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Abstract. We give a new argument for the characterization of the coho-

mology rings of closed 3-manifolds with coefficients F2, first given by M. M.

Postnikov (in terms of intersection rings) in 1948.

M. M. Postnikov characterized the F2-homology intersection rings of closed 3-
manifolds in his first published paper [10], and D. Sullivan determined the Z-
cohomology rings of closed orientable 3-manifolds in [13]. The orientable case was
settled comprehensively by V. G. Turaev, who considered not only cohomology with
coefficients Z/nZ for all n ⩾ 0, but determined the interactions of these cohomology
rings with each other and with the torsion linking pairing [14].

Postnikov showed that the F2-homology intersection ring of a closed 3-manifold
M is a finite graded F2-algebra which satisfies 3-dimensional Poincaré duality and
the“Postnikov-Wu identity” with respect to a distinguished element w = w1(M),
and conversely every such “MS-algebra” is isomorphic to such a cohomology ring.
(The terms in quotation marks are defined in §5 below.) The constructive part of
his argument used induction on the rank of the degree-1 component of the algebra,
with bases corresponding to S3 and S2×̃S1, for the cases w = 0 and w ̸= 0,
respectively. The inductive step in [10] used (in today’s terminology) surgery on a
knot K in a 3-manifold M such that K has trivial image in H1(M ;F2).

We review briefly the results of Sullivan and Turaev in §2 and §3. The main body
of the paper is in §4–§9, where we give a new argument for Postnikov’s result. The
basic idea (superposition of elementary models) is quite simple, but its application
to nonorientable 3-manifolds involves some effort. Although we shall use the lan-
guage of cohomology, our calculations rest largely upon the intersections of curves
and surfaces in a 3-manifold, as in Postnikov’s original account. Our contributions
are merely to give a direct link presentation of a suitable 3-manifold, suppressing
the induction, and to make more explicit the penultimate paragraph of Postnikov’s
argument, which consists of three sentences, beginning with “Okazivayetsya, shto
. . . ”, meaning roughly “It turns out that . . . ”.

When the homology is torsion free the Fp-cohomology ring is determined by the
integral cohomology ring. In the final two sections we show that this is not always
so when there is torsion.

1. notation

If A is a finitely generated abelian group let tA be its torsion subgroup, and let
A∗ = Hom(A,Z) and A∗n = Hom(A,Z/nZ), for each n > 1. If R is another abelian
group then there is a canonical epimorphism from Hom(A,R) onto Hom(tA,R),
with kernel Hom(A/tA,R).
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If R is a commutative ring and {e1, . . . , ed} is a basis for a free R-module V then
the Kronecker dual basis for V ∗ = HomR(V,R) is the basis {e∗1, . . . , e∗d} determined
by e∗i (ei) = 1 and e∗i (ej) = 0 for all j ̸= i and all i.

If G is a group let G′ and ζG be the commutator subgroup and centre of G, and
let Gab = G/G′ be its abelianization. Let I(G) be the preimage in G of tGab. Let
Xr(G) be the verbal subgroup generated by all rth powers gr with g ∈ G.

If L is an m-component link let Li be its ith component, and let M(L;F) be
the closed 3-manifold obtained by F-framed surgery on L. If each component has
the 0-framing we shall write just M(L), and if each component has framing with
slope p we shall write M(L; p). Spanning surfaces for link components and closed
surfaces representing Poincaré duals of classes in H1(M ;F2) may be nonorientable,
and we shall not comment further on this possibility.

Let L2,4 and Bo be the (2,4)-torus link and the Borromean rings 3-component
link. (These are the links 421 and 632 in Rolfsen’s tables [11].) Let Bo(n) be the link
obtained by replacing Bo3 of Bo by its (1, n)-cable.

If A ∈ GL(2,Z) then MT (A) is the mapping torus of the self-homeomorphism
of the torus T induced by A.

2. characteristic not 2

Let M be a closed 3-manifold and let π = π1(M). Let R = Z, a prime field Q
or Fp, with p odd. Let H = πab and let H∗ = Hom(H,R). If M is orientable then
H3(M ;R) ∼= R, and cap product with a fundamental class [M ] defines Poincaré
duality isomorphisms D2 : H2(M ;R) → R⊗H and D3 : H3(M ;R) → R, while
cup product and duality define homomorphisms γ : ∧2H∗ → H2(M ;R) and µ =
µM : ∧3H∗ → R. (Alternating trilinear functions such as µ may be identified with
elements of ∧3H.) These satisfy the equations

D3(a ⌣ D−1
2 (h)) = a(h) ∀ a ∈ H∗ and h ∈ H

and

µ(a ∧ b ∧ c) = a(D2γ(b ∧ c)) ∀ a, b, c ∈ H∗.

If R is a prime field, (with characteristic ̸= 2) or if R = Z and H is torsion-free then
the cohomology ringH∗(M ;R) is determined byH, µ and the duality isomorphisms
D2 and D3, via these equations. (More explicitly, let H0 = R, H1 = H∗, H2 = H
and H3 = Rε3, and let rs be the unique solution of “t(rs) = µ(r∧s∧t)ε3 ∀ t ∈ R1”,
and rh = r(h)ε3, for r, s ∈ H1 and h ∈ H2. Then rst = µ(r ∧ s ∧ t)ε3, for all
r, s, t ∈ H∗, and H∗(H,µ) = ⊕3

i=0Hi is a graded ring. We may use D2 and D3 to
determine an isomorphism H∗(M ;R) ∼= H∗(H,µ).) If H∗ ̸= 0 then D2 determines
D3, by the first equation above.

Theorem (Sullivan [13]). If R = Z then every such pair (H,µ) is realizable by
some closed orientable 3-manifold with torsion-free homology. □

We may assume that the 3-manifold is irreducible [9].
If M is not orientable and F is a field of characteristic ̸= 2 hen H3(M ;F ) =

0, and so β2(M ;F ) = β1(M ;F ) − 1. Up to automorphisms of H1(M ;F ) and
H2(M ;F ), the only issue of interest is the rank of cp. If Pc = #rRP2 and M =
S1 × Pc then cp is an epimorphism for all characteristics p ̸= 2. Hence connected
sums of S1×Pc with copies of S1×S2 realize all possible combinations of rank and
Betti numbers satisfying rk(cp) ⩽ β2(M ;F)− 1.
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When R = Z or F2 the Poincaré duals of Kronecker duals of a basis for H1(M ;R)
represented by simple closed curves in M may be represented by closed surfaces in
M which meet one such curve transversely in one point and are disjoint from the
other curves. However these closed surfaces are generally not pairwise disjoint, and
we may use their intersections to identify cup products. See [5].

3. integer coefficients: torsion

When R = Z and H1(M ;Z) has nontrivial torsion then γ is no longer determined
by µM and the above equation. The torsion subgroup has a complementary direct
summand, but the splitting is not canonical. Cup products with coefficients in other
rings and their compatibilities with integral cup product must also be considered.
V.G.Turaev gave a definitive account in [14].

For each n > 1 let νn = νnM : ∧3H1(M ;Z/nZ)→ Z/nZ be defined by

νn(X,Y, Z) = (X ∪ Y ∪ Z) ∩ [M ], for all X,Y, Z ∈ H1(M ;Z/nZ).

Then νnM and Poincaré duality together determine the ring H∗(M ;Z/nZ). Every
3-form ν : ∧3(Z/nZ)β → Z/nZ lifts to a 3-form ν̂ : ∧3Zβ → Z. Hence it is an
immediate consequence of Sullivan’s construction that every such 3-form ν can be
realized as νnM for some closed orientable 3-manifold M with H1(M ;Z) ∼= Zβ .
If p is an odd prime it follows that every finite graded-commutative graded Fp-
algebra satisfying 3-dimensional Poincaré duality is the Fp cohomology ring of such
a 3-manifold.

The Bockstein homomorphism βQ/Z : Hom(H,Q/Z) → H2(M ;Z) has image

Ext(H,Z), the torsion subgroup of H2(M ;Z). We may use this to define the
torsion linking pairing ℓ : tH × tH → Q/Z by

ℓ(u, v) = (D2 ◦ βQ/Z)
−1(v)(u) ∀ u, v ∈ tH.

This pairing is nonsingular and symmetric, and ℓ and βQ/Z determine each other
(given D2). Every such pairing is realizable by some Q-homology 3-sphere [6, Theo-
rem 6.1]. Taking connected sums shows that every such triple (H,µ, ℓ) is realizable
by some 3-manifold. On the other hand, µ and ℓ are independent invariants.

It is easily verified that if x ∈ H1(M ;Z/nZ) then x2 = n
2βQ/Z(x). (It suf-

fices to check this for x = idZ/nZ, considered as an element of H1(Z/nZ;Q/Z) =
H1(Z/nZ;Z/nZ).) Let ψn : Z/nZ → Q/Z be the standard inclusion. If x ∈ H∗n

let x̂ be the element of tH such that ℓ(x̂, a) = ψn(x(a)) for all a ∈ tH. Turaev
showed that

ψn(νn(x, x, y)) =
n

2
ℓ(x̂, ŷ) for all x, y ∈ H∗n.

When n = 2 this condition implies the orientable case of the Postnikov-Wu identity
invoked below. (Note that if n is odd then both sides are 0.)

Let A be a finitely generated abelian group, let ℓ : tA× tA→ Q/Z be a nonsin-
gular symmetric pairing, and suppose that ν : ∧3A∗ → Z and νn : ∧3A∗n → Z/nZ
is a system of alternating trilinear functions which are compatible under reduction
mod-n. Then Turaev showed that such a group A, pairing ℓ and system of trilinear
functions may be realizable by the homology and cohomology of a closed orientable
3-manifold if and only if the above condition deriving from the interaction of the
Bockstein βQ/Z with the cup-square holds for all n dividing the order of tA [14].
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4. surgery on links

In the next six sections we shall give an alternate approach to Postnikov’s result
on the F2-cohomology rings of 3-manifolds. Our examples shall be constructed by
surgery on framed links. Related constructions were used by Turaev and Postnikov,
although in the latter case “surgery” was not yet a mathematical term. (Sullivan
uses instead Heegaard decompositions.)

In the orientable case, in order to construct a closed 3-manifold with M with
β1(M ;F2) = ρ we modify various of the components of a trivial ρ-component link
ρU in S3, using local moves which involve replacing trivial 2- or 3-component tangles
in a ball by other tangles from a limited repertoire.

The components of the tangles in Figure 1 represent distinct link components.
Move (a) changes the linking number by±2, and an application of this move changes
the 2-component trivial link 2U into L2,4. Move (b) does not changing the linking
number. An application of this move changes the 3-component trivial link 3U into
Bo. Moves (a) and (b) (in either order) change 3U into the link of Figure 3. These
moves do not change the knot types of the link components.

→

(a)

→

(b)

Figure 1. Two tangle moves.

In each of these cases a given set of spanning surfaces for the components of
the original link may be modified within the ball containing the tangle without
introducing new intersections outside the ball. (For instance, applying move (b) to
the trivial 3-component link 3U gives Bo, as in Figure 2.)

In the nonorientable case we start with nontrivial links in S2×̃S1 which are
disjoint unions of several basic 2- or 3-component links with all components orien-
tation preserving. (Each component K then has “longitudes” which bound surfaces
in S2×̃S1. ) We may assume that each component meets a fixed copy of the fi-
bre S2 transversely, and shall make our modifications to trivial 2- or 3-component
tangles in balls lying in the complementary region S2 × (0, 1).

Lemma 1. LetM =M(Bo(n)), and let a, b, c be the basis for H1(M ;Z) determined
by the meridians of Bo(n). Let a∗, b∗, c∗ be the Kronecker dual basis for H1(M ;Z).
Then (a∗ ∪ b∗ ∪ c∗) ∩ [M ] = n.

Proof. This is most easily seen using a mixture of algebra and geometry. The first
two components bound disjoint discs in their mutual complement. Each of these
discs meets the third component in 2 points. If we delete neighbourhoods of these
intersection points and attach tubes which surround arcs of the third component,
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we obtain punctured tori in the exterior of Bo(n), which may closed off in M
by copies of the surgery discs used in forming M . The resulting tori represent the
Poincaré duals of a∗ and b∗, and intersect along a meridian for the third component
of Bo, as in Figure 2. The latter meridian is homologous in M to n.c, since the
third component of Bo(n) is the (1, n)-cable of the third component of Bo. Hence
(a∗ ∪ b∗ ∪ c∗) ∩ [M ] = n. □

If H has basis {e1, . . . , eβ} then the simple 3-forms eijk = ei ∧ ej ∧ ek with
i < j < k form a basis for ∧3H.

Theorem 2. Let M = M(L), where L is an m-component link with ordered and
oriented components and such that each 3-component sublink is either trivial or is
a copy of Bo. Let I be the set of ordered triples i < j < k such that Li ∪ Lj ∪ Lk

is isotopic to Bo, and let {ai} be the meridianal basis of H1(M ;Z). Then

µM = Σ(i,j,k)∈Iai ∧ aj ∧ ak.

Proof. Let e1, . . . , em be the basis for H1(M ;Z) determined by the meridians for
L, and let e∗1, . . . , e

∗
m be the Kronecker dual basis for H1(M ;Z). To calculate

µ(e∗i , e
∗
j , e

∗
k) it suffices to use Poincaré duals for the e∗i as in Lemma 1. □

Figure 2 shows two punctured tori spanning components Bo1 and Bo2 of Bo,
with intersection a meridian c for the third component.

L1

L2

c

Figure 2.

Lemma 1 and Theorem 2 suffice to recover Sullivan’s result for H ∼= Zβ with
β ⩽ 5. If β < 3 then µ = 0 and if β = 3 then µ = re∗1 ∧ e∗2 ∧ e∗3, for some r ∈ Z.
If β = 4 then 3-forms are dual to 1-forms, while if β = 5 then 3-forms are dual
to alternating 2-forms, and so µ is equivalent (under the action of GL(β,Z)) to
re∗1 ∧ e∗2 ∧ e∗3 or re∗1 ∧ e∗2 ∧ e∗3 + se∗1 ∧ e∗4 ∧ e∗5 (respectively), for some r, s ∈ Z.

If H∗p has basis {e1, . . . , eγ} then the simple 3-forms eijk = ei ∧ ej ∧ ek with
i < j < k form a basis for ∧3H∗p. If ν = Σηijkeijk, where each ηijk = 0 or 1 then
we may realize ν by a closed orientable 3-manifold with H1(M ;Z) ∼= Fγ

p .
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A similar argument applies for M(Bo(n); 2) and coefficients F2 (and probably
also to M(Bo(n); p) and coefficients Fp), but we may need to extend intersection
theory to Z/pZ-manifolds [12], or alternatively use a more algebraic argument,
working modulo the cores S1 × {0} of the surgeries.

This construction could then be extended to the case H ∼= Zβ ⊕ Fρ
p, by using 0-

framed surgeries on the first β components. However another idea seems necessary
to pick up coefficients other than 0 or 1.

If F is a field and β ⩽ 7 then every 3-form on F β is equivalent under the action
of GL(β, F ) to a standard 3-form of the above type. This is clear if β ⩽ 3, and also
if β = 4, for then 3-forms are dual to 1-forms. If β = 5 then 3-forms are dual to
2-forms, and so correspond to skew-symmetric pairings. Hence there are just two
equivalence classes of nonzero forms, represented by e123 and e123 + e145. The case
β = 6 involves more work, but there are just two more standard forms, represented
by e123 + e456 and e162 + e243 + e135. If β = 7 there are at most 12 equivalence
classes, some involving coefficients other than 0 or 1, but the above construction
still suffices. See [1] for details of the standard forms in this case. On the other

hand, if β > 8 then dimF GL(β, F ) = β2 < dimF ∧3F β =
(
β
3

)
, and the number of

equivalence classes is unbounded as the order of F increases. The result of Turaev
shows that we should not need to appeal to [1].

5. characteristic 2

In the strictly antisymmetric cases (characteristic 0 or odd), there is only one pos-
sible nonzero cup product involving three given degree-1 classes. When R = F2 the
homomorphisms γ and µ must be replaced by homomorphisms from the symmetric
products ⊙2H∗ → H2(M ;F2) and ⊙3H∗ → H3(M ;F2). There are many more
possibilities for nonzero triple products, and we should now consider also nonori-
entable 3-manifolds. Postnikov gave a complete account of the F2-intersection rings
of 3-manifolds. He did not assume orientability, and his description of H∗(M ;F2)
includes also the relation uvw = u2v + uv2, for all u, v ∈ H1(M ;F2) [10]. (Here w
is the orientation character.) This may now be seen as an application of the Wu
relation Sq1z = wz, for all z ∈ Hn−1(Mn;F2), which first appeared later [16].

We have adapted Postnikov’s terminology to the cohomological formulation. An
MS-algebra is a finite commutative graded F2-algebra A∗ = ⊕3

i=0Ai such that
dimA0 = dimA3 = 1, Aj = 0 for j > 3, multiplication defines a perfect pairing
from A1 ×A2 into A3, so that A∗ satisfies formal Poincaré duality of dimension 3,
and which has a distinguished element w ∈ A1 such that the Postnikov-Wu identity

wxy = x2y + xy2

holds for all x, y ∈ A1. An MS-algebra isomorphism is a ring isomorphism under
which the distinguished elements w correspond, and A∗ is orientable if w = 0. We
shall abbreviate “by the nonsingularity of multiplication from A1 × A2 to A3” to
“by nonsingularity”.

In the orientable case the Postnikov-Wu identity is an easy consequence of
standard facts about the reduced Bockstein homomorphisms β2. If X is an ori-
entable PD3-complex then reduction mod (2) maps H2(X;Z) onto H2(X;F2),
since H3(X;Z) ∼= Z. Hence β2 is trivial on H2(X;F2), and so u2v + uv2 =
Sq1(u)v + uSq1(v) = β2(uv) = 0 for all u, v ∈ H1(X;F2).
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6. the orientable case

In this section we shall consider the orientable case, which is somewhat easier, as
we may realize a basis for A1 by meridians for a suitable link in S3. The Postnikov-
Wu identity also simplifies to x2y = xy2 for all x, y ∈ A1. We shall design a framed
link representing the 3-manifold, guided by the nonzero triple products. The basic
ingredients are L2,4, Bo and the link of Figure 3 below.

Let K be a knot in S3 with exterior X(K), meridian µK and longitude λK . A
p-framed surgery on K is determined by a homeomorphism ϕ : ∂X(K)→ S1 ×D2

such that ϕ(λK + pµK) = ∂D2. After composition with a self-homeomorphism of
S1 ×D2, if necessary, we may assume that ϕ(µK) = S = S1 × {∗}. It then follows
that ϕ(λK) is a simple closed curve Cp representing the homology class [∂D2]−p[S]
in H1(S

1×∂D2). If p = 0 this curve clearly bounds a copy of D2; if p = ±2 then it
bounds a ribbon with a half-twist, i.e., a copy of the Möbius band Mb. [In general,
Cp bounds a Z/pZ-manifold. If p is even is there a natural desingularization?]

LetM =M(L;F), where L is an m-component link in which all pairwise linking
numbers are even and in which each component has even framing. The meridians for
the link components represent a canonical basis for H1(M ;F2), and the Kronecker
duals of this basis give a basis {x1, . . . , xm} for H1(M ;F2). Let Fi be a Seifert
surface for the the i-th component Li in S

3. The Poincaré dual of xi in H2(M ;F2)

is represented by the surface F̂i which is the union of Fi with a spanning surface
for the longitude λLi

in S1 ×D2. If all the linking numbers are 0 or ±2 then after
attaching handles to Fi if necessary, we may assume that it does not meet any other
component of L.

If all linking numbers are 0 then we may assume that Fi is orientable, and then
x2i and x3i are supported by the cocore of the surgery. In this case x2i = 0 if Li has
framing 0, while x3i ̸= 0 if the framing is ±2. Moreover the triple products x2ixj
and xixjxk then depend only on the sublinks Li∪Lj and Li∪Lj ∪Lk involved and
the framings of these components. (If the framings and linking numbers are even
but some are not 0 or ±2 then the components bounds immersed spanning surfaces
which are disjoint from the other components. Our approach might extend to these
cases, but we do not know whether the intersection theory applies adequately for
transversely immersed surfaces.)

The (2,4)-torus link is the simplest 2-component link with linking number 2.
Its link group has the presentation ⟨a, b | bab−1a = ab−1ab⟩. The longitudes are
ℓa = aba−1b and ℓb = bab−1a, and 0-framed surgery gives the quaternionic 3-
manifold S3/Q(8).

Let u and v be the Kronecker duals of the images of the meridians a and b in
H1(S

3/Q(8);F2). Then u2 and v2 are nonzero, since Q(8)ab has exponent 2. On
the other hand, u3 = v3 = 0, and so u2 ̸= v2 and u2v = uv2 ̸= 0, by nonsingularity.
In this case the kernel of cup product is generated by u ⊙ u + u ⊙ v + v ⊙ v.
These are standard facts about H∗(Q(8);F2), but can be explained in our terms as

follows. The Poincaré dual of u is represented by a Klein bottle F̂ in S3/Q(8). The

intersection of two transverse copies of F̂ is a meridian for the other component,

and can be pushed off F̂ . Hence the intersection of three mutually transverse copies

of F̂ is empty.
If L is the link of Figure 3 thenM(L) is the “half-turn” flat 3-manifoldMT (−I2)

with π1MT (−I2) ∼= Z2⋊−IZ. Poincaré duality and consideration of subgroups and
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quotient groups shows that

H∗(MT (−I2);F2) ∼= F2[t, u, v]/(t
2, u3, v3, tu2, tv2, tuv + u2v, u2v + uv2).

Realization: Let A∗ be an orientable MS-algebra and let ρ = dimF2
A1. Then

u2v = uv2 and so (u+ v)3 = u3 + v3, for all u, v ∈ A1. Let ν : ⊙3A1 → A3 be the
triple product. If {x1, . . . , xρ} is a basis for A1, we let νijk = ν(xi ⊙ xj ⊙ xk) for
1 ⩽ i, j, k ⩽ ρ. Given u, v, z ∈ A1, there are 10 possible triple products involving
just these elements, but their values are constrained by the Postnikov-Wu identity,
and the number of possibilities to consider may be reduced further by judicious
choice of basis.

If x2 = 0 for all x ∈ A1 then we may model A∗ by M(L), where L is a ρ-
component link with all nontrivial 3-component sublinks copies of Bo.

Suppose next that Sq1xi = x2i ̸= 0 for i ⩽ σ, for some σ > 0. We may assume
that {xσ+1, . . . , xρ} spans Ker(Sq1), and so Sq1 maps X = ⟨x1, . . . , xσ⟩ bijectively
to Sq1X = ⟨x21, . . . , x2σ⟩. If x3 = 0 for all x ∈ A1 then after a change of basis,
if necessary, we may assume that the restricted pairing is block diagonal, with
diagonal blocks [ 0 1

1 0 ]. For if x21y ̸= 0 for some y ∈ A1 then x1y
2 ̸= 0, and we may

set x2 = y. We then modify the other basis elements xj with j > 2 within their
cosets mod ⟨x1, x2⟩ so that x21xj = x22xj = 0. We continue by induction on k to
modify the x2j−1 and x2j with j > k so that x22j−1x2j ̸= 0 and x2ix2j−1 = x2ix2j = 0
for all i ⩽ 2k. In particular, σ is even.

We start with a ρ-component link which splits as a union of σ
2 copies of L2,4 and

a trivial link with ρ−σ components, and construct the desired link L by modifying
some trivial 3-tangles, as in Figure 1.(b). The generators of A1 correspond to
the Kronecker duals of the meridians of L. If νijk ̸= 0 for some i < j < k and
x2ixj = x2ixk = x2jxk = 0 then we arrange for Li ∪ Lj ∪ Lk to be a copy of Bo.

However if (say) x2ixj ̸= 0 then we use instead the link of Figure 3, in which the
components Li and Lj are linked. We give all components framing 0.

Figure 3. Linking numbers 0, 0, 2.

If there is an x such that x3 ̸= 0 then we may assume that x31 ̸= 0. After
replacing xi by xi + x1, if necessary, we may assume that x21xi = 0 for all i > 1.
Hence the only possible nonzero triple products involving x1 are of the form xyz
with x, y, z linearly independent. In order to achieve this we choose our link so
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that all linking numbers ℓ(L1, Li) with i > 1 are 0, and the framing of L1 is 2.
In this case Ker(Sq1) has odd codimension. The construction proceeds as before.
(With the above choices the multiplication pairing between X and Sq1X is again
block diagonal, but there may be several basis elements x with x3 ̸= 0, and so the
diagonal blocks are [1] and [ 0 1

1 0 ].)
Examples. If M is orientable and ρ = β1(M ;F2) = 1 then H∗(M ;F2) ∼= F2[x]/(x

4)
or F2[x, u]/(x

2, u2), with x ∈ H1(M ;F2) and u ∈ H2(M ;F2). The simplest exam-
ples are RP3 = L(2, 1), S1 × S2 and L(4, 1).

It follows from the Postnikov-Wu identity that x3 + y3 = (x + y)3 for all x, y
of degree 1. Hence if {x, y} is a basis for H1(M ;F2) such that x3 ̸= 0 then we
may assume that y3 ̸= 0 also. Nonsingularity of Poincaré duality then implies that
xy = 0, and so x⊙ y generates the kernel of cup product. For example, RP3#RP3.
Otherwise, if {x, y} is a basis for H1(M ;F2) and z

3 = 0 for all z of degree 1 then
x2y = xy2 ̸= 0, and the kernel of cup product is generated by x⊙x+x⊙ y+ y⊙ y,
as for the quaternion manifold S3/Q(8).

Two more 3-component links shall play a role in the nonorientable case.
Let L be the link of Figure 4, and let A,P and X be the classes in H1(M(L);Z)

represented by the meridians a, p and x. Then 2(A+P ) = 2X = 0. Let {u, v, z} be
the basis for H1(M(L);F2) which is Kronecker dual to the basis for H1(M(L);F2)
represented by the meridians (so that u = a∗, v = p∗ and z = x∗). Then u3 = v3 =
z3 = 0 (since the components have framing 0), while z2 ̸= 0 (since 2X = 0). Let
⟨⟨x⟩⟩ be the normal closure of the image of x in π1M(L). Then G = π1M(L)/⟨⟨x⟩⟩
has presentation ⟨a, p | (ap−1)2 = 1⟩. Then u2 = uv = v2, since these relations
hold in H∗(G;F2), and so u2v = uv2 = u3 = 0. Hence uz2 = vz2 = uvz ̸= 0, by
nonsingularity, and so

H∗(M(L);F2) ∼= F2[u, v, z]/(u
2 + uv, v2 + uv, u2v, u2z + uz2, v2z + vz2, z3).

a
→ x

→

→
p

Figure 4. Linking numbers 0, 2, 2.

The link of Figure 5 has a 3-fold symmetry (about the axis through •) which
permutes the components. If A,P andX are the classes inH1(M(L);Z) represented
by the meridians then 2A+2P = 2A+2X = 2P +2X = 0. Hence H1(M(L);Z) ∼=
Z/4Z⊕Z/2Z⊕Z/2Z. Let {u, v, z} be the basis forH1(M(L);F2) which is Kronecker
dual to the basis for H1(M(L);F2) represented by {a, p, x}. Then u2, v2 and z2

are all nonzero, with the sole relation u2 + v2 + z2 = 0 (since u+ v + z lifts to an
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epimorphism onto Z/4Z). It is then a straightforward exercise using nonsingularity
and the 3-fold symmetry to show that u2v = u2z = v2z = uvz ̸= 0, and so
H∗(M(L);F2) ∼= F2[u, v, z]/I, where
I = (u2 + v2 + z2, u2v + uv2, u2z + uz2, v2z + vz2, u2v + uvz, v2z + uvz).

a

p

z

•↓ ↑

→

Figure 5. All linking numbers 2.

7. links in S2×̃S1

Every closed nonorientable 3-manifold may be obtained by surgery on a framed
link in (either of) S2×̃S1 or RP2 × S1 [7]. We shall construct links in S2×̃S1 from
tangles inD2×[0, 1] with endpoints on the discsD2×{0} andD2×{1} by identifying
these discs via reflection across a diameter of D2 to get a link in Z = D2×̃S1, and
then attaching another copy of Z to get the double DZ = Z ∪Kb Z = S2×̃S1. We
shall assume that the endpoints of the tangle are paired under the reflection, and
lie along the diameter fixed by the reflection. (It is not hard to see that every link
in S2×̃S1 arises in this way, but we shall not need to prove this.)

a1

a2
ω ↓

•

.

.

•

.

.

ω−1 ↑7−→

ω = a1a2 ω−1 = a−1
1 (a1a

−1
2 a−1

1 )

Figure 6. Reflection across the Y -axis

Let L be a link in Z with orientation preserving components. Then each compo-
nent has an even number of endpoints at each end of D2 × [0, 1], and so bounds a
surface in Z which is a union of a spanning surface for a knot or link in D2 × [0, 1]



THE F2-COHOMOLOGY RINGS OF 3-MANIFOLDS 11

with a number of twisted ribbons. Moreover, we may assume that the twisted rib-
bons for the various components are all disjoint. Although there is no canonical
choice of longitude, we may choose “longitudes” which are F2-homologically trivial
in Z, and we shall let Y (L) be the result of surgery on L in Z to kill these longitudes.
Let Ξ(L) = Y (L) ∪ Z be the closed 3-manifold obtained by surgery on L in DZ.
We shall take the core of the second copy of Z as the standard orientation-reversing
loop in Ξ(L).

We may write down a presentation for the fundamental group of the link exterior
in terms of meridians and “Wirtinger” relations in the usual way, but there is a
slight complication due to the reflection. We assume that the fixed diameter of D2

is the intersection with the Y -axis, and take the top of this diameter in D2×{0} as
the basepoint. The meridian for each arc α of the tangle is represented by a loop
from the basepoint which passes “in front of” all intermediate arcs, around α, and
back over the other arcs to the basepoint. The effect of the reflection is evident
from Figure 6, in which the loops a1 and a2 are based via the heavy curves, and
a1, a2 and ω go anticlockwise around the adjacent circles. (Similarly, if a1, . . . , an
are generators corresponding to n punctures down the diameter then ω = a1 . . . an
and ω−1 = a−1

1 (a1a
−1
2 a−1

1 ) . . . (ωan
−1ω−1).)

We shall illustrate this by giving constructions of S1 × RP2 and S1 ×Kb. The
fundamental group of the complement of the tangle in Figure 7 has a presentation
⟨a, b, c | aba−1 = c⟩. Identifying the ends gives a knot in Z whose exterior has
fundamental group with the presentation

⟨a, b, c, t | aba−1 = c, tat−1 = c−1, tbt−1 = ca−1c−1⟩.
Adding another copy of Z gives a knot in S2×̃S1 whose group has presentation

⟨a, b, c, t | aba−1 = c, tat−1 = c−1, tbt−1 = ca−1c−1, ab = 1⟩,
since ω = ab bounds a fibre of the second copy ofD2×̃S1. If we now perform surgery
on the knot to kill ta−1ta the presentation reduces to ⟨a, t | ta = at, t2 = 1⟩, and
so the fundamental group is Z⊕ (Z/2Z).

•

.

.

.

.→

→

→

→

a

b

c

Figure 7. A link for S1 × RP2

From another point of view, we may see directly that surgery on Uo = {∗}×S1 ⊂
S1 × RP2 gives S2×̃S1, as follows. Let θ be the reflection of S2 across an equator.
Then S2×̃S1 ∼=MT (θ), the mapping torus of θ. Since θ swaps the “polar zones” of
S2, the mapping torus of the restriction of θ to the union of the polar zones is a solid
torus D2 × S1 (representing 2× a generator of H1(S

2×̃S1;Z)). The complement
of the polar zones is an annulus A ∼= S1 × [−1, 1], and θ acts on this product via
θ(s, x) = (s,−x), for all s ∈ S1 and −1 ⩽ x ⩽ 1. Hence MT (θ|A) ∼= S1 ×Mb.
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Since S1×RP2 = S1×Mb∪S1×D2 and S2×̃S1 =MT (θ|A)∪D2×S1, the claim
follows. Note also that H1(S

2×̃S1;Z) is generated by a meridian for Uo.
The fundamental group of the complement of the tangle in Figure 7 has a pre-

sentation ⟨a, c, q | aqa−1 = cqc−1⟩. Identifying the ends gives a link in Z whose
exterior has fundamental group with the presentation

⟨a, b, c, d, q, t | aqa−1 = cqc−1, qaq−1 = b, qcq−1 = d,

tat−1 = c−1, tbt−1 = cd−1c−1⟩.
In this case we may add another copy of Z so that ω = ab−1 bounds a disc. Adding
the relation ab−1 = 1 and then killing the longitudes ℓq = a−1c and ℓa = q−1t−1qt
gives the presentation

⟨a, q, t | tat−1 = a−1, aq = qa, qt = tq⟩.
Hence the resulting 3-manifold is S1 ×Kb.

If instead we give each of the link components a nonzero even framing (so that
we kill q−1t−1qta2k and a−1cq2m) then the resulting group is a semidirect product
Z2⋊AZ, where A =

[ −1 −2k
2m 4km+1

]
. This is the group of a nonorientable Sol3-manifold

MT (A) if km ̸= 0. Taking k = m = 1 gives an example with ρ = 3, w2 = 0 and
u3 = v3 = wuv ̸= 0. (See [4, page 198]. In this reference ρ is the orientation
character, called w here.)

•

.

. →

←

→

←
←

a

b

c

dq .

.

Figure 8. A link for S1 ×Kb and other MT (A)s

8. the nonorientable case

Let A∗ be an MS-algebra with distinguished element w and rank ρ = dimA1.
The Postnikov-Wu identity is now wxy = x2y + xy2 for all x, y ∈ A1. Hence
wx2 = 0 for all x of degree 1. In particular, w3 = 0.

We shall show that A∗ is the F2-cohomology ring of a closed 3-manifold with
orientation character corresponding to w. In our constructions we shall reserve w for
the orientation character. In examples with ρ small Poincaré duality considerations
may imply that some products x2 or xy are 0. This is not a hindrance. However
we should consider the possible values of cubes x3.

If wx = 0 for all x ∈ A1 then w2 = 0, and A∗ may be realized by the connected
sum of S2×̃S1 with an orientable closed 3-manifold. (More generally, if x ∈ A1 is
nonzero and xy = 0 for all y ∈ A1 then it suffices to consider a subalgebra of rank
ρ− 1.) Thus we may assume that w• : A1 → A2 is nontrivial.

We begin by identifying the smallest MS-algebras of interest, which have ρ = 2
or 3 and w• ≠ 0. Since w ̸= 0 there is a basis {w = x1, x2, . . . , xρ} for A1. We shall



THE F2-COHOMOLOGY RINGS OF 3-MANIFOLDS 13

modify the basis elements xi with i > 1 so as to simplify the multiplication scheme.
Let σ be the rank of w• : A1 → A2. Then σ > 0, since w• ≠ 0. If w2 ̸= 0 we may
choose the basis so that {w2, wx2, . . . , wxσ} are linearly independent and wxi = 0
for all i > σ. If w2 = 0 we assume that {wx2, . . . , wxσ+1} are linearly independent
and wxi = 0 for all i > σ + 1.

If wu ̸= 0 then there is a v such that wuv ̸= 0, by nonsingularity. The elements
wu and wv must be linearly independent, since wu2 = 0. If w2 ̸= 0 we may assume
that w2x2 ̸= 0. After replacing xi by xi + w or xi + w + x2, if necessary, we
may assume that w2xi = wx2xi = 0 for all i > 2. If σ > 2 we may assume that
wx3x4 ̸= 0. Further modifications to the basis elements xi with i > 4 then ensure
that wx3xi = wx4xi = 0 for all i > 4. Iterating this process, we see that σ must
be even, and the partial basis {w, x2, . . . , xσ} is partitioned into consecutive pairs
whose triple products with w are nonzero, and are the only such products wxixj .
A similar argument applies if w2 = 0, and σ is again even. In particular, if w• ≠ 0
then ρ > 1. We may also choose the basis elements xi with i > σ so that x2ixj ̸= 0
for at most one j > i, as in the orientable case, but it is not clear that we can do
this in general.

We shall realize these by closed 3-manifolds obtained by surgery on framed links
L ⊂ S2×̃S1. We may assume that such links are disjoint from a standard orientation
reversing loop in S2×̃S1. Let B(L) be the complement of a small open tubular
neighbourhood of this loop in the closed 3-manifold resulting from surgery on L.

Then ∂B(L) ∼= Kb. Let N = S2 \ (∪ki=1Di), where the Di are disjoint small discs
in S2 which are centred on the equator and invariant under θ. Then Y =MT (θ|N )
has boundary ∂Y ∼= ⊔kKb, and we may attach k such 3-manifolds B(L(i)) to Y ,
along the various boundary components. If M is the resulting 3-manifold and we
specify an orientation-reversing curve γw then the generators of H1(M ;F2) apart
from the image of γw may be chosen to be Kronecker dual to the given basis for
the MS-algebra. These arise from loops which lift to the double cover S2 × S1

and have product neighbourhoods. We may then meld in products involving the xi
with wxi = 0 by adding copies of Bo and L2,4, as appropriate, to the existing link
in S2×̃S1.

There are four cases with 1 ⩽ ρ ⩽ 3 that we need consider. If ρ = 1 then w2 = 0,
by nonsingularity. This case is realized by S2×̃S1.

If w2 ̸= 0 then after replacing u = x2 by u+w, if necessary, we may assume that
u3 = 0. This case is realized by S1 × RP2.

If w2 = 0 and ρ = 3 then we may assume that wuv ̸= 0, for some u, v ∈ A1. If
u3 = 0 or v3 = 0 then after replacing v or u by u+ v, if necessary, we may assume
that u3 = v3 = 0, and that u2v ̸= 0. This case is realized by S1 ×Kb.

The other basic case has w2 = 0, ρ = 3 and wuv ̸= 0, and u3 = v3 = (u+v)3 ̸= 0.
This case is realized by the Sol3-manifold MT (

[−1 −2
2 5

]
).

These 3-manifolds shall be our basic building blocks. If Ξ is one of these then
in each case H1(Ξ;F2) has a preferred basis consisting of a “standard” orientation-
reversing loop and the images of meridians for the components of L, and there is a
well-defined “Kronecker dual” basis for H1(Ξ;F2).

9. construction – splicing

In this section we shall show that every (nonorientable) MS-algebra is realized
by some (nonorientable) closed 3-manifold. We begin by “splicing” the examples
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of §8 to realize MS-algebras for which w• is an isomorphism or has kernel ⟨w⟩. To
handle the general case we shall rely on the following simple observation. Let K
be an orientable knot in a 3-manifold M , and let NF be the result of surgery on
K in M with framing F . Let F1, F2 and F3 be mutually transverse closed surfaces
in the knot exterior X =M \K, and let xi ∈ H1(NF ;F2) be the Poincaré dual of
the class of Fi, for i ⩽ 3. Then whether x1x2x3 is 0 or not does not depend on the
framing F determining the surgery, since any intersection of submanifolds in the
exterior X =M \K is unchanged by any (Dehn) surgery on K.

We shall splice links in S2×̃S1 together as follows. Let D and D′ be two small
disjoint discs in the interior of D2 which are invariant under the reflection across
the Y -axis, and let W = D2 \D ∪D′. Then Z = W ×̃S1 ∪ D×̃S1 ∪ D′×̃S1. Let
L and L′ be links with orientation-preserving components in D×̃S1 and D′×̃S1,
respectively. Then L, L′ and L⊔L′ are links in Z, and there are degree-1 collapses
from Ξ(L⊔L′) onto each of Ξ(L) and Ξ(L′). Hence H∗(Ξ(L);F2) and H

∗(Ξ(L);F2)
map injectively to H∗(Ξ(L⊔L′);F2). Since H1(Ξ(L);F2) is generated by the images
of t and the meridians for L it follows that H∗(Ξ(L ⊔ L′);F2) is generated by the
union of the images of H∗(Ξ(L);F2) and H

∗(Ξ(L);F2). Each component of L has
image 0 in H1(D×̃S1;F2), and so bounds a surface in D×̃S1. It follows that the
duals of a meridian from L and one from L′ may be assumed disjoint, and so cup
products of the corresponding basis elements for H1 are 0.

If w• is an isomorphism then w2 ̸= 0 and we may partition {x1 = w, . . . , xσ} into
consecutive pairs {x2i−1, x2i} with wx2i−1x2i ̸= 0 for all i ⩽ 1

2σ and wxjxk = 0

if k > j + 1 or j is even and k > j. (In the latter case we have x2jxk = xjx
2
k,

by the Postnikov-Wu identity.) The pair {w, x2} is realized by S1 × RP2, while
the other pairs are realized by S1 × Kb (if x32i−1 = x32i = 0) or MT (

[−1 −2
2 5

]
) (if

x32i−1 = x32i ̸= 0). Thus we may realize A∗ in this case by assembling copies of the
links of Figures 7 and 8 (with appropriate framings).

A similar argument applies if Ker(w•) = ⟨w⟩. In this case we need just copies of
the link of Figure 8 (with appropriate framings).

In general, let τ = ρ−σ if w2 ̸= 0 and τ = ρ−σ−1 if w2 = 0, and adjoin a trivial
τ -component link in a ball in S2×(0, 1) which is disjoint from the other components.
We must now consider the possibility that xixjxk ̸= 0, where 1 < i ⩽ j ⩽ k. We
may assume that k > i, since the value of x3i is determined by the framing for Li,
and shall write x = xi, y = xj and z = xk for simplicity of notation.

If wxy = wxz = wyz = 0 then x2y = xy2, x2z = xz2 and y2z = yz2, by the
Postnikov-Wu identity, and one of the constructions for the orientable case applies.
However, having chosen the basis so as to normalize the nonzero products wuv,
we may not be able to reduce the number of possibilities for other triple products.
Thus we shall use tangles based on Figures 4 and 5 as well as those of Figures 1
and 3.

If x2y = x2z = y2z = 0 then we use move (b) of Figure 1.
If x2z = y2z = 0 but x2y ̸= 0 then we use a tangle based on the link of Figure

3, with z corresponding to the component which is unlinked from each of the other
components.

If x2y = 0 but x2z = y2z ̸= 0 then we use a tangle based on the link of Figure 4,
with z corresponding to the component which links each of the other components.

If all three of these products are nonzero then we use moves of type (a) as in the
link of Figure 5.
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Thus we may assume that wxy ̸= 0. In particular, x ̸= y. We may also assume
that z ̸= x or y, and so wxz = wyz = 0, by our choice of basis. The Poincaré dual
of w in S2×̃S1 is represented by a fibre S2. It is easily seen that this remains true
after the tangle modifications used below, and so these do not disrupt the values of
wxy, x2y or xy2.

If x2z = y2z = 0 then we use a move (b).
If x2z ̸= 0 and y2z = 0 then we use a tangle based on the link of Figure 3.
If x2z = y2z ̸= 0 then we use move (a) twice.
Finally, we choose the framings of the components lying entirely in S2 × (0, 1)

in accordance with the desired values of the x3i s.

10. the kernel of cup product

If R = Z or is a field of characteristic ̸= 2 then cup product induces homomor-
phisms cRG : ∧2H1(G;R) → H2(G;R). We shall write cG and cpG when R = Z or
Fp, respectively. If G is finitely generated then

Ker(cG) ∼= Hom(I(G)/[G, I(G)],Z).

Similarly, if p is an odd prime then

Ker(cpG)
∼= Hom(G′Xp(G)/[G,G′]Xp(G),Fp).

If p = 2 then cup product induces c2G : ⊙2H
1(G;F2)→ H2(G;F2) with

Ker(c2G)
∼= Hom(X2(G)/[G,X2(G)]X4(G),F2).

In all cases the kernel is determined byG/γ3G = G/[G,G′]. See [2, 3, 8] for proofs of
the above assertions. (In [13] Ker(cG) is said to be isomorphic toHom(G′/[G,G′],Z)
“mod torsion”. In fact I(G)/[G, I(G)] and G′/[G,G′] are commensurable.)

Lemma 3. Let M be an orientable 3-manifold, let π = π1(M) and let F be a field
of characteristic ̸= 2. Then

(1) if β1(π;F ) < 3 then cFπ = 0;
(2) if β1(π;F ) = 3 then cFπ is either 0 or is an isomorphism.
(3) if β1(π;F ) > 3 then Ker(cFπ ) ̸= 0.

Proof. If α ⌣ ξ ̸= 0 for some α, ξ ∈ H1(M ;F ) then α ⌣ ξ ⌣ ω ̸= 0, for some
ω ∈ H1(M ;F ), by the nonsingularity of Poincaré duality. Since α, ξ and ω must
then be linearly independent, β1(M ;F ) ⩾ 3.

Suppose that β1(π;F ) = 3. Then every element of ∧2H1(M ;F ) is a product
v ∧w, for if a ̸= 0 then ax ∧ y + bx ∧ z + cy ∧ z = a−1(ax− cz) ∧ (ay + bz). Hence
if cFπ is not an isomorphism then we may assume that α ⌣ ξ = 0, where {α, ξ, ω}
is a basis for H1(M ;F ). But then {α ∧ ξ, α ∧ ω, ξ ∧ ω} is a basis for ∧2H1(M ;F ),
and α ⌣ ξ ⌣ ω = 0. It follows easily from the nonsingularity of Poincaré duality
that cFπ = 0.

Let β = β1(M ;F ). Then β2(M ;F ) = β also, by Poincaré duality. Hence

dimF Ker(cFπ ) ⩾
(
β
2

)
− β, and so Ker(cFπ ) ̸= 0 if β > 3. □

If π ∼= Z3 then β1(M ;Q) = 3 and cQπ is an isomorphism, while if π ∼= F (3) then
β1(M ;Q) = 3 and cQπ = 0.

The case p = 2 is different. If π ∼= Z/2Z then β1(M ;F2) = 1 and c2π is an
isomorphism. On the other hand, if β = β1(M ;F2) > 1 then dimF Ker(c2π) ⩾(
β+1
2

)
− β > 0, and so Ker(cFπ ) ̸= 0.
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Lemma 1 also has implications for the integral case. If β ⩽ 2 then c must have
image in tH, while if β = 3 then either c has image in tH or it maps ∧1H∗ onto
H/tH.

11. cup product and universal coefficients

Let p be a prime. The image of H1(G;Z) in H1(G;Fp) is canonical, and the
restriction of cpG to this image is the mod-p reduction of cG. However if Gab has
p-torsion this does not fully determine cpG.

We may construct 3-manifold examples illustrating this as follows. Let M =
M(Bo; p) and let π = π1(M). Then πab ∼= (Z/pZ)3 and Xp(π) = π′. Hence cpπ
is injective, by the criterion of [2]. On the other hand, if N = #3L(p, qi) (for
some qi such that (qi, p) = 1) and G = π1(N) ∼= ∗3(Z/pZ) then cpG = 0. Clearly
H∗(M ;Z) ∼= H∗(N ;Z) as rings. Moreover, we may choose the parameters qi so
that ℓM ∼= ℓN . Thus H, γ, D2 and ℓ do not determine the mod-p cohomology ring.

The group Γq with presentation

⟨x, y, z | [x, y] = zq, zx = xz, zy = yz⟩.

is the fundamental group of a Nil3-manifold, and β1(Γq) = 2, so cQΓq
= 0, by Lemma

1. On the other hand, I(Γq) = ζΓq
∼= Z is generated by the image of z. Hence

[Γq, I(Γq)] = 1, but Γ′
q = qI(Γq), as it is generated by the image of zq. Thus if p is

an odd prime which divides q then Γ′
q < Xp(Γq) and c

p
Γq

is injective.

More explicitly, let f and g be the homomorphisms from Γq to Z defined by

f(x) = 1, f(y) = f(z) = 0 and g(y) = 1, g(x) = g(z) = 0, and let fp, gp : Γq → Fp

be their mod-(p) reductions. Then the image of f ∪ g in H2(Γq;Q) is 0, but

fp ∪ gp ̸= 0 [8, Theorem 1], for each p dividing q. Thus f ∪ g generates the torsion

subgroup of H2(Γq;Z) ∼= Z2 ⊕ Z/qZ. In this case cQΓq
= 0, so µ = 0, but cΓq

̸= 0,

cpΓq
̸= 0 and νp ̸= 0.

Let h : Γq → Fp be defined by h(x) = h(y) = 0 and h(z) = 1. Reduction mod-(p)
maps H2(Γq;Z) onto H2(Γq;Fp), and the latter group has basis

{fp ∪ h, gp ∪ h, fp ∪ gp}.
The first two elements are reductions of cohomology classes of infinite order. How-
ever, h does not lift to a homomorphism to Z, and these classes are not cup products
of elements of H1(Γq;Z). Thus we may have Im(c) ⩽ tH, and so cannot treat the
torsion and torsion-free parts separately.
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