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Summary: Given a realisation of a Markov chain, one can count the numbers of state transitions of
each type. One can ask how many realisations are there with these transition counts and the same initial
state. Whittle (1955) has answered this question, by finding an explicit though complicated formula; he
has also shown that each realisation is equally likely. In the analysis of DNA sequences which comprise
letters from the set {A,C,G,T}, it is often useful to count the frequency of a pattern, say ACGCT, in
a long sequence and compare this with the expected frequency for all sequences having the same start
letter and the same transition counts (or ‘dinucleotide counts’ as they are called in the molecular biology
literature). To date, no exact method exists; this paper rectifies that deficiency.
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1. Introduction

It has been common practice, in the analysis of DNA sequences, to tabulate the frequency of ‘dinucleotides’
in a given sequence (Nussinov (1981), Avery (1987), Bulmer (1987), Gardiner-Garden and Frommer (1987),
Smith et al (1983)). DNA consists of a long chain of four different nucleotides A, G, C and T . The
rules which determine the order of nucleotides are not well understood. They are, however, somewhat
stochastic in nature due to the random genesis and mutation of DNA sequences. A ‘dinucleotide’ is a
pair of consecutive nucleotides, so there are 16 possible dinucleotides. Their observed frequency in a given
sequence is conveniently tabulated in a 4× 4 matrix, M .

M =




nAA nAC nAG nAT

nCA nCC nCG nCT

nGA nGC nGG nGT

nTA nTC nTG nTT




where, for example, nGC is the frequency of the dinucleotide GC. If the sequence is of length n, the
elements of M sum to n− 1.

Calculations of ‘expected frequencies’ of dinucleotides under the ‘4-sided die model’ of DNA are often
made in the molecular biology literature. In this model the sequence is assumed to be generated by n
independent throws of a 4-sided die. The expected frequencies used are those conditional upon the single
nucleotide counts nA, nC , nG and nT . For example, the conditional expected frequency of GC is nG nC/n.

Comparisons in the literature between observed and expected dinucleotide counts have highlighted
many features, for example (in eukaryotic species), markedly lower than expected frequencies of CG, TA
and (to a lesser extent) GT and AT , with elevated frequencies of TG, CT and CA (Nussinov (1981)).
These features have helped to focus research on possible biochemical explanations. As a result, molecular
mechanisms have been proposed for the depression of CG (Bird (1980)), mechanisms which also account
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for the elevation of CA and TG. Usually, comparisons of observed and expected have not been formalised
as rigorous statistical tests, but, because of the very long sequences (and large numbers of sequences), the
simple ad hoc statistic ‘observed/expected’ has been informative. As a result it is now clearly established
that the 4-sided die model is invalid. At least first-order Markov dependency is needed.

Molecular biologists need, on a day-to-day basis, a simple working tool to assess whether the ob-
served/expected statistic of a given pattern, say CTAG, is unusual in some way. By default, the 4-sided
die model is used as null hypothesis to calculate the expectation conditional upon nA, nC , nG and nT .
This is now inappropriate given the state of knowledge on dinucleotide frequencies.

The current paper finds the expected frequency of any nominated pattern of length ≥ 2, given the
starting nucleotide and the matrix M of dinucleotide counts. Thus a useful tool for molecular biology
is provided. In doing so, the paper provides some interesting applications and extensions of Whittle’s
powerful combinatoric formula (Whittle (1955)). The results, whilst presented in the setting of the DNA
problem which motivated them, are applicable to all Markov chain applications.

2. Whittle’s formula and some new arrangements

Let the row-sums of M be denoted by a, c, g and t respectively and the column-sums by a∗, c∗, g∗ and
t∗. A sequence which begins and ends with the same letter has a matrix M with

a− a∗ = c− c∗ = g − g∗ = t− t∗ = 0 (1)

A sequence commencing with one letter, G say, and terminating with another, T say, has

g − g∗ = 1; t− t∗ = −1; a− a∗ = c− c∗ = 0 (2)

M must satisfy either (1) or equations in the generic form of (2). Thus M and the starting letter determine
the end letter (though often M alone suffices).

Whittle (1955) has derived a formula for the number of sequences conforming (i) to the counts given
in M , and (ii) to a start letter (and implied end letter) consistent with M . For example, the number
WGT (M) of sequences commencing with G, terminating with T and having transition counts conforming
to (2), is

WGT (M) = KMHGT (M), where (3)

KM =
a! c! g! t!
∏
i,j

nij!
(4)

and where i and j index the set {A,C,G, T} and HGT (M) is the (4,3)th cofactor (4 for T , 3 for G) of




1− nAA/a −nAC/a −nAG/a −nAT /a
−nCA/c 1− nCC/c −nCG/c −nCT /c
−nGA/g −nGC/g 1− nGG/g −nGT /g
−nTA/t −nTC/t −nTG/t 1− nTT /t


 . (5)

Whittle also covers the case, unlikely with long DNA sequences, where a row-sum is zero; a ratio in (5)
involving such a row-sum is defined as zero. It is also shown by Whittle, that if a Markov chain generates
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the said M from the given start letter, then each of the sequences conforming to M and the start letter
(and implied end letter) are equally likely. It is helpful to simplify HGT (M) by algebraically evaluating
the appropriate cofactor in (5). This yields the formula

HGT (M) =
1

acg

(
AnGC nCT + C nGA nAT + AC nGT + nGA nAC nCT + nGC nCA nAT − nAC nCA nGT

)
(6)

where we adopt the notation A = a− nAA, C = c− nCC , G = g − nGG and T = t− nTT . If a row-sum,
say c, is zero then (6) is still valid with the convention stated above that ratios such as nCA/c are zero
and consequently C/c ≡ 1 − nCC/c = 1. For example, HGT (M) = (nGA nAT + AnGT )/(a g) if c = 0 and
HGT (M) = 0 if g = 0.

Formulae (3) and (5), based on G-to-T sequences, have direct analogies for other start and end letters.
For example, with an A-to-A sequence, WAA(M) = KMHAA(M). Here HAA(M) is the (1,1)th cofactor of
(5) which, upon expansion, yields for a > 0

HAA(M) =
1

cgt
(C G T − C nGT nTG −GnCT nTC − T nCG nGC − nCG nGT nTC − nCT nTG nGC) (7)

with HAA(M) = 0 if a = 0. All other examples can be found by permutation symmetry from either
(6), when ‘start 6= end’, or (7), when ‘start = end’. In (6), the denominator is without the row-sum
corresponding to the end letter. Two examples are:

HCA(M) =
1

cgt
(GnCT nTA + T nCG nGA + GT nCA + nCG nGT nTA + nCT nTG nGA − nGT nTG nCA) .

HGG(M) =
1

act
(AC T − AnCT nTC − C nAT nTA − T nAC nCA − nAC nCT nTA − nAT nTC nCA) . (8)

Incidentally, Cowan (1992) shows that, for an M consistent with sequences that start and end with
the same letter, that is satisfying (1),

HAA(M)

a
=

HCC(M)

c
=

HGG(M)

g
=

HTT (M)

t
.

Thus the apparent difference between the bracketed terms in (7) and (8) is non-existent.

3. Expected pattern frequency

Suppose that our interest focuses on the expected frequency of a certain pattern π, say π = CTTGCTA
or π = GAGA, amongst the equally-likely sequences which conform to a given M matrix and start letter
denoted by S ∈ {A,C, G, T}. The frequency, nπ say, includes separate counting of overlapping occurrences;
for example, π = GAGA occurs 3 times in CGAGATGAGAGAC at positions 2, 7 and 9. (We say that π
occurs at position k if it starts at k.)

Let ` be the length of π. Clearly nπ =
n−`+1∑
k=1

Ik(π), where Ik(π), (k = 1, 2, · · · , n− ` + 1), is defined by

Ik(π) = 1 if π appears at position k; Ik(π) = 0 otherwise. Thus

E(nπ|M,S) =
n−`+1∑

k=1

EIk(π) =
n−`+1∑

k=1

P
{
Ik(π) = 1

}
. (9)
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Also,

P
{
Ik(π) = 1

}
=

# conforming sequences with π at position k

total # conforming sequences
. (10)

For definiteness, suppose that the sequences must start with G and end with T . Thus the denominator
of (10), and hence of each term in (9), is WGT (M). The numerator of (10), which we denote by β(k, M, π),
is more difficult to evaluate. There is, however, an equivalent combinational entity that is amenable to
analysis. We illustrate with π = CTTGCTA. In Figure 1(a), π is placed at position k.

(a) G . . . . . . . . . . . . . . . C←−−−−−−k−−−−−−→TTGCTA . . . . . . . . . . . . . . . T←−−−n−`−k+2−−−→
(b) G . . . . . . . . . . . . . . . CA . . . . . . . . . . . . . . . T←−−−−−−k−−−−−−→←−−−n−`−k+2−−−→
Figure 1: Equivalent combinations in 2 distinct problems.

Let α be the dinucleotide formed from the first and last letters of π; for example, α = CA. For every
sequence like 1(a), one can write a sequence such as 1(b), without the central letters of π, having α at
position k. It is clear that the number of sequences, like 1(a), conforming to M and having π at position
k, equals the number of sequences like 1(b), conforming to the matrix M(CTTGCTA) given below and
having α at position k.

M(CTTGCTA) =




nAA nAC nAG nAT

nCA + 1 nCC nCG nCT − 2
nGA nGC − 1 nGG nGT

nTA − 1 nTC nTG − 1 nTT − 1


 .

In general, M(π) is a variant of M depleted by the dinucleotides in π and supplemented by a ‘one’
added to nα, the count of α. Thus β(k, M, π) equals β(k, M(π), α). Therefore, from (9),

E(nπ|M, G) =

n−`+1∑
k=1

β(k,M, π)

WGT (M)
=

n−`+1∑
k=1

β(k, M(π), α)

WGT (M)
. (11)

It is equally clear, from Figure 1(b), that
n−`+1∑
k=1

β(k, M(π), α)/WGT (M(π)) is the expected number of CA’s

in the G-to-T sequences which conform to M(π). This expected number is known; it is the entry for CA
in M(π), namely nCA + 1− nCA(π), where nCA(π) is the number of CA dinucleotides in π. Therefore, in
general,

n−`+1∑

k=1

β
(
k, M(π), α

)
= (nα + 1− nα(π))WGT (M(π))

for our illustrative case of G-to-T sequences. From (11), we have the final result, expressed in the following
theorem.

Theorem: Let S, F be letters in the ‘nucleotide set’ X = {A,C, G, T} and M be a matrix of ‘dinu-
cleotide counts’ consistent with sequences that start with S and end with F . Let π be a sequence of letters
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from X of length ≥ 2 and let α be the dinucleotide formed from the first and last letters of π. Let nα be
the count of α dinucleotides in the matrix M and nα(π) be the said count in π. If all S-to-F sequences
consistent with M are equally likely, and if nπ is the number of occurrences of π in a randomly chosen
such sequence, then

E(nπ|M, S) =
(nα + 1− nα(π))WSF (M(π))

WSF (M)
,

where M(π) is a variant of M depleted by the dinucleotides in π and supplemented by a ‘one’ added to nα.
It takes little imagination to see that this theorem holds for a general finite set X . So our result is
relevant to the general theory of Markov chains. Also, when M determines the start letter S, E(nπ|M) is
a sufficient notation (see example below).

4. An example

What is the expected frequency of π = CGAAATGCT in G-to-T sequences consistent with the M shown
below? The matrix M(π) is also shown and α = CT .

M =




6 3 8 10
2 5 5 7
11 4 6 4
8 7 5 3




a = 27
c = 19
g = 25
t = 23

M(π) =




4 3 8 9
2 5 4 7
10 3 6 4
8 7 4 3




Firstly, let us find WGT (M) from (3), (4) and (6). We can calculate that HGT (M) = 7/25 and
KM = 2163135675116135174194233, so WGT (M) is their product. Similarly
HGT (M(π)) = 1435/4968 and KM(π) = 2163105675117134174193232. Also nα = 7 and nα(π) = 1, so
E(nCGAAATGCT |M) = 394625/762026616 = 0.000517862.

Using the same M , what is E(nπ|M) if π = GAT? Now HGT (M(π)) = 1736/6175 and KM(π) =
2173105675117135174194233. Also nα ≡ nGT = 4 and nα(π) = 0, so E(nGAT |M) = 27280/6669 = 4.09057.

Further examples can be found in Gardiner-Garden and Frommer (1987). In general one finds that, for
larger nij values, KM and KM(π) are not easy to calculate individually but their ratio causes no difficulties
due to the cancellation of most factoral terms. Also HSF (M(π))/HSF (M) tends to one as n gets larger
for fixed π, providing further simplification.

5. Discussion

We have provided a simple, exact formula for expected pattern frequencies in sequences that conform to
given transition (dinucleotide) counts. The formula can be evaluated using a pocket calculator.

The formula is somewhat more complicated then one might at first expect, due to the subtlety of
Whittle’s formula. The KM -part of his formula is deceptively simple. The 16 possible dinucleotides can be
divided into 4 classes depending on the first of the two letters involved. Each class can be further subdivided
into 4. Within a given class, say dinucleotides commencing with G, there are g!/(nGA!nGC !nGG!nGT !)
distinct orderings of the class members. KM is the product of such terms and so is the total number of
distinct orderings of all 4 classes. For every conforming sequence, there corresponds one ordering of the 4
classes and this ordering conversely determines the sequences. Some orderings do not, however, correspond
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to a full-length conforming sequence; they terminate prematurely with the unused dinucleotides being of
the wrong class to continue the sequence. The H-term in Whittle’s formula gives the proportion of the
4-class orderings which successfully produce a full-length sequence.

We consider that the conditional expectation, E(nπ|M,S) is the appropriate entity to use when com-
paring ‘observed’ with ‘expected’. Furthermore this is consistent with the approach currently used in
molecular biology when the 4-sided die model of DNA is employed. Under a Markov Chain model of
DNA, with the further assumption of stationarity, the unconditional expectation of pattern frequency for
a π such as CGAAATGCT is Enπ = (n− ` + 1)pCpCGpGAp2

AApAT pTGpGCpCT , where pij is the transition
probability from letter i to letter j and pC is the equilibrium probability of letter C. Avery (1987) has used
these unconditional expectations in his study of intron sequences, after estimating the various p-terms. In
effect, he uses an estimated, unconditional expectation which we denote as Ênπ. He estimates a transition
probability, say pGA, by p̂GA = nGA/(nGA +nGC +nGG +nGT ), which is the maximum likelihood estimator
based on the conditional likelihood given the start letter S. (It remains valid even if stationarity is not
assumed.) Avery estimates equilibrium probabilities such as pC by p̃C = nC/n, this being a moment esti-
mator under the assumption of stationarity. The estimator p̃C is not strictly compatible with estimators
such as p̂GA; the compatible estimator of pC comes from the solution of a set of linear equations involving
the estimators such as p̂GA. (Alternatively, one could derive a compatible set of estimators for all transition
and equilibrium probabilities by maximising the unconditional likelihood under a stationary Markov chain
model.)

As n → ∞ with π fixed, Avery’s Ênπ and our E(nπ|M, S) become equal for a number of reasons:
(a) his estimates for the p- terms converge to the true values; (b) the incompatibility mentioned above
disappears; (c) the distinction between our conditional expectation and Avery’s unconditional expectation
diminishes; (d) the effects of any transient phase on the validity of Avery’s formula, itself dependent on a
stationarity assumption, become negligible.

In short, one would expect Avery’s approach to give a good approximation to ours for n relatively
large compared with `, the length of π. We conclude by presenting Avery’s method applied to our earlier
examples. We find that ÊnGAT = (95− 2)25

95
· 11

25
· 10

27
= 3.988 whilst by a similar method ÊnCGAAATGCT =

0.0005048.
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