18 November, 2007

Some solutions for the game Odds & Evens.
by Richard Cowan.

The game

Players A and B are each dealt k£ cards from a pack containing n = 2r cards,
numbered 1,2, ...,n. Player A chooses a card from those dealt to him; likewise
for player B. They show their choices simultaneously. Player A wins if the sum
of the two cards is odd; B wins if the sum is even.

The case n = 8, k = 3 is discussed on my website, with solution given there.
We give now a solution for other k£ values and for any even n > 2k.
The chance that A wins

Suppose player B’s k-card hand contains x odd cards (and k& — z even cards).
Likewise player A is dealt y odd cards. The probability of this joint event is
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where r = g (1)

The usual conventions that apply to binomial coefficients determine the range of
x and y within the largest possible range, 0 < x,y < k.

Let a(y) be the probability that A plays an even card when dealt a hand com-
prising y odd cards. Also let bi(z) be the probability that B plays an even card
when dealt a hand comprising x odd cards. Obviously ax(0) = b;(0) = 1 and

We can write the value of the game, V}, namely the probability that A wins the
game, as
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A turning point of Vi, with respect to vectors (ax(1),ax(1),...,ax(k — 1)) and
(b (1), b (1), ..., b (k — 1)), can be found, lying in the region where 0 < a;(y) <
1,Vy and 0 < bi(z) < 1,Vz. We find that this turning point is a saddle-point in
the sense of differential calculus — and it is also the minimax saddle-point of the
‘Odds and Evens’ game.

The saddle-point is the unique solution of the following 2k — 2 linear equations
of full rank.

Zpk(x,y)<1—2ak(y)> =0 1<z<k-1 (2)
k—1
Zpk(x,y)<l — 2bk(x)> =0 1<y<k-1. (3)

Since pi(z,y) = pr(y, x), these two systems of equations are identical and so yield
equal solutions for the ag-vector and bg-vector. We focus therefore on just one of
the systems, say (2) — which we rewrite as:

22]%(1’&)%(34) = % — pie(x,0) — pr(z, k), 1<z<k-1. (4

The tables below give the strategies (which are the solutions of (4) and the same
for both players) and the game value Vj, for all k£ < 8.
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2
1 r—2
3| = 1
4 r—+2 l 3(7‘—2)
1(r—1) 2 457‘—13
5 2 11—6r4r2 3(r—3 r—3
r—1 (r—2)(r—1) (r—2)(r—1) r—1
6 749 2(9—5r+12) 1 (r—3)(r+4) 5(r—3)
6(r—1) | 3(r—2)(r—1) 2 3(r—2)(r-1) 6(r—1)
7 3 22— 812 6(17—8r+r2) (r—4)(27—8r+r?) 5(r—4) r—4
r—1 (r=2)(r—1) (r=3)(r—2)(r—1) (r=3)(r—=2)(r—1) (r=2)(r—1) r—1
Elly=1 y =2 y=3 4 y=>5 Yy = y =
] 420 3(20=7r+r?) | 3(104=34r—r2+r3) | 1 | 5(r—4)(18=5r+r?) | (r—4)(r+13) | 7(r—4)
8(r—1) | 4(r—2)(r—1) 8(r—3)(r—2)(r—1) 2 | 8(r=3)(r—=2)(r—1) | 4(r—2)(r—1) | 8(r—1)

Table 1: Values of ay(y) for 2 < k < 8 and relevant y. Here r = n/2.
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(1§(n6_2 ?)
3ord 2n-3(n—2)(n—1)
5 or 6 n(274—225n+85n%—15n°4n?)

2(n—5)(n—4)gn—3)(n§2)(n—14) s
7 or 8 n(13068—13132n+6769n°—1960n°+322n* —28n°+n")
2(n—7)(n—6)(n—5)(n—4)(n—3)(n—2)(n—1)

Table 2: The chance V, that A wins.

It is interesting that V, = Vj,_; when k is even. An insight into why this is so
comes from the ay(-) values when & is even. It turns out that A’s optimal strategy
when k is even can be achieved by ignoring the last card dealt to A — and then
applying the (k — 1)-strategic rules to the other cards. Likewise for B.

For example, consider the situation when &k = 8 and the cards dealt to A have
y =2 (i.e. 20+6E). I assert that he can ignore the 8th card dealt to him. With
probability i the last card will be O leaving a residual of O+6E — and with
probability % it will be E leaving 20-+5E. In the former case, his strategy uses
a7(1) whilst in the latter his play is based on a7(2). Thus, by playing in this
‘ignore-the-last-card” way,
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So we see that the optimal strategy for £ = 8 is achieved by this reduction of
cards to 7. In general, it seems from my computational experience that, when k
is even,

ax(y) = 1 axa(y = 1)+ 7 aca(y). (5)

Therefore, assuming (5) is true, it suffices to solve the problem for k odd; the
even strategy and game-value follows.

Another relationship observed is:

ar(y) =1 — ax(k —y), (6)

true for all k. When k is even, this implies that ax(k/2) = 1. Given that the

case k even has effectively been dealt with, it is the application to the case k odd
which is important. In this context, we also note the following.

2r—k—1
ak(k—l)zm odd k> 1 (7)
C(k=2)@2r—k-1)
ak(]{?—Q)— 2(7”—2)(7“—1) odd k >3 (8)
ap(k —3) = (2r—k _;()ﬁfi;;l(it];x; (_kl—;— Dr+1r?) odd k> 3 ©)
(k= 4)(2r — k= 1)(6 — 3k + k2 — 2(k + 1)r + 2r2)
ar(k —4) = D=3 = —1) odd k > 5.
(10)



Further computations of special cases to k = 19 are consistent with all of these
empirically-observed identities. It does not seem likely, however, that a general
expression for ag(y) will emerge from recognising such patterns. Similarly, a
general form for Vj, will be difficult to find.



