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Introduction

These lecture notes are based on the course “Algebraic knot theory” delivered at the Aus-
tralian Mathematical Sciences Institute Summer School in January 2025, which consisted
of a series of twenty lectures, supported by eight hours of problem-solving tutorials.

We present an algebraic perspective on quantum topology, more specifically, on uni-

versal quantum invariants of knots and related structures. This perspective is informed by
the rational homotopy theory idea of formality. It explains developments in mathematical
physics, Lie theory and quantum algebra, where solutions to independently important
sets of equations (pentagon and hexagon equations, Kashiwara–Vergne equations) are
shown to be equivalent to universal quantum invariants of various generalisations of
knots.

History

In the 1990’s, four Fields medals were awarded for results which later came to form the
foundations of quantum topology:

• to Vladimir Drinfeld in 1990, for foundational work establishing structures called
quantum groups and their properties;

• to Vaughan Jones in 1990, for the discovery of the Jones polynomial, an algebraic
tool which helps distinguish knots from each other;

• to Edward Witten in 1990, for physical insight leading to new mathematical results,
particularly in topology;

• to Maxim Kontsevich in 1998, for his discovery of the universal quantum invariant
of knots.

It is noteworthy that none of these mathematicians worked primarily in knot theory,
or topology: Drinfeld’s primary interests lie in algebra and algebraic number theory;
Jones was an analyst working on von Neumann algebras; Witten is a theoretical physicist;
and Kontsevich is known primarily for his contributions in mathematical physics and
geometry.

Over the following years in became clear that all of these groundbreaking results are
deeply related to each other. Through this course you will learn how Kontsevich’s and
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Drinfeld’s work accomplishes the same goals via very different routes: Tamarkin, Bar-
Natan and Fresse showed that universal quantum invariants of knots are in one-to-one
correspondence with Drinfeld associators.

In fact, this phenomenon fits into a general pattern where universal quantum invari-
ants of topological objects – or, in this course, formality maps – are in one-to-one corre-
spondence with solutions to sets of equations in graded algebras. These sets of equations
in key examples turn out to be of independent interest in Lie theory, quantum algebra
of mathematical physics. The pentagon and hexagon equations which define Drinfeld
associators is one such example.

This correspondence works best when the topological objects in question form a
finitely presented algebraic structure. In this case the phenomenon fits into a general alge-
braic framework which illuminates the commonalities among the different examples.

Outline

This course approaches the subject of universal quantum invariants from this algebraic
perspective: starting in Chapter 1 with a discussion of different algebraic structures, and
finite presentations. In Chapter 2 we introduce knots and tangles as examples of al-
gebraic structures and discuss whether they are finitely presented. (Spoiler: knots are
not!) In Chapter 3 we move on to introduce the key algebraic ideas required: gradings,
filtrations, and the associated graded functor. We discuss the key example of the Vas-
siliev filtration on the linearly extended space of knots, and its associated graded algebra.
Chapter 4 introduce formality maps: the algebraic definition of a universal quantum in-
variant. Chapter 5 defines and proves the key properties of Kontsevich’s univeral quan-
tum invariant: this is of a different mathematical flavour than the other chapters, using
primarily analysis rather than algebra. In Chapter 6, we translate Kontsevich’s work to
the algebraic setting of this course, and in the process discover Drinfeld associators.
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Chapter 1

Algebra

1.1 Algebraic Structures

In your first abstract and linear algebra courses you encounter a variety of algebraic
structures: vector spaces, fields, groups, rings, and possibly more. All of these structures
follow a general pattern: a set or multiple sets, with one or more operations on these
sets, satisfying some axioms. Recall the definition of a group:

Definition 1.1.1. A group is a non-empty set G together with a binary operation – that is,
a function · : G ⇥ G ! G – called the group multiplication, satisfying the axioms:

• Associativity: For all a, b and c 2 G, (a · b) · c = a · (b · c).

• Identity: There exists an element e 2 G such that for every a 2 G, e · a = a and
a · e = a.

• Invertibility: For each a 2 G, there exists an element a
�1 2 G such that a · a

�1 = e.

On first glance, a group is a set with one operation: the group multiplication. The
first axiom, associativity, is convenient to write as a commutative diagram:

G ⇥ G ⇥ G G ⇥ G

G ⇥ G G

id⇥·

·⇥id ·

·

Algebraists love commutative diagrams, as they are a clean, visual way to represent
equality between different formulas. The second and third axioms, however, are logically
much more complex, as they involve existential quantifiers: there exists an element 1 2

G... Is there a way to express such an existential statement as a commutative diagram?
In order to do that, we need to change how we think of this axiom, and in fact, the
operations in a group. Instead of saying there exists an identity element, we could say
there is an additional operation 1 : {⇤} ! G, satisfying:

• Identity: For all a 2 G, 1(⇤) · a = a and a · 1(⇤) = a.

In other words, the map 1 sends the element ⇤ of the one-element set to the group identity
e from the previous version of the axiom. This can now be written as a commutative
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diagram:

G ⇥ {⇤} G ⇥ G {⇤}⇥ G

G

id⇥1

⇠=
·

1⇥id

⇠=

Here the isomorphism G ⇥ {⇤} ! G is given by (g, ⇤) 7! g, and similarly on the other
side (⇤, g) 7! g.

We can do the same for the invertibility axiom, by introducing an inverse operation

( )�1 : G ! G, which satisfies

• Invertibility: For all a 2 G, a · a
�1 = 1(⇤) and a

�1 · a = 1(⇤).

Exercise 1.1.1. Write the inverse axiom as a commutative diagram.

In this style of thinking, a group can be illustrated as two sets, G and {⇤}, with
operations drawn as arrows indicating the number of inputs, as in Figure 1.

·

G

{⇤}

( )�1

e

Figure 1: A schematic sketch of a group, with the arrows showing the
operations.

A group is called abelian or commutative if, on top of the previous three axioms, there
is an additional axiom:

• Commutativity: For each a, b 2 G, ab = ba.

Exercise 1.1.2. Write the commutativity axiom as a commutative diagram.

Example 1.1.1. The following are some examples of groups that you would have en-
countered in a first abstract algebra course. For each of these examples, write down the
identity and inverse maps.

1. The integers, Z, under addition form a group.
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2. The integers modulo n, Zn, under addition modulo n form a group. This is iso-
morphic to the quotient group Z/nZ.

3. The rotational and reflectional symmetries of a regular n-gon forms a group under
composition, denoted Dn.

4. The set of non-zero complex numbers C r {0} forms a group under multiplication.

5. The set of bijective funtions f : {1, · · · , n} ! {1, · · · , n}, that is, permutations of
size n, forms a group under composition. This is known as the symmetric group
and denoted Sn.

This course is ultimately about knot theory, so we take the opportunity here to intro-
duce our first knotted structure, the braid group.

Definition 1.1.2. A braid on n strands – as in Figure 2 – is an embedding (injective map)
of n intervals into the unit cube, connecting a set of n collinear marked points on the
bottom face to n collinear endpoints directly above on the top face, satisfying:

• Each interval starts at a marked point on the bottom face, and ends at a marked
point on the top face.

• The strands are strictly ascending (monotone increasing functions with respect to
height in the cube).

Figure 2: A braid on n = 3 strands.

Two braids are equivalent or isotopic if one can be continuously deformed into the
other without passing the strands (intervals) through each other, such as the two braids
in Figure 3. (We will learn the formal definition of isotopy later.)

If two braids have the same number of strands, we can stack them vertically, then
vertically compress the stack of cubes into a single unit cube, as shown in Figure 4.
This operation produces a new braid, is associative, and has corresponding identity and
inverse operations, so it makes the set of n-strand braids into a group:

Example 1.1.2. The braid group Bn on n strands is the group of equivalence classes of n-
strand braids, the operation given by vertical stacking followed by vertical compression,
called composition (see Fig. 4).
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Exercise 1.1.3. Sketch a proof that equivalence classes n-strand braids form a group under
the stacking composition:

(a) Sketch a proof that the stacking composition is associative (up to braid equivalence).

(b) What is the identity braid with respect to the stacking composition? What is the
inverse of a given braid? Justify why your proposed identity and inverse satisfy the
corresponding axioms.

(c) For which n is Bn commutative?

Figure 3: Two equivalent braids, as one can be deformed into the other
without passing strands through each other.

Figure 4: The composition operation is given by vertical stacking, fol-
lowed by vertical compression.

From now on we refer to elements of the braid group as braids, rather than equiva-
lence classes of braids. In figures we will no longer draw the boxes.

There is an important group homomorphism p : Bn ! Sn, which sends a braid to the
permutation it induces on the set {1, . . . , n}. Namely, for a braid b, number the bottom
endpoints and top endpoints from left to right. Then p(b) is the permutation which
maps each bottom point to the top end of its braid strand.

Exercise 1.1.4. (a) What is p(b) for the braid b in Figure 2? What is the order of p(b)?
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(b) Prove that p is a homomorphism, and find its kernel. The kernel of this homomor-
phism is a subgroup of Bn called the pure braid group, denoted PBn.

(c) Let b be the braid in Figure 2. What is the order of the element b? What is the
order of the group B3?

Exercise 1.1.5. Does any element of Bn other than the identity have a finite order?

Another algebraic structure you have likely encountered – perhaps in a linear algebra
course even before you knew about groups – is a field. A field structure consits of two
abelian group structures “stuck together”:

Definition 1.1.3. A field is a set F with operations + and ·, such that (F,+) is an abelian
group with additive identity 0 and additive inverse denoted by �; and (F r {0}, ·) is an
abelian group with multiplicative identity 1 and inverse denoted ( )�1. In addition to
the abelian group axioms for + and ·, these operations must satisfy:

• Distributivity: For all x, y and z in F, x(y + z) = xy + xz.

Distributivity is very important here: if the two group structures had nothing to do
with each other, fields would be far less interesting, and far less useful. Distributivity
describes how the two structures interact in a way that encodes phenomena that occur
all over mathematics. The field structure is illustrated in Figure 5

Example 1.1.3. Common examples of fields include Q, R, C, Zp, and their field exten-
tions, such as Q[

p
2].

·

{⇤}

( )�1

�

+

1
0

Figure 5: A schematic of the field structure.

A vector space adds another layer of complexity as it involves structures on multiple
sets:

Definition 1.1.4. A vector space over a field F is an abelian group (V,+) along a map
· : F ⇥ V ! V, called scalar multiplication, such that in addition to the field and abelian
group axioms, the following properties are satisfied:
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• Distributivity: For all l and µ in F, and all v, w in V, (l + µ)v = lv + µv and
l(v + w) = lv + lw

• Compatibility of scalar and field multiplications: (lµ)v = l(µv).

• Compatibility with Identity: For all v in V and the multiplicative identity 1 2 F,
1v = v.

Exercise 1.1.6. Draw a schematic picture illustrating the structure of a vector space.

Other examples of algebraic structures you may have encountered are monoids (like
groups but without inverses), rings (like fields but without multiplicative inverses, and
not necessarily commutative multiplication), and algebras (vector spaces which are also
a rings in a compatible way). If you have taken abstract algebra courses, you will have
noticed that a seemingly small difference, like ommitting the multiplicative inverse re-
quirement to obtain a ring from a field, can lead to dramatic differences in how the
structures behave. We review the definitions of these structures as they will play a role
in the topology we study later.

Definition 1.1.5. A monoid is a set M, such that there is a map · : M ⇥ M ! M, and a
map 1 : ⇤ ! M satisfying the follwing axioms:

• Associativity: For all a, b and c in M, (a · b) · c = a · (b · c)

• Identity: For all m 2 M, 1(⇤) · m = m and m · 1(⇤) = m.

Definition 1.1.6. A ring is a set R such that (R,+) is an abelian group, (R, ·) is a monoid,
and in addition to the abelian group and monoid axioms, the Distributivity axiom holds:

• Distributivity: For all a, b and c in R, a · (b + c) = a · b + a · c and (b + c) · a =
b · a + c · a.

Definition 1.1.7. An algebra over a field F is a vector space A over F with scalar multipli-
cation · : F ⇥ A ! A, and an additional algebra product ⇤ : A ⇥ A ! A such that (A,+, ⇤)
is a ring, and the product ⇤ is bilinear.

Exercise 1.1.7. The bilinearity requirement for the algebra product ensures that the ring
structure and the vector space structure on A interact well, rather than forming two
separate structures. Write down the bilinearity requirement as a formula.

Matrices with elements in F, with scalar multiplication and matrix multiplication are
a prominent example of an algebra. Polynomials with scalar and polynomial multipli-
cation are another. One example which will become an important prototype for the
structures we study in this course is an algebra constructed from an arbitrary group,
called the group algebra:

Definition 1.1.8. Given a group G and a field F the group algebra FG of G over F, as
a vector space, is given by formal linear combinations of elements of G: that is, the
vector space with basis G. The algebra multiplication given by the bilinear extension of
multiplication in G.
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Example 1.1.4. The following are elements of the group algebra of QS3:

4
3
(123)�

2
3
(12)

and
(23) +

1
2

id .

Multiplying them gives
✓

4
3
(123)�

2
3
(12)

◆✓
(23) +

1
2

id
◆
=

4
3
(123)(23)�

2
3
(12)(23) +

2
3
(123)�

1
3
(12)

=
4
3
(12)�

2
3
(123) +

2
3
(123)�

1
3
(12)

= (12).

Exercise 1.1.8. Is it true that if a and b in QB3, then (a � b)(a + b) = a2 � b2? What
about in QB2?

1.2 Generators and Relations

So far we’ve seen a variety of different algebraic structures. In many examples, one can
describe the structure by pointing to an “atomic” set of elements, which are building
blocks for all of the other elements, along with a set of rules which the products or
combinations of atomic elements follow. This section formalises this idea: the building
blocks are called generators, and the rules are called relations. We introduce these concepts
in the context of groups, but the same principles apply to all of the algebraic structures
we have seen.

Definition 1.2.1. If G is a group, and S is a subset of G, then the subgroup generated by S

is the set of all elements of G which can be obtained as finite products of elements of S

and their inverses. We denote this subset by hSi, or simply list the elements of S inside
of angle brackets, for example hx, yi.

Exercise 1.2.1. Show that hSi is indeed a subgroup of G, and that it is the smallest
subgroup which includes S.

Definition 1.2.2. If hSi = G, then we say that S generates G, or that S is a generating set

for G. The elements of S are called the generators. We say G is finitely generated if there
exists a finite set which generates it.

Example 1.2.1. Recall that Dn is the set of symmetries of a regular n-gon. Dn is generated
by the elements r and t, where r is a rotation by 2p/n and t is any reflectional symmetry
of the n-gon, of which there are n to choose from.
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r

t

Definition 1.2.3. A relation (between generators of G) is an equality which they satisfy in
G.

Exercise 1.2.2. Prove that in Dn, the following relations hold:

rn = 1 t
2 = 1 rt = tr�1

There are only three equations listed above, but these are certainly not all the equa-
tions in Dn. For instance, t = t

�1 and rn+1
t
�1 = t

101r�1, and many more, can be deduced
from the three relations above. In fact, any equality satisfied by the generators r and t

can be deduced from the these three relations! This gives a complete description of Dn as
the group generated by two elements – r and t – subject to the three rules which describe
how products of these two generators work in the group. Such a description is called a
presentation. This is an informal definition: to formally define group presentations, one
needs to delve into the notion of free groups. For our purposes, this will suffice:

Definition 1.2.4. A presentation for a group G is a generating set S along with a set of
relations R between elements of S, which imply all true equalities in G. When S and R

form a presentation for G, we write

G = hS | Ri or G = hs1, s2, · · · | r1, r2, · · · i.

If S and R are finite sets, we say that G is finitely presented.

A presentation is a convenient way of specifying a group – or other algebraic struc-
ture, as we will see later in the course. For instance,

H = ha, b | a
n = 1, b

2 = 1, ab = ba
�1

i

means that the group H is generated by a and b, subject to the three relations (and any
further relations implied by these). In other words, the elements of H are products of the
letters a and b and their inverses, and we can manipulate these products using the three
relations.

However, a presentation not a unique way to describe a group: the same group can
have many different presentations. For example, the relations in the definition of H

above, are the same equations that we saw Dn satisfied, just with r renamed to a and t
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renamed to b. This should make us strongly suspect that G is isomorphic to Dn. Unfor-
tunately, it’s not always easy to tell when two presentations represent isomorphic groups
(from the perspective of group theory, essentially the same). For example,

ha, b | aba
�1 = b

2, bab
�1 = a

2
i

is a fancy presentation of the trivial group! In general, the problem of deciding whether
two groups given by finite presentations are isomorphic – called the group isomorphism

problem – is undecidable, meaning there is no possible computer algorithm that could give
a yes/no answer in finite time. It’s also undecidable to determine whether an arbitrary
finite presentation gives an abelian group, or the trivial group.

Another famous problem in this area is known as the word problem, which asks
whether two words (products) made up of the generators and their inverses are equal in
a finitely presented group. This is also undecidable in general, though it is decidable for
many specific groups.

Exercise 1.2.3. Prove that the word problem is decidable in

G = hr, t | rn = 1, t
2 = 1, rt = tr�1

i.

That is, construct an algorithm which can decide whether two arbitrary words in r and t

(and their inverses) are equal in G.

If we’re to look for isomorphisms between finitely presented groups, we’d better be
able to construct homomorphisms. This depends on the following critical observation:

Observation 1.2.1. To define a homomorphism f from a group defined by a presentation
G = hS | Ri into another group H, it’s enough to specify where the generators are
mapped. The rest is determined by the multiplicativity of f, as every element g of G can
be written in terms of elements of S and their inverses. For example, if g = s

5
1s2s

�3
1 , then

f(g) = f(s1)5 · f(s2) · f(s1)�1.
However, we cannot freely “make up” a homomorphism by arbitrarily choosing the

images of the generators: these images must respect the relations! For example if s
5
1s2 = 1

is a relation in R, then we need f(s1)5 · f(s2) = 1H to be true in H, as f(1G) = 1H for any
group homomorphism. However, since the relations in R imply all equalities between
elements of G, it is sufficient for the f-images of the generators to satisfy these relations.

This train of thought is summarised by the following theorem, a cornerstone of this
course:

Theorem 1.2.1 (Von Dyck’s Theorem). Given a group presentation G = hS | Ri and a group

H, a group homomorphism f : H ! G is determined by the values f(si) for si 2 S. Furthermore,

f is a group homomorphism if and only if f(si) satisfy the equations f(ri) in H, for all relations

ri 2 R.

Exercise 1.2.4. Using Von Dyck’s theorem, prove that there is a group isomorphism be-
tween

H = ha, b | a
n = 1, b

2 = 1, ab = ba
�1

i
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and
G = hr, t | rn = 1, t

2 = 1, rt = tr�1
i.

Exercise 1.2.5. Using Von Dyck’s Theorem, construct a group F with a surjective but not
injective homomorphism f : F ! G, with G as above.

Exercise 1.2.6. We stated without proof that the finite presentation

G = hr, t | rn = 1, t
2 = 1, rt = tr�1

i.

is in fact a finite presentation of Dn, the group of symmetries of a regular n-gon. Prove
this theorem, i.e., prove that G ⇠= Dn.
Hint: Exercise 1.2.3 might help.

Example 1.2.2. Let’s count how many homomorphisms there are from D6 to Z12. Before
you read on, try to count them yourself!

Note that D6 is a multiplicative group, while Z12 is written additively. So, the defining
property of a group homomorphism f : D6 ! Z12 is that for all x, y 2 D6, we have
f(xy) = f(x) + f(y).

By Exercise 1.2.6, we know that D6 = hr, t | r6 = 1, t
2 = 1, rt = tr�1i. By Von Dyck’s

Theorem, this means that homomorphisms f are given by solutions (f(r), f(t)) in Z12
of the system of equations

{6f(r) = 0, 2f(t) = 0, f(r) + f(t) = f(t)� f(r)}.

Notice that the last equation simplifies to 2f(r) = 0, which also implies 6f(r) = 0. So,
the set of three equations above is equivalent to

{2f(r) = 0, 2f(t) = 0}

The following famous theorem – which we take on faith here – is due to Artin:

Theorem 1.2.2. The braid group, Bn has a finite presentation

Bn =

⌧
s1, s2, · · · , sn�1

����
sisjsi = sjsisj if j = i ± 1

sisj = sjsi if |j � i| > 1

�
,

where

1

si =

i i+1 n .

Proving that this is a presentation for Bn includes proving that the relations in this
presentation, as shown below, are equivalent to ambient isotopy.
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=

(a) sisi+1si = si+1sisi+1

=

(b) sisj = sjsi

Exercise 1.2.7. How many relations are there in B4? How about Bn?

There is a presentation for the symmetric group, which demonstrates how it is a
quotient of the braid group:

Theorem 1.2.3. The following is a finite presentation of the symmetric group:

Sn =

*
s1, s2, · · · , sn�1

������

sisjsi = sjsisj if j = i ± 1
sisj = sjsi if |j � i| > 1

s
2
i
= 1 for all i

+
,

Example 1.2.3. Another important example of finitely presented groups is finitely gener-
ated free groups, which have a presentation with finitely many generators and no relations.

For example, the free group on one generator, FGhxi, is isomorphic to the group
Z of integers. In general the elements of the free group are words (non-commutative
monomials) in the generators and their inverses.

Finite presentations can be constructed for any other algebraic structure you know,
not just groups: monoids, rings, vector spaces, algebras, and more. The notion of genera-

tion needs to be modified to whatever makes sense in a given structure: for example, in
a vector space, generation is via linear combinations; in a ring, it is via addition, subtrac-
tion and multiplication. A finitely generated free structure is one with a finite generating
set, and no relations in the presentation. To test your understanding, think about the
following questions:

Exercise 1.2.8. All vector spaces are free! Which fundamental theorem in linear algebra
tells you this?

Exercise 1.2.9. What is the difference between:

• the group algebra over Q of the free group on k generators, QFGhs1, . . . , ski, and

• the free Q-algebra on k generators, FAhs1, . . . , ski?

1.3 Categories

When encountering a new kind of mathematical object, we usually immediately learn
about the maps between them that respect their defining structures. Groups have group
homomorphisms, which play nice with their binary operations. Vector spaces have linear
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maps, which cooperate with addition and scalar multiplication. Topological spaces have
continuous functions, which send nearby points to nearby points. And sets, with no
additional structure to speak of, are happy as long as one element is sent to only one
element.

Indeed, a lot may be learned from studying the structure-preserving maps. For exam-
ple, studying the homomorphisms from a group to matrix groups, or an endomorphism

groups of vector spaces, is the premise of representation theory. Often, the properties of
the structure preserving maps are more important than the elements of the objects them-
selves. For example, you may recall that most of linear algebra considers linear maps,
rather than elements in vector spaces.

This line of thinking is formalised with the notion of a category: a class of mathe-
matical objects, together with the structure-preserving maps between them. It is perhaps
best understood as the context within which we are viewing the objects.

Definition 1.3.1. A category C consists of:

• a set of objects, ob(C),

• for each A and B in ob(C), a set of morphisms from A to B, Hom(A, B),

• for each A in ob(C), an element 1A of Hom(A, A), called the identity on A,

• for each A, B, and C in ob(C), an operation called composition

Hom(B, C)⇥ Hom(A, B) ! Hom(A, C)

(g, f ) 7! g � f ,

satisfying the following axioms:

• Associativity: Whenever f , g and h are morphisms that can be composed, we have
(h � g) � f = h � (g � f ).

• Identity: For each f 2 Hom(A, B), we have f � 1A = f = 1B � f .

Exercise 1.3.1. Can you draw a schematic picture, like those in the previous sections,
illustrating the structure of a category? Hint: there will be many sets.

Example 1.3.1. The following are some of the motivating examples for categories:

• The category of groups, Grp, whose objects are groups, and whose morphisms are
group homomorphisms. Composition is the composition of homomorphisms.

• The category Vect of vector spaces, whose objects are vector spaces, and morphisms
are linear maps. Composition is composition.

• The category Top, whose objects are topological spaces, and whose morphisms are
continuous functions. Composition is composition.
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• The category Set whose objects are sets1, and whose morphisms are set functions.
Composition is composition.

But note that not all categories’ morphisms are homomorphisms. In fact, not all
categories’ morphisms are functions:

Example 1.3.2. There is a category Order(Z), whose objects are integers, and whose
morphisms are true propositions n  m. Composition of morphisms is given by

(n  m) � (m  k) = n  k.

In othe words, for any given two objects n, m 2 Z, the category Order(Z) has a single
morphism n ! m in n  m, and no morphisms n ! m otherwise. Verify that this cate-
gory has identity morphisms, explain what composition is (there is only one possibility),
and verify that composition is associative.

Exercise 1.3.2. Is it possible for two categories to have the same objects but different
morphisms (and composition)? What about the other way, can two categories only differ
in their objects?

Example 1.3.3. Given an arbitrary group G, there is a category BG with one object, ⇤, and
morphisms given by elements of G. Composition of objects is given by multiplication in
G. Check that this is an example of a category.

The last two examples can be seen as evidence of the category theory mantra that the
morphisms of a category (and the operations that tell you how they compose) are more
important than the objects. The names Grp, Ring, Top, are counterintuitive in this sense,
but they have stuck, and it’s easier to write Top than ContinuousMap.

Exercise 1.3.3. Let G and H be two groups, and BG and BH their single-object categories
as in Example 1.3.3. Let VectF be the category of vector spaces over a field F. Show that
functors BG ! BH correspond exactly to group homomorphisms j : G ! H.

Example 1.3.4. The braid category, Braid = tnBBn has objects indexed by positive in-
tegers, and for n 2 Z>0, Hom(n, n) = Bn. There are no morphisms between different
objects: Hom(n, m) = ∆ for n 6= m. Composition of morphisms is given by braid mul-
tiplication in the appropriate braid group. While this example is a little silly, you will
see how it can be meaningfully extended with more morphisms to produce a category
of tangles.

Is there a category of categories? To answer this question, we ought to follow the
mantra above, and understand structure preserving morphisms between categories. These
are called functors, and map objects to objects and morphisms to morphisms in a way
preserving all the structure of a category.

1Famously, ob(Set) is not a set like our definition seems to require. To oversimplify, there are too many
sets! Technically, Definition 1.3.1 is the definition of a small category, where the objects form a set and so to
the morphisms between them. The category of sets is not a small category. We ignore this issue from here
on.
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Definition 1.3.2. Let C and D be two categories. A functor F : C ! D is a map which

• maps each object A 2 ob(C) to an object F(A) 2 ob(D), and

• maps each morphism f 2 Hom(A, B) to a morphism F( f ) 2 Hom(F(A), F(B)).

• These mappings respect identities and composition. That is, F(1A) = 1F(A) for all
objects A in C, and F(g � f ) = F(g) � F( f ) whenever the two morphisms g and f

may be composed in C.

A B C

F(A) F(B) F(C)

f g

F( f )

F(g� f )

F(g)

Figure 7: The composition condition in the definition of a functor, ex-
pressed in a commutative diagram.

With functors as the morphisms, categories do indeed form a (large) category.

Example 1.3.5 (Forgetful functors). Many algebraic structures, such as groups, monoids
and fields, are sets endowed with some additional structure. Similarly, morphisms be-
tween them are first and set functions, which also respect the additional structure. The
forgetful functors from the categories of these structures to the category send such ob-
jects to their underlying sets, and maps between them to their underlying set maps. In
some sense, they do nothing: they simply tell us to view objects and maps in a different
context, and forget about the extra structure.

Exercise 1.3.4. Consider the forgetful functor Grp ! Set. Is it surjective on morphisms?

Exercise 1.3.5. There is a forgetful functor Vect ! Set. Can you construct a functor
Set ! Vect?

Example 1.3.6 (Free functors). If you solved Exercise 1.3.5, you have most likely con-
structed an example of a free functor. Any set S can be used as a generating set for a
free group, a free algebra, or as a basis for a vector space. By Von Dyck’s theorem, a
homomorphism from a free structure is uniquely and freely determined by choosing the
images of the generators. For example, any set map f : S ! T lifts to a homomorphism
between the free groups f̃ : FGhSi ! FGhTi. In other words, this method gives functors
from Set to Grp, Vect, and so on: these are called free functors.

Exercise 1.3.6. Recall that the set of endomorphisms of a vector space V forms a group
under composition, called End(V). A representation of a group G is a vector space V

together with a group homomorphism r : V ! End(V). Show that functors BG ! VectF

correspond exactly to group representations (V, r).
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Chapter 2

Algebraic Structures for Knots and Tangles

”Knots are the wrong objects to study in knot theory.” – Dror Bar-Natan

Of course, knot theory concerned with knots, but from the algebraic point of view
of this course, we will see that knots are not an ideal knotted object to study: they have
little in the way of algebraic structure, and are not finitely presented in any sense.

They do, however, have many better-behaved cousins. We have already seen Artin’s
Theorem, which gives a finite presentation for each braid group. In this chapter we also
get to know tangles, which can be thought of as the atomic building blocks of knots.

To honour the tradition of the field, we do start out with good old knots.

2.1 Knots and links

A knot, intuitively, is a (potentially) tangled up circular piece of string, such as the ex-
amples shown in Fig. 8.

(a) 01
(b) 933 (c) 935

Figure 8: Some examples of knots.

To formalise this mathematically, we describe a knot as an embedding of a circle in
3-dimensional space:

Definition 2.1.1. A knot is an embedding (injective continuous1 function) K : S
1 ! R3,

from the circle S
1 into R3, or into the 3-sphere S

3.

Two knots are considered equivalent, or “the same” if one can be moved around in
space, without tearing the string, to look exactly like the other. For example the two

1In general, a topological embedding also needs to be a homeomorphism onto its image. Since S
1 is

compact, this follows from being injective and continuous.
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embeddings in Fig. 9 are not the same, but since the former can be deformed by a small
twist into the latter, we want to say they represent the same knot. In order to make
this notion of equivalence precise, we need to recall some basic notions from algebraic
topology.

Figure 9: A small twist changes the embedding but not the knot.

The first such notion is a homotopy, which is the precise notion for a continuous
deformation of a function.

Definition 2.1.2. If f : X ! Y and g : X ! Y are continuous functions between topolog-
ical spaces, then a homotopy between f and g is a continuous function H : X ⇥ [0, 1] ! Y

such that H(x, 0) = f (x) and H(x, 1) = g(x). If there exists a homotopy between f and
g, we say f is homotopic to g.

Since the intuitive notion of homotopy is a gradual deformation over time, we refer
to the interval [0, 1] as time, and elements of the interval as moments of the homotopy.

Exercise 2.1.1. Show that homotopy is an equivalence relation on the set of continuous
functions X ! Y.

Is homotopy a good notion of equivalence for knots? Say H is a homotopy between
two knots K1 and K2: the issue is that while K1 and K2 are embeddings, there is no
requirement that all the other moments during the homotopy are. Intuitively, a homo-
topy will potentially pass parts of the knot through each other, and thus all knots are
equivalent under homotopy.

Exercise 2.1.2. (a) Give an example of two non-homotopic functions.

(b) Given any two knots K0 and K1, write down a homotopy between them.

To more faithfully describe our intuitive understanding of knot equivalence, we need
to consider homotopies which restrict to embeddings at every moment:

Definition 2.1.3. An isotopy is a homotopy through embeddings, that is, a homotopy
H : X ⇥ [0, 1] ! Y such that for all t 2 [0, 1], H(x, t) is an embedding of X in Y.

Unfortunately, knots are still all equivalent under isotopy: this is less obvious, and
known as the “lazy seamstress trick”. Have you ever got a pesky knot on your thread
when sawing? Were you tempted to – rather than spending the time to untangle it – just
pull it as tight, until it practically disappears? This is an isotopy: given any knot, you can
pull all the knotty part to a point while extending the rest to a plain circle: the unknot. a

figure
illus-
trat-
ing
this
trick
would
be
nice

— Z.
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So, we want isotopies for knot equivalence, but need to make the seamstress trick ille-
gal. There are multiple equivalent ways of adjusting the notion of isotopy to achieve this.
Here we’ll go with ambient ispotopy: the word ambient means relating to the surroundings
of something. Indeed, ambient isotopy is a continuous deformation of not just the knot,
but the entire 3-dimensional space in which the knot is embedded. Such a deformation
of R3 “takes the knot with it”, and it is a homeomorphism at every moment, hence won’t
collapse the knot to a point:

Definition 2.1.4. Given two knots K and L, an ambient isotopy between K and L is a
continuous function F : R3 ⇥ [0, 1] ! R3 satisfying

• F0 : R3 ⇥ {0} ! R3 is the identity map,

• at each moment Ft : R3 ⇥ {t} ! R3 is a homeomorphism, and

• F1 � K = L.

Exercise 2.1.3. Show that ambient isotopy is an equivalence relation on knots.

Exercise 2.1.4. Given an ambient isotopy taking K to L, derive a corresponding (plain)
isotopy between them.

A natural extension of the concept of a knot is a link, which involves possibly more
than one loop, possibly tangled together. Ambient isotopy is also the right notion to
capture the intuitive equivalence of links:

Definition 2.1.5. A link is a continuous embedding of a finite disjoint union of circles into
R3, up to ambient isotopy.

2.2 Link diagrams

Link diagrams help translate knot theory from continuous functions – the realm of anal-
ysis and geometry – to diagrams that you can describe combinatorially, and even feed
to a computer: the realm of algebra and discrete mathematics. In order to define knot
diagrams, we need to talk about projections.

Definition 2.2.1. A projection p of a link L onto a plane P ✓ R3 is regular, or generic, if:

• All but finitely many points of the image of pL have only one pre-image in tS
1.

• The points which have multiple preimages (called the singular points) are all trans-

verse double points. That is, singular points in the image have two pre-images each,
and lie at the intersection of two projected arcs (which cross each other, rather than
meeting tangentially). These transverse double points are called the crossings.

All of the images of knots you have seen on the previous pages were in fact knot
diagrams: projections where at the crossings, the arc going under was drawn broken, and
the arc going over was drawn solid. Your brain has likely interpreted these automatically
as 3-dimensional objects.
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Definition 2.2.2. A link diagram of a link L is a is a regular projection of L onto a plane (a
copy of R2), with additional over/under strand information at the double points. When
link diagrams are drawn, the under strand at each crossing is indicated by breaking the
arc.

Exercise 2.2.1. Show that a link diagram determines the link up to ambient isotopy.

What about the converse? Does the knot uniquely determine the diagram? The
answer is clearly no: if you move the projection plane around, or apply ambient isotpoy
to the knot, the diagram will move around and change. Some of this movement is
captured by the notion of planar isotopy:

Definition 2.2.3. Two knot diagrams D and D
0 are planar ispotopic is there is an ambient

isotopy of the plane F : R2 ⇥ [0, 1] ! R2, such that F0 is the identity and F1(D) = D
0.

planar isotopy

However, since each moment of a planar isotopy is a homeomorphism of R2, planar
isotopy will never change the number of – create or eliminate – crossings. Up to planar
isotopy, a knot diagram is simply a 4-valent plane graph: a graph with four edge endings
at each vertex, embedded in the plane. Since the vertices represent crossings, the incident
edge endings are equipped with a cyclic orientation, and two opposite edge endings are
marked “over”. This information is easily encodable for computational purposed, and
when we talk about knot diagrams, this is the information we care about. We say that
two knot diagrams are the same if they differ only by planar isotopy. In other words, a
knot diagram is really an equivalence class of diagrams under planar isotopy.

There is more complication, however: we have already seen multiple different dia-
grams representing the same knot, and it is not usually easy to tell when they do. In
fact, there are infinitely many diagrams for each knot, for example by adding arbitrary
numbers of little twists.

Reidemeister’s Theorem gives a characterisation of when two diagrams represent am-
bient isotopic links, in terms of a short list of local “moves”. This complete combinatorial
description of links opened up countless possibilities for their algebraic study. It is easy
enough to see that the moves in the theorem, known as the Reidemeister moves and
shown below, don’t change the ambient isotopy type. It is much more substantial to
prove that the Reidemeister moves are sufficient to generate all isotopies.
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Figure 10: The Reidemeister moves.
R1
needs
the +
and -
kinks.
Minor
but
I’d
prefer
1,2,3
to I,
II, III

— Z.

What is harder to see is that these are all the moves that are necessary:

Theorem 2.2.1 (Reidemeister). Two knot diagrams D and D
0

represent the same knot if and

only if D and D
0

are related by a finite sequence of Reidemeister moves (and planar isotopy).

A proof of Reidemeister’s theorem can be found in Chapter 4 of [Mur96].
Reidemeister’s theorem is an existence result: it doesn’t tell us how long or how

complicated the sequence of moves relating two equivalent diagrams may be. It is not
even easy to tell whether a given knot diagram is equivalent to the unknot.

Exercise 2.2.2. Untangle the knots above on the using Reidemeister moves and planar
isotopies. (The one on the left is easier, from [Ada94]; the one on the right is famously
tricky and called the Goeritz unknot.)

cite
Ben et
al?

— Z.
2.2.1 Orientations and Mirror Images

The parametrisation of S
1 – for example, the counterclockwise direction along the unit

circle in the complex plain – induces an orientation (direction) along a knot, and more
generally, along each component of a link. An ambient isotopy will always preserve this
orientation. A weaker notion of equivalence would be to allow both ambient isotopies
and parameterisation-reversals of S

1. Knots under this more permissive equivalence are
called unoriented knots.

In this course, we are working primarily with oriented knots and links. In pictures,
it is often useful to indicate the direction (corresponding to counterclockwise in the pre-
image) with arrows along the link diagram.

Definition 2.2.4. The reverse is a unary knot operation taking a knot K to the knot K

pre-composed with a parameterisation-reversal of S
1. Knots for which K = K

⇤ are called
reversible. The reverse of K is denoted by K

⇤.
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That is, the reverse of K the same knot, with the opposite orientation: in a knot
diagram this amounts to simply reversing the arrow.

In general, K
⇤ is not ambient isotopic to K, but there are many reversible knots, which

can be can be continuously moved back to their original orientations. In fact, the simplest
knot that isn’t invertible is the knot 817, shown below. Add

figure
of
817.

— Z.

Exercise 2.2.3. Prove that the unknot and the trefoil are reversible by finding ambient
isotopies to their reverses.

Definition 2.2.5. The mirror image is a unary knot operation taking a knot K to K post-
composed with a reflection of R3. The mirror image of K is denoted K. Knots for which
K = K are called amphichiral, and knots for which K 6= K are called chiral.

Diagramatically, the mirror image can be achieved by swapping the over and under
strands at each crossing of the knot diagram. This corresponds to reflecting along a plane
parallel to the projection plane.

Exercise 2.2.4. Prove that the figure-8 knot is amphichiral.

Both the mirror image and the reverse are involutions: doing either operation twice
returns the original knot.

Definition 2.2.6. Knots for which K = K⇤ are called minus-amhichiral. Knots for which
K = K = K

⇤ = K⇤ are called fully symmetric. Knots for which K, K
⇤, K and K⇤ are all

different are called totally asymmetric.

We summarise the symmetry types of knots in the table below:

Name Symmetry

totally asymmetric K K
⇤

K K⇤

invertible but chiral K = K
⇤

K = K⇤

(plus-)amphichiral, noninvertible K = K K
⇤ = K⇤

minus-amphichiral, noninvertible K = K⇤ K
⇤ = K

fully symmetric K = K
⇤ = K = K⇤

Exercise 2.2.5. Show that the figure-eight knot is fully symmetric.

2.3 An Algebraic Structure on Knots

Knots carry an algebraic structure, with respect to the binary connected sum operation.

Definition 2.3.1. The connected sum of two (oriented) knots K1 and K2 is the knot pro-
duced by removing a small arc from each, and connecting the four ends in a way com-
patible with the orientations. The connected sum of K1 and K2 is denoted K1 # K2.
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