The notion of a measure

Q0 (Exercise 0.1)

Show that the three reasonable properties for a measure are inconsistent in \mathbb{R}^n .

Q1 (Exercise 1.2)

Show that an algebra (resp. σ -algebra) is closed under finite (resp. countable) intersections.

- Q2 (Exercise 1.5)
 - (1) If Σ is a σ -algebra on S, then $S \in \Sigma$ and $\emptyset \in \Sigma$.
 - (2) If a function $\mu \colon \Sigma \to [0, \infty]$ is countably additive and $\mu(A) \in [0, \infty)$ for all $A \in \Sigma$, then $\mu(\emptyset) = 0$.
- Q3 (Exercise 1.7)

Show that Dirac measure, "All or nothing" measure and counting measure are measures on $\mathcal{P}(S)$.

- Q4 (Exercise 1.9)
 - (1) The extended reals, \mathbb{R}^* , with the given topology are a compact topological space.
 - (2) There is a metric d^* on \mathbb{R}^* such that
 - (a) $A \subset \mathbb{R}^*$ is open if and only if A is open with respect to d^* ,
 - (b) $a_k \to a \in \mathbb{R}^*$ if and only if $d^*(a_k, a) \to 0$.
- Q5 (Exercise 1.11)
 - (1) The intersection of any family of σ -algebras on set S is a σ -algebra on S.
 - (2) If $E \subset \Sigma(F)$, then $\Sigma(E) \subset \Sigma(F)$.
- Q6 (Exercise 1.24)

Let λ be an outer measure on $\mathcal{P}(S)$, Σ be the σ -algebra of all λ -measurable sets, $\mu = \lambda|_{\Sigma}$, and let λ^* be the outer measure induced by μ .

- (a) If $A \subseteq S$, $\lambda(A) \leq \lambda^*(A)$. Moreover, equality holds if and only if there is $E \in \Sigma$ such that $A \subseteq E$ and $\lambda(A) = \lambda(E)$.
- (b) If λ is induced from a pre-measure, then $\lambda = \lambda^*$.
- Q7 (Exercise 1.25)

Let (S, Σ, μ) be a measure space and λ be the outer measure induced by μ . Denote Σ^* the σ -algebra of all λ -measurable sets and $\mu^* = \lambda|_{\Sigma^*}$.

Show that if μ is σ -finite, then (S, Σ^*, μ^*) is the completion of (S, Σ, μ) .

(In general, (S, Σ^*, μ^*) is the saturation of the completion of (S, Σ, μ) ; you can look up the definitions and do this exercise as well, if you must.)

- Q8 Consider $(\mathbb{R}, \mathcal{B}(\mathbb{R}), m)$, where m is Lebesgue measure.
 - (a) Show that for each $x \in \mathbb{R}$, $m(\{x\}) = 0$.
 - (b) Conclude that m([a,b]) = m((a,b)) = m([a,b]) = m((a,b]) = b-a for all $a,b \in \mathbb{R}$.
 - (c) Show that if A is a countable subset of \mathbb{R} , then m(A) = 0.
- Q9 Variations on the Cantor construction based on the interval [0, 1].
 - (a) Show that if one iteratively removes the open middle tenth (first from [0, 1], then from $[0, \frac{9}{20}]$ and $[\frac{11}{20}, 1]$, etc.), one obtains a Lebesgue measurable set of measure 0, which is not contained in the Borel σ -algebra.
 - (b) Show that if one instead iteratively removes the open middle $\frac{1}{10^k}$ th at step k (first the open middle tenth from [0, 1], then the open middle hundredth from $[0, \frac{9}{20}]$ and $[\frac{11}{20}, 1]$, etc.), one obtains a Lebesgue measurable set of positive measure, which is not contained in the Borel σ -algebra.
- Q10 This questions rounds off the discussion of the constructive characterisation of σ algebras generated by subsets.
 - (a) Let Σ be an infinite σ -algebra. Show that Σ contains an infinite sequence of pairwise disjoint sets, and that $\operatorname{card}(\Sigma) \geq \operatorname{card}(\mathbb{R})$.
 - (b) Let S be a set and $\mathcal{E} \subset \mathcal{P}(S)$. Show that if $\operatorname{card}(\mathbb{N}) \leq \operatorname{card}(\mathcal{E}) \leq \operatorname{card}(\mathbb{R})$, then $\operatorname{card}(\Sigma(\mathcal{E})) = \operatorname{card}(\mathbb{R})$.
- Q11 Let m be Lebesgue measure on \mathbb{R}^n , and suppose $A, B \subseteq \mathbb{R}^n$ are Lebesgue measurable.
 - (a) Suppose $d(A, B) = \inf\{d(x, y) \mid x \in A, y \in B\} > 0$. Show that $m(A \cup B) = m(A) + m(B)$.
 - (b) Suppose $A \cap B = \emptyset$. Given an example where d(A, B) = 0 and $m(A \cup B) = m(A) + m(B)$.
 - (c) Give an example, where $A \cap B \neq \emptyset$ and $m(A \cup B) = m(A) + m(B)$.
- Q12 Let m^* be the outer measure induced by Lebesgue measure on $\mathcal{P}(\mathbb{R}^n)$. Show that $m^*(S^{n-1}) = 0$. What is the outer measure of the set $\{(x_1, x_2, \dots, x_n) \mid \max\{x_k\} = 1\}$?