cy)  for every t > 0.
This, combined with (&1 and the properties of h;, leads to

hw(B€) < a1 CY ™ [gBIENT™ + ash(g(BED).
Using the above inequality and (4.7)), we obtain
0D

! _ h(g(BI€)))
B 8Pl ' BIEDPb Pp(pe)—=8WIED)_|
ﬁ@)s( g(ﬁ)) [m U BIED bUBE) + ax BV BB g

We claim that in the right-hand side of {.TT]), the quantity in square brackets is bounded above
by a constant independent of 8 € (0, r9/6). By limjy_,o [x[?b(x) = 0 and lim sup,._, % < 00, we
deduce that there exist constants ¢, = c.(rg) > 0 and ¢* = ¢*(rg) > 0 such that

h
[xIPb(x) < c., |x|”b()c)Lxl))1 <c* forevery x € RY with 0 < [x| < 2ry. (4.12)
[g(xD1P~
Using @.10) and (#.12)) in (#.11)), we arrive at

Bg(€) < E”*I(alcf_lc* + ayc*) forevery B € (0,7/6) andevery £ €T.

Véel. (411

Hence, Bg € L(I') and ||Bg||z~y is bounded above by a constant independent of 5. We can thus
apply the above regularity result of Tolksdorf [15] to obtain (&.8).

We are now ready to prove the inequalities in (@), where it suffices to take 0 < |x| < ro/2.
Hence we can find 8 € (0, ry/6) such that x belongs to the set {8¢ : £ € I'* and |¢| < 3}. For x in
this set, x/B8 € I'* and (#.6) holds. Using {@.6), (4.8) and (.10), we conclude the first inequality
in @) To prove the second inequality, we first assume that 0 < |x| < |x| < 2|x|. Then x’/8 also
belongs to I'*. By (#.6) and #.8), we obtain

BIVu(x) — Vu(x')| = gBIV¥s(x/B) — V(X' /B) < Cg(B)B~|x — x'|"".
Hence by ([@.10) we reach the second inequality in (.2). Finally, if 2|x| < |x'| < ro, then
|x" — x| > |x| = |x] > |x]. (4.13)

Since g(#)/t belongs to RV_s_1(0+), by Proposition[A.6|(see also Definition [I.2), g(¢)/¢ behaves
near zero as a monotone decreasing function. By the first inequality of (.2 and (#.13), we find

8l g(lx’l))

|x] x|

,8(x1) < g(lx))

BY |+t

<

[Vu(x) - Vu(x')| < C ( < X" = I,
where C’ > 0 denotes a large constant. This completes the proof of (4.2).
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5. Solutions without strong singularities at zero
Theorem 1.1 of Friedman and Véron [7] on (1.3) is extended below to equations like (1.1).

Theorem 5.1. Let (T.4) and (L.5) hold for 1 < p < Nand p—1 < q < Cy pg. Assume that u is a
positive solution of (LI)) such that y := limsup,_,q % # oo, Then we have:

(a) either u(x) admits a finite limit at zero and u(x) can be extended as a continuous solution of
(1) in the whole Q;

(b) or u(x)/u(x) converges toy € (0,0) as |x| — 0 and
—div(|VulP2Vu) + b(x)h(u) = y*7 16y in D'(Q). 5.1)

Proof. If v = 0, then by Lemma we conclude the alternative (a). We now assume that
vy € (0, 00) and prove that (b) occurs. We only give the details when 1 < p < N, since the case
p = N follows a similar line of argument to Theorem 1.1 in [7]. Let ro > 0 be small such that
B,,,(0) cc Q. Since y € (0, 00), there exists a positive constant C; = C;(rp) such that

u(x) < Ciu(x) forevery 0 < |x| < 2ry. 5.2)

We take g(Jx|) := u(|x]) so that g € RV_s(0+) with ¢ = %. Since 1 < p < Nand g < Cypp,

we find 0 < § < 22 By lb and Remark the assumptions of Lemma are satisfied.

. q+1-p° .
Hence there exist constants C"> 0 and « € (0, 1) such that for any x, x" with 0 <Tx[ < [x'] < 7y,

Vu(x)l < Cu(Dd™7, [Vu(x) = V(x| < Cu(Dld ™ - x| (5.3)

For r € (0, rp) fixed, we now define the function

Vor® = "9 foro<ig< . (5.4)
p(r) r
We shall prove below that
lim Vi (€) = /%u@, lim VV(,(©) = ﬁ%w@ forevery é e R¥\ {0} (5.5)

To this end, we first show that lim,_,o y(r) = y, where
— u(x)
y(r) := sup — for r € (0, rp). (5.6)
|x|=r u(x)

Since clearly limsup,_,,¥(r) = v, it suffices to show that liminf, ,oy(r) = y. Assuming the
contrary, there exists a decreasing sequence r, that converges to 0 such that y(r,) — yo € [0, ).
Let £ > 0 be small such that yy + £ < y. Hence there exists a large ny > 1 such that for every
n > ny, we have y(r,) < yo + £. For each n > ng, we define the set Q,, by

. N .
O, i ={xeR" 11, < x| <1y}

Since lim sup,_,, y(r) = v, there exists r. > 0 small such that y, + £ < ¥(r,). Choose n > n large
such that r, € Q,. Since y(r,) is greater than the maximum of ¥ over the boundary of Q,, we
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find that u/u achieves its maximum over Q,, in the interior of Q,, and u/u # const. in Q,.. This is
a contradiction to Remarkin Section Hence, lim,_,oy(r) = y.

We now set to prove (5.3). This will involve an estimate, a compactness argument and the
use of the strong maximum principle. It is easily seen that V(,(£) in (]SE[) satisfies the equation

—div(IVVi ()P 2V Vi (&) + [(D1 PN b(ré)h(u(ré)) = 0 for 0 < |€] < ro/r. (5.7
We start with an estimate for the second term in @) namely

lim Nb(ré)h(u(ré)) =0 for every fixed & € RV \ {0). (5.8)

Using (L.3), Lemma[A7]and (5.2), we find that (3.8) holds if we can prove
T(r) := N bo(rléDha(Ciu(ré)) — 0 as r — 0. (5.9

We observe that r — TJ(7) is regularly varying at zero with index N + 0 — %, and this index

is positive by our assumption that g < Cy,, 4. Hence (5.9) holds, which proves (5.8).
Next we use a compactness argument to show that V(,, converges along a sequence r, — 0.
From (5.2) and (5.3), it follows that for every fixed r € (0, ry), we have

0 < V(&) < CLlel™,  [VVp(@)l < Cle™,
IVViy (@) = YV ()l < Clé = &1,
for every & and &’ in RY satisfying 0 < |£] < |¢’| < ro/r.

From (5.7), (5.8) and (5.10), we find that for any sequence 7, decreasing to zero, there exists
a subsequence r,, such that V., — Vin C, I (RV\ {0}), and V satisfies the equation

loc

(5.10)

—div([VV]P2VV) =0 in D’(RM \ {0})).

We now use the strong maximum principle to show that the limit function V is given by

V(E) = l%u(f) for every £ € RV \ {0}. (5.11)
From (5.6)), we can choose ¢,, on the (N — 1)-dimensional unit sphere S¥=! in RY such that
— u(rné:rn)
7(rn) = .
u(rn)

Using u(&)u(ry) = p(Du(r,é) and (5.6), we find that

Ve © _ y(lé) Vi &r) _ y(r)

for 0 < |£] < no and =
T,

u@é () n u(&r,) (1)’
We may assume & = lim,_,e &,,. Then from lim,_,o y(r) = y we deduce
@ < v for every & € RY\ {0} and V&) _ v

u@ = p() &) u(l)
By Lemma we conclude (5.11). Hence, using V(,,) — V in C} (R \ {0}), we find

Tim V() = l%u(éf), lim V‘I/;rn)(f) = 'L%V,u(f), Ve € RV \ (0},



Since {7,} is an arbitrary sequence decreasing to zero, the above implies (3.5). Taking ¢ = 1 and
x = r€ in (5.5), we obtain that limy_,o u(x)/u(x) = y and the following

_X-Vul) -1y .
B0 WMD) T Y(Nwy)™ "7 = Co. (5.12)

To complete the proof of the theorem, it remains to show (5.1I). Thus we need to verify that
f IVulpszu -Vodx + f b(x)h(w)ypdx = yp’lgo(O), Yo e CLI.(Q). (5.13)
Q Q

We fix ¢ € C(Q). For each & > 0 small, let w,(r) be a non-decreasing and smooth function on
(0, 00) such that wg(r) = 1 for r > 2&, we(r) = 0 for r € (0, €], and 0 < w.(r) < 1 for r € (g, 2¢).
Since p(x)w.(|x]) € C1(Q*) we can use ¢w, as a test function in Definition 1. Hence,

f IVulP 2w, Vu - Vodx + f b(X)h(u)pw, dx = — f [VulP~2@Vu - Vw, dx. (5.14)
Q Q Q
Let RHS (g) denote the right-hand side of (5.14), that is

RHS (¢) = — f IVulP2oVu - Vw, dx = — f IVulP 2o w,(|x])Vu - X ax. (5.15)
Q { X

e<lal<2s) |x]

We prove that for every 7 > 0, there exists gy > 0 such that for every ¢ € (0, &), we have
@O)C! ™" —T)Nwy < RHS (¢) < (p(0)C ™" + )Nwy, Ve € (0, &). (5.16)
Indeed, from (5.12)) we find
—IVul" 2@V 2V - x — @(0)CE" as |x] — 0.
Thus for every 7 > 0 there exists &y = £y(7) > 0 such that for any € € (0, &), we have
@O)Cr " — 7 < — VUl ()| 2V - x < pO)CE ! + 7 (5.17)

for every € < |x| < 2e. We now use I to denote

1-N
I, = f Ix N wl(|xd) dix.
{e<|x|<2e}

It follows that N
I, = Na)Nf wi(r)dr = Nwy.
Hence, using (5.13) and (5.17), we arrive at (5.16). Since 7 > 0 is arbitrary, by (5.16) and
5.14).

we conclude that lim,_o RHS (¢) = y"~'¢(0). Thus (5.13) follows by letting & — 0 in (
This completes the proof of Theorem 5.1}
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6. Analysis of the power model

For later applications, we give here several results for the equation (I.1)) in the power case
b(x) = |x|? and h(r) = 14 for t > 0.

Lemma 6.1. Let 1 < p < Nand 0 > —p. Assume that p — 1 < g < Cypg. Let R > 0 be any
positive number. Then for any non-negative numbers A and vy, there exists a unique non-negative
Sunction¥ =W, ;in C (0, R] satisfying
= (A, + TR =0 in (0,R),
‘I’ 6.1
10 =y, YR =4 ©D
e
¥,.(r)
Hr(r)
Proof. If p = N, welet £ := N/(6 + N) and define

Moreover, lim,_, =y and the function y — ¥, is non-decreasing in y.

w(r) = (e (i) for0<r <R 6.2)
Then (6.1) with p = N holds if and only if w satisfies
— (N "W P w), + NI = 0 in (0, RYY),
w(r)

lm——fq P*l’y w(Rl/[)zquﬁﬁ/l_
=0 pu(r)

(6.3)

Lemma 1.4 in [7]] shows that for any g > p — 1 the problem (6.3)) admits a unique solution w in

C'(0, R!] that also satisfies lim,_, ’((’)) = (iy, Using li we conclude the proof.
For 1 < p < N the arguments of Lemma 1.4 in [7] can be easily modified to our situation and
therefore we omit the details.

Remark 6.1. The solution ¥, , is positive in (0, R), unless both y and A are zero in which case
Y = 0on [0, R]. As in Remark 1.3 in [7]], the solution ¥(r) of @ solves the following singular
Dirichlet problem

— div([VP/P2VYP) + [x|"P9 = y"~'5y  in D’(Bg(0)),
Y(x) = A for x € dBg(0).

If in Lemma [6;1'] we assume that p — 1 < g < Cy,, 4, then there also exist solutions for the
problem (6.1)) with y = co. More precisely, we prove the following.

Lemma 6.2. Let 1 < p < Nand 6 > —p. Assume that p —1 < q < Cypg. Let R > 0 be
any positive number. Then for any non-negative number A, there exists a non-negative function
Y=%,,inC (0, R], which is positive in (0, R) and satisfies

= (NP, + AT =0 in (O,R),

im o o YRy =30, 64
=0 u(r)

Furthermore, for every such solution ¥ € C'(0, R], we have
lim inf FEFTW(R) > 0. (6.5)
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Proof. For every constant y > 1, by Lemma @ and Remark [6.1] the problem [j]b admits a
unique solution ¥, = ¥, ; € C'(0,R] and W, is positive in (0, R). By Lemma|3.1|(a) and the

weak maximum principle (for p-subharmonic functions), there exists a large constant C > 0 such
that for every y > 1, we have

W, (r) < Cr @ forall r € (0,R/3], W,(r) < C(R/3) 7 forall r € [R/3,R].

By the comparison principle, y — ¥, is increasing. Using Lemma@ we deduce that ¥, ; —
Yo,inC Uin every compact subset of (0, R] as y — oo and ¥, satisfies .

We now prove (6.3). We note that the case = 0 in (6.4) is covered by Lemma 2.3 of
Friedman and Véron [7]. When p = N then (6.4) can be transformed to (6.3) (with y = o) by
using the change of variable in (6.2)). By applying Lemma 2.3 of [7] to w, we conclude that

lirr(l) T w(r) = = lin& rq%l‘l’(r) = Const. > 0.
r— r—!
Suppose now that 1 < p < N. We will use a simple variant of the argument of Step 1 in the proof

of Lemma 2.3 in [7]. We make the change of variable s = =¥/~ and ¢(s) = ¥(r). To prove
(6.3), we need to show that

p-1-Cy.
hm inf s~ e i w(s) > 0. (6.6)
It is easily checked that
-N\
¥,(r) = (” )r Ti(s), (6.7)
p—1
and ¢ satisfies the equation
p-1Y 2
(sl p5)s + ( N ) sl =0 in [RFT, 00). (6.8)
-p

Hence, ¢ P2, is increasing in s and one of the following holds:
(D) im0 @5(5) = B < 00, (i) lime0 @5(s) = 00

Case (i), jointly with ( i implies that lim,_,o W((’)) = /% < oo, which is a contradiction with

(6-4). Hence (ii) holds. Tt follows that ¢(s) > 0 and ¢(s) < s¢(s) for large s. Consequently,
_ -1y
(¢4 l)s < (p_) s971Cvro s forall s > s,
N-p

where sy > 0 is sufficiently large. Substituting a(s) = ¢% _l(s), we obtain

-1 .
ag < (p ) s471Cho g5 forall s > so. (6.9)
N-p

By (ii), we have a(s) — oo as s — oo. Hence from @), it follows that

-1 p-leg -1 q4—Cnps
A a(s)ﬂi11 il for every s > .
4 N Pl Cnps—q
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. e Npo~t .
Since @ (s) = ar(s), we find ¢,(s) > c s T for s > 59, where ¢ > 0 is a constant. Hence

clg-p+1) wicum
—_————

(s) -
¢ CN,p,G - p +1

is a non-decreasing function for s > so. This proves (6.6), which completes the proof.

Corollary 6.3. Let1 < p < Nand 6 > —p. Assume that p—1 < q < Cnpg. Let R > 0 and u be
a positive super-solution of the equation

~div(IVv"2Vv) + X" = 0 in Bg(0) \ {0}. (6.10)

If limy -0 /% = oo, then we have
lim inf X777 u(x) > 0. 6.11)

Proof. Let u be a positive super-solution of (6.10) such that limy_,o /% = oo. Let Wy €
6.4

C'(0, R] denote the unique positive solution of (6.4) with 1 = 0. By the construction of ¥s, ¢ in
Lemma and the comparison principle, we infer that u(x) > Y o(|x]) for |x| € (0,R). Since

¥ = Yo satisfies (6.3)), we conclude (6.11).
Our next result will be useful in the proof of Theorem[I.3]
Lemma 6.4. Let 1 < p < N. Assume that0 > —pandq > p — 1.
(i) IfR > 0and ¥ € C'(0,R) is a positive solution of
(NP2, + AT =0 in (0, R), (6.12)

then there exists lim,_,o Y(r)/u(r) € [0, oo].
(ii) If we assume in addition that p # N and q > Cy, ¢, then any positive solution ¥ € C'(0, R)

of (6.12) must satisfy lim,_,o ¥(r)/u(r) = 0.

Proof. (i) We argue by contradiction. If ¥(r)/u(r) does not admit a limit in [0, co] as r — 0,
then there exists M > 0 such that

y
fiminf 22 < M < Timsup 2.
r—=0 ,Ll(l") r—0 /‘l(r)

(6.13)

Let (r,)n>1 be a sequence of positive numbers decreasing to zero such that ¥(r,,)/u(r,) converges
to liminf,_o W(r)/u(r) as n — oo. We can assume that r,, < R and ¥(r,,) < Mu(r,) for every
n > 1. By the comparison principle in Lemma we find W(r) < Mu(r) for any r € (r,, ) and
every n > 2. Since lim, ., r, = 0, we obtain that ¥(r) < Mu(r) for every r € (0, r;). This being
a contradiction with (6.13)), we conclude the proof of (i).

(i) We assume that 1 < p < N, which implies that Cy 4 in is finite. Let ¥ be an
arbitrary positive C'(0, R)-solution of lb Set y := lim,_,o W(r)/u(r). We need to show that
v = 0 whenever g > Cy 9. By Lemma@ there exists a constant C > 0 such that

W(r) < Cr s forevery r > 0 small. (6.14)
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If ¢ > Cy,pe, then (6.14) implies that y = 0. When g = C,p, then by (6.14) and (i), we find
v € [0,00). As in the proof of Lemma we set s = rP~M/=D and o(s) = ¥(r). Hence,
lim,_e ¢(s)/s = yu(1) and (6.8) holds with g = Cy 6, that is

-1y 5)\ e PN
<|¢s|"2¢s)s=(§—_p) s (?) for s € (R7T, o). (6.15)

Thus ¢ is increasing for s > R%V. If we assume that y € (0, 00), then limy_, @ (s) =
limy_ ¢(s)/s = yu(l). By integrating the right-hand (respectively, left-hand) side of (6.15)
over (RTTI, t) and letting t — oo, we obtain co (respectively, a finite quantity). This contradiction
shows that y = 0, which concludes the proof.

7. Proof of Theorem [L.1]

In this section we assume that (1.4) and (I.5) hold with 1 < p < Nand p -1 < g < Cy,pe.
Let u be a positive solution of (I.I). We conclude either (i) or (i3) of Theorem I by invoking
Theorem|5.1|whenever lim sup,,, /% # oo. Assuming Facts 1 and 2, we proved in Theorem|1.4

that (i) of Theorem (1.1{ holds when limsup,_,, ,% = oo. Since Fact 1 has been proved, to
complete the proof of Theorem [T.4] we need only show that Fact 2 is valid.

Lemma 7.1 (Fact 2). Ifu is a positive solution of (1) with limsup,_,, ;% = oo, then

u(x) . 0+p
im =00 foreve € RV,(0+) witho > ———. (7.1)
NI Fap — % Joreren S g-p+1
Proof. Since p —1 < g < Cy,pp, we can choose 6. and g. (close to 6 and g) such that
6. +p 0+p
-p<6.<86, <qg.<C d > - > - . 7.2
p 9<4q Npo. and o> —rmme T p— (7.2)
Using (7.2)) and Proposition[A.3] (ii), we see that to prove (7.1) it is enough to show that
liminf | 2T u(x) > 0. (1.3)
Our choice of 6, and g.. ensures that u is a super-solution for the equation
—div(]VvP2Vy) + |x|%v¥ =0 for0 < |x| <R, (7.4)

where R > 0 is small enough. Indeed, using by € RV,y(0+) with 8 > 6, and h € RV, with
q < q., we get that lim, ., h(£)/t* = 0 and lim,_, bo(r)/r* = 0. Lemma (i) shows that
limyy—0 u(x) = co. Hence, there exists R > 0 such that Bg(0) CC Q and

b(x)h(u) < |x|"ud  for0 < |x| <R.

Thus u is a super-solution of 1i By our assumption, limsup,,_,o /% = oo, and hence there

exists a sequence {x,} in R" such that |x,| = r, decreases to zero as n — oo and lim,,_, o, /% = o0.
n

Then by Lemma [3.1] (b), we obtain that
u(x)

lim min —= = oo. (7.5)
n— |x|=r, ,u(x)
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For any n > 1, the equation lb subject to limyy_,o % = n and Vlpp,) = 0, admits a unique
positive solution v,, which is radial (by Lemma @ and Lemma [6.1). Using (7.3), we get

u(x) > v,(|x) on |x| = r, for large n > 1. Since also u > v, on |x| = R, by Lemma[A_g]
u(x) > v,(Ix|) ifr, <|x| <R (7.6)

for all large n > 1. As in the proof of Lemma we have v, — v, in C' in every compact subset
of (0, R] as n — oo and v, is a positive solution of such that lim,_,q ‘;(rr) = oo. Lettingn — co
in (7.6)), we obtain u(x) > v.(|x|) for every x with 0°< |x| < R. Therefore limyy_,o u(x)/u(x) = co.
We now apply Corollary [6.3]to the super-solution u of (7.4) to obtain (7.3) (since 6, > —p and

p—1<¢q. <Cypp,). This completes the proof of (7.1).

8. Proof of Theorem [I.2]

(i) Uniqueness.
Let u;, u, be two positive solutions of (I.8). We first prove uniqueness for y = 0 in (I.8). By
Lemma , both u; and u; belong to Wllo’f (€) N Ly (€2) and they can be extended as continuous

solutions of (1.1) in the whole Q. Hence, for every ¢ € C!(Q), we have
f IV, lP 2V, - Vo dx + f b(x)h(u))pdx =0 withi € {1,2}. 8.1
Q Q

Using , the function b is locally in L (QY) for some & > 0. It follows that holds not
only for functions ¢ in C!(Q), but in fact for any ¢ with strong derivatives in L” and with compact
support in Q. This is deduced using the Holder inequality and the Sobolev embedding theorem
(see T3], p. 251). Since (u; — uz) € Wy" (), we let ¢ = uy — u in (8.1) and find

f(IVull"”zVul — Vol *Vup) - V(uy — ) dx + f b(x)(h(uy) — h(uz))(u — uz) dx = 0.
Q Q

Note that the integrand in the first integral is non-negative. Since b(x) > 0 in Q" and & is
increasing, for the above equality to hold we must have u; = u; in Q.

We now assume that y € (0, 00) U {+00}. We notice that (u;/uz)(x) — 1 as |x] — 0, where
we apply Theoremfor y = 0. Let & > 0 be arbitrary. Since h(f)/t"~! is non-decreasing on
(0, o), one can check that (1 + &)u; is a super-solution of (I.I)) for i = 1,2. By the comparison
principle, we find that u; < (1 + &)u; in Q" and uy < (1 + e)u; in Q. By taking € — 0, we
conclude that u; = u; in Q*.

(i1) Existence.

If y = 0, then u is a regular solution of (I.I) in Q (cf., Lemma[3.2). The existence assertion
follows by a standard minimization argument. Assume that vy is any positive number. We prove
that @ admits at least one positive solution u,. Let 6, € (—p, ) and g, be sufficiently close to
0 and g, respectively such that g < g. < Cy,pg,. We fix C > 0 large such that

C> max HNx) and h(r) < 1+ foreveryt > C.
XE

Let r. > 0 be small enough such that B, (0) cc Q and

b(x) < |xf*  forevery 0 < |x| < r,.
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By Lemma there exists a unique positive solution ¥, € C 1(0, r.] satisfying
=TI, + AW =0 in (0,7,

Y(r) _

u(r)

lir% v, Y(r) =C.

Since W, (r) is decreasing in r, we have ¥,(r) > C for every r € (0,r,). By the comparison
principle, we obtain ¥, (|x]) < yu(|x]) + C for O < |x| < r,. For every integer n > 1 satisfying
n > 1/r,, we consider the boundary value problem

{ — div([VVP2Vy) + b(x)h(v) = 0 for x € Q\ By,,(0), 52)

v=vyu+ C for|x| = 1/n, v =19 ondQ.

Let v, be the unique positive C L_solution of (8.2). It follows that v,.; < v, < yu + C for
x € Q\ By,(0) and every n > 1/r,. Since

~div(VW,"2VW,) + b(x)h(¥,) <0 for 0 < |x| < r.,

we deduce from the comparison principle that ¥, < v, +C for 1/n < |x| < r,. By Lemma@, we
conclude that for a sequence nj — oo we have v,;, — v in CIIOC(Q*) and v, is a positive solution
of such that v, = ¥ on 8Q. Moreover, we have V), < voo + C < yu +2C for 0 < |x| < 7,
which leads to limy_o ve(x)/p(x) = y. Hence, v, is a positive solution of (T-§).

Consequently, admits a (unique) positive solution u, € C'(Q*) for every y € [0, o). By
Theorem 5.1} we know that u, satisfies (T.7). Applying Lemmaf&.T]to u, with g = Const. > 0 if
v = 0and g(|x]) = u(|x]) if y € (0, 00), we find that u, € Cll(;f(Q*) for some a € (0, 1).

To construct a positive solution of (I.8)) for y = co, we proceed as follows. Let u, be the
unique positive solution of (I.8) with y = n > 1. By the comparison principle, we find u,, < 1,1
in Q*. By Remarkand Lemma we see that, up to a subsequence, u, converges in C; (Q*)

loc
to U, Which is a positive solution of (1.8) with y = co. Moreover, u., € C 1’“(Q*) for some

1
a € (0, 1). This completes the proof. *

9. Proof of Theorem 3]

Let (T4) and (I.3) hold with 1 < p < N and g > Cy, 6. If ¢ = Cy, 6, then we further assume
(T-9). Let u be any positive solution of (I.I). By Lemma[3.2] it is enough to show that
u(x)

|x}1—n>0 m =0. (91)

0+p
—-p+1°

We distinguish two cases. We first suppose that ¢ > Cy,,¢. Then ’;;_1;’ is less than — 7

u is regularly varying at zero of index ‘;%1;/ by 1i we find l)
We next consider the case g = Cypg. Then T and p vary regularly at zero with the same

index, and we need condition (1.9) to prove 1| Sety := limsup,_,, % It suffices to show
that y = 0. Arguing indirectly, we assume that y # 0. We shall arrive at a contradiction with
Lemma 6.4 (ii) as follows. By Lemma [3.2} we have limy,_o u(x) = co. Using (I.9), we find that

u is a sub-solution of

Since

—div([VVP2Vv) + glx®VE¢ = 0 in B(0) \ {0}, 9.2)
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where £ > 0 and R > 0 are small constants such that Bg(0) cC Q. By applying Lemma3.1](a) to
(9-2), we conclude that y < co. For every 7 > 0, the comparison principle leads to

u(x) < (y + nu(x) + rlr}a;ei u(y) for0O < |x| <R.
yl=

Letting T — 0, we obtain

u(x) < yu(x) + rlr}alye( u(y) for0 < |x| <R.
y:

For every large integer n > 1, we set 0, := {x e RV : 1/n < |x| < R}. Let v, denote the unique
positive solution of (9.2)) considered in Q,, subject to the boundary condition

VlaBg(0) = max u(x) and Vi, = max u(x). 9.3)

[xl=1/

From (9.3) and uniqueness of v,, we must have that v, is radially symmetric in Q,. We notice
that u is a sub-solution (respectively, yu(x) + max—g u(y) is a super-solution) for (9.2) in Q,,
subject to (9.3). Using the comparison principle, we get

u(x) < vp(xl) < yu(x) + rlr}a;; u(y) in Q,. 9.4)
v

loc

Using Lemma we find that for a sequence ny — oo we have v,, — v, in C ! (0,R] and
1

V = gty satisfies the following equation
—(N VPRV, + AV TIHOVENe = 0 in (O, R).

1
Letting n — oo in 1i and using Lemma (i), we find lim,_, % = gNrory € (0,00). But

this is a contradiction with Lemma [6.4] (ii). This concludes the proof of (9.1).

A. Regular variation theory and related results

A.l. Properties of regularly varying functions

If & is a positive measurable function defined in a neighbourhood of infinity and the limit
lim;_, o, h(A1)/h(¢t) exists in (0, o) for every A4 > 0, then necessarily @ holds for some g € R
(see [12]]). Such functions were first introduced by Karamata [9]] and are called regularly varying
functions at co with index g. Their theory, which was later extended and developed by many
others, plays an important role in certain areas of probability theory such as in the theory of
domains of attraction and max-stable distributions. For detailed accounts of the theory of regular
variation, its extensions and many of its applications, we refer the interested reader to [12f], [[L]
and [[L1].

For the reader’s convenience, we include here some basic properties of regularly varying
functions. We recall that a positive measurable function L defined on a neighbourhood of infinity
is called slowly varying at oo if lim,,, L(A#)/L(¢) = 1 for every 4 > 0.

Noration. By fi(t) ~ f>(f) as t — oo, we mean that lim,, fi(#)/f2(t) = 1. Asin [11], let f<
denote the (left continuous) inverse of a non-decreasing function f on R, namely

fT@) =inf{s: f(s) >t}
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Proposition A.1 (Representation Theorem). A function L is slowly varying at oo if and only if it
can be written in the form

L(t) = T(H) exp { f % dg} (t>1y>0) (A.1)

where ¢ € C [70, ) satisfies lim,—c () = 0 and T is measurable function on [ty, o) such that
lim;_,o T(¢) := T € (0, 00).

Remark A.1. For any f € RV, (p € R), there exists a C'-function fe RV, such that

_fo _tf'(0)
Ill)rg% =1 and tlgg f(t) =p. (A2)

Indeed, if L(¢) := f(¢)/#°, then L is slowly varying at co and li holds. We define fas follows

f(r):’fﬂ’exp{f @dg} (t > 19).

'3
Hence, fis a C!-function that satisfies 1| since we have
fo T tf (1)
—=———>1 and —==p+¢() > p ast — oo,
f@® T t

Proposition A.2 (Uniform Convergence Theorem). If L is slowly varying at oo, then L(At)/L(t)
converges to 1 as t — oo, uniformly on each compact A-set in (0, o0).

Proposition A.3 (Properties of slowly varying functions). Assume that L is slowly varying at co.
The following hold:

(1) log L(t)/ logt converges to 0 as t — oo;
(i) Forany j > 0, we have ! L(t) — oo and t /L(t) = 0 as t — oo;
(iii) (L)) varies slowly at oo for every j € R;
@iv) If Ly varies slowly at oo, so does the product (respectively the sum) of L and L.

Proposition A.4 (Karamata’s Theorem). If f € RV, is locally bounded in [A, o), then

j+1
@) 1imfi =j+p+lforany j>—(p+1);
o [ EfE) dé
(i) forany j < —(p+ 1) (and for j = —(p + 1) iffmf‘(p”)f(f)df < o0) we have
. 0] .
im-————=—(j+p+1).
e [T EIf(E) dé

Proposition A.5 (see Proposition 0.8 in [11]). We have
(i) If f € RV,, then lim;_, log f(t)/ logt = p.
(i1) If fi € RV, and f, € RV, with lim,_,, f>(f) = oo, then

f] o f2 € RVP]pz'
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(iii) Suppose f is non-decreasing, f(co0) = oo, and f € RV, with 0 < p < co. Then
T €RVyy,.

The next result shows that any function f varying regularly at co with positive index is asymp-
totic to a monotone function.

Proposition A.6 (see Theorem 1.5.3 in [1]]). Let f € RV, and choose to > 0 so that f is locally
bounded on [ty, o). If p > 0, then we have

(@) f():=sup{f(s): tg < s<t}~ f(t)ast— oo
(b) f(0):=inf{f(s): s21} ~ f(t) ast — oo.

A.2. Other results

Lemma A.7. If p > 1, then there exist two functions hy and hy which have the properties of h
stated in Assumption A in Section[l} as well as the following

hi(t) < h(t) < hy(t)  fort € [0, ),
{M (1) (A3)

= and pray are both increasing for t € (0, ).

(g+p-1)

Proof. Let g > p — 1. We set g.(¢) := infy, g(s) for ¢t > 0, where g(r) := t~~ 2 h(¢). Hence,
g« < gon (0, 00) and g, is non-decreasing on (0, co). We define 4 on [0, co) with

q+p:

h() = t%g*(t) forany t > 0 and /4;(0) = 0. (A4)
Using the monotonicity of g, and ¢ > p — 1, we see that h;(1)/t"~! = 5 g.(t) is increasing for
t € (0, 00). Moreover, h () < h(t) for any t > 0. We now construct 4, on [0, o) as follows

h —p+
ho(f) = 177! (sup WO ') for any ¢ > 0 and h,(0) = 0. (A.5)

0<s<t SP71

Since 7(0) = 0 and A(r)/?~" is assumed to be bounded for small 7 > 0, we infer that A, is
well-defined and satisfies the properties of 4 and (A.3).

Remark A.2. Ifin Lemmawe assume, in addition, that 2 € RV, for some g > p—1, then the
functions /; and A, constructed in (A.4) and (A.5) are asymptotically equivalent to 4 at infinity,
that is lim,—,. h;(£)/h(t) = 1 for i = 1,2. This follows by applying Proposition

The monotonicity of the functions 4, and h, in Lemma [A.7] allows us to use the following
comparison principle (see, for example, Theorem 2.4.1 in [10]). For other versions, we refer to
Theorem 10.7 in [8]], or Proposition 2.2 in [5] (see also [6]).

Lemma A.8 (Comparison principle). Let Q be a bounded domain of RN with N > 2. Assume
that g : Q x [0,00) +—> [0, 00) is in L} (2 X [0, 00)) and g = g(x,z) is non-decreasing in z. Let
p > 1 and u, v be positive C'-functions on Q such that

—div (VulP2Vu) + g(x,u) < 0 < —div (|VVP2Vv) + g(x,v) in D'(Q).

Ifu<vondQ, thenu <vinQ.
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The next result (see [[7]) relies on the strong maximum principle in [8, Theorem 8.19].

Lemma A.9 (Lemma 1.3 in [7]). Let O be a domain in R and c € Ly (0). Assume that p > 1
and u, v are C'-functions on O such that

—div (\Vul’>Vu) + cu < 0, —div (IVV[P72Vv) + ¢v > 0,

in the weak sense in O, and Vv # 0 for every x € O. If u < vin O and if there exists a point
xo € O such that u(xg) = v(xp), thenu =vin 0.

Remark A.3. Let O be a domain in RN and O c Q*. If u is a positive sub-solution of i inO
and u/p achieves a maximum S in O, then u/u = B in O. This follows by using Lemma[A.9|with

v = pu.
If (1.4) holds with ¢ > p — 1 > 0 and by € RVy(0+) with 6 > —p, then we define J and B by

00 _L 1
[A(s)] P T ds p =
1) = ft—, for t > 0, B(r) := r[rbL)]r: for small ¥ > 0. (A.6)
tlh()] 7 I Lsbo()177 dss
Then by Proposition [A.4] we have that
- 6
imd =—L"" limBe) = L. (A7)
=00 qg—-p+1 r—0 p—1

Remark A.4. In view of Remark in the definition of the function Y'(r) in (L.11), we can
replace h and by by asymptotically equivalent C'-functions without affecting our proofs. With
such a change, r(r) becomes a C>-function on a small interval (0, ry), and we have

rby(r) . th' (1)
= 1 = h =
r:n& Do) 6 and tgg F(t) = q, where F(¢) no)

for ¢t > 0 large. (A.8)

These conventions are used frequently in our proofs.
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